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Abstract: MXene is deemed to be one of the best attentive materials in an extensive range of applications
due to its stupendous optical, electronic, thermal, and mechanical properties. Several MXene-based
nanomaterials with extraordinary characteristics have been proposed, prepared, and practiced as a
catalyst due to its two-dimensional (2D) structure, large specific surface area, facile decoration, and
high adsorption capacity. This review summarizes the synthesis and characterization studies, and the
appropriate applications in the catalysis field, exclusively in the energy storage systems. Ultimately,
we also discussed the encounters and prospects for the future growth of MXene-based nanomaterials
as an efficient candidate in developing efficient energy storage systems. This review delivers crucial
knowledge within the scientific community intending to design efficient energy storage systems.

Keywords: MXene; 2D materials; Li-ion batteries; supercapacitors; Proton reduction; CO2 conversion
and oxygen reduction

1. Introduction

Two-dimensional layered materials have substantial research due to their amazing structural [1–3],
mechanical [4], electronic [5,6], and optical properties [7]. Apart from graphene, transition metals
dichalcogenides (TMDs), phosphorene, and their derivatives are illustrations of the extreme examined
2D materials. The finding of 2D-layered titanium carbide powder (Ti3C2), the first candidate of
the MXene family, in 2011 has unique structural and electronic features, permitting their usage on
numerous possible applications [8,9].

MXenes are the latest group of 2D transition metal carbides, carbonitrides, and nitrides.
The MXenes (Mn+1XnTx, whereas M refers to Sc, V, Cr, Ti, Zr, Mo, Nb, Hf, Ta; X refers to nitrogen
or carbon, and T refers to -OH, -O, and -F) can be prepared by selective etching of (Al, Cd, Si, P,
S, Ga, As, Ge, In, Sn, Ti, Pb elements) layers from three-fold metal nitrides and carbides (MAX
phase). Usually, Mn+1AXn (MAX) phases are the starting compounds, and MXenes are formed by
specifically etching the A layers, where A denotes Al or Si (Figure 1). Major properties have since been
reported, such as graphene-like layered structure, hydrophilicity, electrical conductivity, and flexibility.
Nearly 30 combinations of materials have been previously produced, and so many were projected
hypothetically [10,11].

MXenes have been broadly studied for their applications in numerous fields; for example, MXenes
have been researched as new materials for Li-ion batteries (LIBs), electrodes, supercapacitors, hydrogen
storage, adsorption, and catalysts [12,13]. In this review, we systematically present the techniques to
synthesize MXene-based catalysts, followed by crucial comments and probable solutions. We then
concisely reviewed the investigation methods that were related to applications in the catalysis field
and solely in the energy storage and conversion systems [14–20]. Also, the structure and stability of
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MXenes are discussed concentrating on the morphological, optical, and electronic properties followed
by some of the utmost favorable applications, such as batteries, proton reduction, supercapacitors,
CO2 conversion, and oxygen reduction. At last, a lookout for forthcoming research is suggested
from the recent research confronts. Also, we assume that the upcoming research employs this study
as a particular direction to relate, examine, and enlarge MXenes acquaintance. Recently, MXene
based nanomaterials have emerged as a popular trend towards potential applications such as LIBs,
supercapacitor, sensing, and biosensing. Therefore, a mini-review is provided to the materials science
community, as an intense, quick, and significant indication on the investigational progress of MXenes
research, signifying their present status, challenges, and trends.

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 29 

 

systematically present the techniques to synthesize MXene-based catalysts, followed by crucial 
comments and probable solutions. We then concisely reviewed the investigation methods that were 
related to applications in the catalysis field and solely in the energy storage and conversion systems 
[14–20]. Also, the structure and stability of MXenes are discussed concentrating on the 
morphological, optical, and electronic properties followed by some of the utmost favorable 
applications, such as batteries, proton reduction, supercapacitors, CO2 conversion, and oxygen 
reduction. At last, a lookout for forthcoming research is suggested from the recent research 
confronts. Also, we assume that the upcoming research employs this study as a particular direction 
to relate, examine, and enlarge MXenes acquaintance. Recently, MXene based nanomaterials have 
emerged as a popular trend towards potential applications such as LIBs, supercapacitor, sensing, 
and biosensing. Therefore, a mini-review is provided to the materials science community, as an 
intense, quick, and significant indication on the investigational progress of MXenes research, 
signifying their present status, challenges, and trends. 

 
Figure 1. Structures of typical M2AX, M3AX2, M4AX3 phases. Reprinted with permission from [8]. 

2. Synthesis and Characterization of MXenes 

2.1. Synthesis 

2.1.1. Synthesis Method 

The MAX phase (under the inert gas flowing or solid in a vacuum) has been synthesized via 
pressureless sintering (PLS) method (low-cost). Commonly MAX phase (without any pressure aid 
through sintering route) was prepared by this method as hot isostatic pressing (HIP) and hot press 
(HP) [21]. The approach of exfoliation is applied to preparation MXene from the MAX phase 
(discriminant etching layers of A-group elements in the MAX phase by an HF solution as the 
etchant) [22]. Another general method—vacuum filtration—is used to fabricate thin films of MXene 
materials. Initially, MXene materials are dispersed. Then, a vacuum pump is utilized to suck the 
diffusion to go via a filter. After solvent-passing via the filter, the film or membrane created of 
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2. Synthesis and Characterization of MXenes

2.1. Synthesis

2.1.1. Synthesis Method

The MAX phase (under the inert gas flowing or solid in a vacuum) has been synthesized via
pressureless sintering (PLS) method (low-cost). Commonly MAX phase (without any pressure
aid through sintering route) was prepared by this method as hot isostatic pressing (HIP) and hot
press (HP) [21]. The approach of exfoliation is applied to preparation MXene from the MAX phase
(discriminant etching layers of A-group elements in the MAX phase by an HF solution as the
etchant) [22]. Another general method—vacuum filtration—is used to fabricate thin films of MXene
materials. Initially, MXene materials are dispersed. Then, a vacuum pump is utilized to suck the
diffusion to go via a filter. After solvent-passing via the filter, the film or membrane created of MXene
materials will form [23].

One-or few-layer MXene nanosheets, which preserves the crystal structure and properties obtained
via exfoliation method. Next, the adaptability and low cost of this method make it highly well-liked
for synthesizing MXene materials and tremendously suitable for original research. MXene materials
are produced by ball-milling with the assistance of liquid surfactants or solid exfoliation agents,
as ball-milling of materials (bulk precursor) regularly manufactures nanosized particles owing to
high-energy collisions [24].
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In this liquid-phase impregnation method, the loading solution is mixed with the mesoporous
material, and then the solvent is evaporated. The incipient wetness impregnation method refers to
impregnation using a solution with a volume equal to the pore volume of the materials [25].

Chemical Vapor Deposition (CVD) is a procedure in which the substrate is exposed to one or
more unpredictable precursors, which respond and decay on the substrate surface to create the needed
thin film deposition [26]. Spark plasma sintering (SPS) is a new technique that uses pressure-driven
powder consolidation in which a pulsed direct electric current passes via a sample squeezed in a
graphite matrix. It is too identified as field-assisted or pulse electric current sintering [27].

Transition metal atoms into a perovskite (host) lattice throughout the preparation in oxidizing
atmospheres, and the surface as nanosized metallic particles under reducing conditions have been
prepared by in-situ growth [28]. Deposits of one monolayer of metal carbide (MXene) onto an mTMDC
(monolayer transition metal dichalcogenide), and to subsequently oxidize the top-layer metal atoms
was approached by atomic layer deposition (ALD) [29].

Diverse MXenes can be constructed by Acid etching (HF etching) at room temperature to different
temperatures by regulating the concentration of HF and reaction time. HF is a wildly discriminating
etchant that is still competent in removing various polytypes of SiC. The etching is a kinetically
inhibited development, and each MXene wants a dissimilar etching time to attain an entire conversion.
Regularly MXenes with larger n in Mn+1CnTx needs sturdy etching and/or a longer etching time [30,31].

2.1.2. MXene Preparation

The MXene sheets consisting of Al-containing MAX phases can be synthesized using hydrofluoric
acid (HF) as an etching solution. For instance, Ti3AlC2 (2.0 g) was gradually added to 40 mL of 40%
HF solutions and the reaction mixture was mixed using a stirrer at 60 ◦C for 18 h. The solids in the
solution were gathered by centrifuging, washed with double distilled water, and lyophilized. During
the synthesis, the subsequent reaction mechanism was followed:

Ti3AlC2 + 3HF→ Ti3C2 + AlF3 + 3/2H2

Ti3C2 + 2H2O→ Ti3C2(OH)2 + H2

Ti3C2 + 2HF→ Ti3C2F2 + H2

The etching conditions (HF concentration and time) that were necessary to change a given MAX
phase differ extensively, depending on the temperature and particle size. For example, decreasing the
particle size of the MAX phase by ball milling can efficiently reduce the essential etching time and
the strength of HF [32,33]. Besides, divergences in M-Al bond energies for dissimilar MAX phases
also need different etching conditions. For instance, the greater Ti-Al bond energy in Ti2AlC likened
with the Nb-Al bond energy in Nb2AlC leads to an increased HF concentration and extended etching
time [34]. Therefore, suitable etching conditions are required to accomplish greater yields and finish
the exchange of Mxenes from MAX phases. Recently, Halim et al. projected the usage of ammonium
bifluoride (NH4HF2) as an etchant in place of the harmful HF [35].

Ghidiu et al. described the latest greater-yield process for the prompt synthesis of numerous
MXene sheets [36]. Herein, they prepared Ti3C2Tx by dissolving Ti3AlC2 powders in hydrogen chloride
(HCl) and lithium fluoride (LiF) solutions, and then heated the mixture for 45 h at 40 ◦C. Afterward,
the product was collected by washing the sediments thoroughly to eliminate the side products
and increased the pH. Moreover, various Ti2CTx morphologies were achieved via using specific
surfactants (i.e., centyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide
(DTAB), tetradecyltrimethylammonium bromide (TTAB), stearyltrimethylammonium bromide (STAB),
dioctadecyldimethlylammonium chloride (DDAC)), and intercalating agents (i.e., p-phosphonic
calix[n]arenes) throughout the ultrasonication step. In this process, the ring size of the surfactant
controlled the morphology of MXene (crumpled sheets, plates, spheres, and scrolls, correspondingly
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with n = 4, 5, 6, or 8). The preparation and separation of ultrathin 2D Ti3C2 nanosheets were attained
by a liquid exfoliation process blending HF etching and tetrapropylammonium hydroxide (TPAOH)
insertion [16].

Though many investigates are insisting on getting a well-regulated morphology, lateral sizes,
architecture, and also a termination group production procedure, other methods were used for MXene
nanocomposite preparation. For instance, Mn3O4 nanoparticles sustained on layered Ti3C2 MXene
(Mn3O4/MXene nanocomposite) have been prepared by the ultra-sonication method [37]. Hierarchical
Ti3C2 QDs/Cu2O nanowires/Cu heterostructures were prepared via a simple self-assembly strategy [38].
Arranging g-C3N4 nanosheets with Ti3C2 MXene nanocomposites were synthesized via the interface
electrostatic interaction method [39]. Construct MXene/CuO nanocomposite was prepared by the
thermal decomposition method [40]. The multiwall carbon nanotubes (MWCNTs) patterned with MoS2

quantum dots (MoS2 QDs), and Ti3C2Tx QDs (MoS2QDs@Ti3C2TxQDs@MWCNTs) were prepared by
the hydrothermal method [41].

MXene Ti3C2 nanosheets were synthesized via hot-pressed sintering technique using concentrate
HF solution with various calcination temperatures (400, 600, and 800 ◦C) [21]. Mo-based MXenes
were fabricated by vacuum-assisted filtration method [23]. Michael et al. have fabricated titanium
carbide MXene via the hydrothermal method. MXene nanosheets terminated with different functional
groups using post-processing techniques [42]. Ling et al. have prepared MXene with polymer
[Polydiallyidimethyl ammonium chloride (PDDA), polyvinyl alcohol (PVA)] composites using the
HF etching method [31]. MXene/graphene oxide fiber was prepared by a liquid crystal assisted
fiber spinning technique [43]. MXene/rGO fibers have prepared via the wet-spinning assembly
method [44]. Synthesis of Ti3C2Tx MXene via ball milling has reported by Ghidhu et al. [38]. Li et al.
have demonstrated the MXene with electrochemically exfoliated graphene by solution processing
method [45].

2.2. Characterization

The XRD pattern of prepared MXene, which are well-matched with the characteristic structure of
synthesized Ti3C2 MXene. Supplementary peaks were observed in the Mn3O4/MXene XRD pattern,
implying Mn3O4 particles are formed on MXene [46]. The XRD pattern displays the fabrication of
Ti3AlC2 MAX phase. The intensity of the peaks originated from the parent Ti3AlC2 bulk consecutively
reduced after HF etching and TPAOH intercalation [47]. Heterostructures with Ti3C2 QDs or Ti3C2 sheets
related peaks (Figure 2a) represent an amorphous carbon signal nearby 24◦ [48]. Ti3C2 nanoparticles
designate diffraction peaks at 9.2, 18.4, and 27.6◦, corresponding to the (0 0 2), (0 0 4), and (0 0 8)
reflections, correspondingly. Additionally, the transformation of Ti3AlC2 to Ti3C2 nanoparticles is
further affirmed by the vanishing of the sturdiest peak of diffraction at 39.2◦ of Ti3AlC2 and the lower
shift of the (0 0 4) peaks [49]. Diffraction peaks matching to both MXene and CuO were viewed in the
pattern of MXene/CuO nanocomposite (Figure 2b), and the peak intensity increased with the increased
content of CuO, demonstrating the fabrication of the MXene/CuO composite [50]. The clear peak at
2θ of 26.2◦ in the XRD pattern of the Ti3C2Tx QDs resembles the restacking of graphene layers [51].
The stretching vibration at 3400, 725, and 1050 cm−1 were allocated to be O-H, C=O, and C-O. The
detected OH groups reveal the high hydrophilic property of MXene and Mn3O4/MXene. The structure
of MXene reveals by the vibration peak of Ti-O bond appeared at 665 cm−1 [46]. Fourier transform
infrared (FTIR) spectra, where the peaks at 1629.2, 1028.6, and 561.4 cm−1 relate to the modes of
stretching vibration for C=O, C-F, and Ti-O groups grafted onto Ti3C2 during synthesis (Figure 2c).
Raman spectra of Ti3AlC2 and Ti3C2 nanosheets, the disappearance of the vibration modes ω2, ω3, and
ω4 due to treatment with HF indicates the elimination of the Al layer or the interchange of the Al atoms
with additional atoms. Mode ω5 has downshifted and worsened, whereas the mode ω6 has been mixed
and repressed, which designates the well-preserved Ti3C2 layer and the increment of interlayer spacing
for the structure of MXene [47]. Self-assembly of Ti3C2 samples on Cu2O NWs/Cu is demonstrated by
Raman signals at 1383 and 1612 cm−1 that are in agreement with the D and G bands of Ti3C2 samples
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(Figure 2d) [48]. XPS result for the nanosheets of Ti3C2 reveals the existence of Ti (IV), TiCxOy, and
intrinsic Ti–C bond, which designates the growth of TiO2 or Ti3C2(OH)2 [47]. Successful fabrication of
Cu2O NWs/Cu mesh, Ti3C2 sheets/Cu2O NWs/Cu, and Ti3C2 QDs/Cu2O NWs/Cu heterostructures is
also validated by the presence of Cu 2p, Ti 2p, and C 1s peaks in the high-resolution XPS [48]. The Ti 2p
spectrum displayed in Figure 2e is intricated into six components incorporating the peaks at 461.3 and
455.0 eV assigned to Ti-C 2p1/2 and Ti-C 2p3/2 and also the peaks at 464.7 and 459.1 eV assigned to Ti-O
2p1/2 and Ti-O 2p3/2, correspondingly. The peaks at 462.5 and 456.5 eV are attributed to Ti−X (Ti2+),
which resembles the sub-stoichiometric TiC or titanium oxycarbides [49]. The presence of C–Ti bonds
at 282.2 eV in the high-resolution spectra of C 1s demonstrated the retained structure of MXene after
hybridization with CuO. The two main binding energy peaks at 932.7 and 952.6 eV with the splitting
peak of 19.9 eV in the high-resolution spectrum of Cu 2p could be ascribed to Cu 2p3/2 and Cu 2p1/2,
consistently. Moreover, there are also the satellite peaks at 944.2 and 962.6 eV which later corroborated
the presence of Copper oxide. The peaks at 284.0 and 285.0 eV also communicate to C–C/C=C and
C-O, collected with the peak at 285.8 and 287.8, which are assigned to the C-OH and COOH groups
(Figure 2f) [50–52].
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3. Fundamental Properties of MXene with Relevance in Energy Storage System

3.1. Electronic and Electrical Properties

Electronic and electrical properties are in the center of energy storage systems. The electrical and
electronic properties of MXene can be tailored by modification of functional groups, solid-solution
configuration, or stoichiometry. According to scientific methods, electric conductivity values of MXenes
pressed discs were identical with multi-layered graphene (resistance values from 22Ω to 339Ω, relying
on the “n” index and its molecular formula), and were greater compared to 0.1 mg/mL CNTs (Carbon
nanotubes) and 1 wt% RGO (Reduced graphene oxide) materials [8,14]. It has also been noticed that the
resistance of MXenes highly depends on the number of layers and type of functional group. It increases
with a higher number of layers [34,53–56].

Table 1 summarizes the electrical conductivity of numerous MXenes and composites prepared by
different methods. It has been observed that the electrical conductivity of Ti3C2Tx differed from 850
to 9880 S.cm−1 [57,58]. The variation in electrical conductivity is assumed due to the alterations on
the (i) surface functional groups, (ii) defect concentration, (iii) delamination yield, (iv) lateral sizes,
and (v) d-spacing between MXenes flakes provoked by each method of etching. Generally, poor
concentrations of HF and shorter etching times produce MXenes with reduced imperfections and larger
lateral sizes, rendering greater electrical conductivities. Surrounding environments, mainly humidity,
might also affect their conductivities, facing in the direction of applications of comparative humidity
sensing material [59–61]. Surface modification is an important tool to enhance the electrical properties
of MXenes via thermal and alkaline processes. In particular, surface modification processes result,
in addition or part of functional groups (specifically—F), and intercalating molecules. Many details
about electronic structures of MXenes and correlated features are reported in a current review work of
Hantanasirisakul et al. [62].

Table 1. Summary of the various MXene nanocomposites with the method of synthesis for electrical
conductivity.

Sample Method of Synthesis Electrical Conductivity (S/cm) Ref.

Ti3C2

Hot press sintering

850 [21]

Ti3C2 @400 ◦C 1430 [21]

Ti3C2 @600 ◦C 2410 [21]

Mo2CTx

Vacuum-assisted
filtration method

1.2 [23]

(Mo2Ti)C2Tx 1494 [23]

(Mo2Ti2)C3Tx 614 [63]

Ti3C2Tx 2410 [63]

Ti3C2Tx (100%)

Hydrothermal

4556 [64]

99% MXene/1% rGO 3326 [64]

95% MXene/5% rGO 2261 [65]

90% MXene/10% rGO 1231 [65]

From Table 1, MXene based composites by hydrothermal method show good electrical properties
(electrical conductivity, resistivity, etc.) and also highly useful in many applications such as sensors
and screens.

3.2. Morphological Properties

The lattice parameter of surface-functionalized Ti3C2 increases after insertion and delamination.
Nevertheless, their work was separated MXenes layers of 20–50 nm thickness and length 44–90 µm.
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Additionally, soon after ultrasonication in DMSO, these MXenes were scattered in deionized water to
develop an aqueous solution with colloidal property, later filtered to get MXene “paper” [53].

In another study, Ti3C2 Quantum Dots (QDs)/ Cu2O NWs composites were prepared. Coating
by Ti3C2 QDs does not modify the complete morphology of Cu2O NWs but shields the porous
surfaces (Figure 3). Effective deposition of Ti3C2 QDs was also established by elemental mapping.
Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy
(HRTEM) morphological analysis confirmed that plentiful Ti3C2 QDs were consistently immobilized
on Cu2O NWs with close contact. It was also proved by the identical spreading of C, Ti, Cu, and O
elements disclosed by elemental mapping [48].
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The SEM images of MoS2QDs@Ti3C2TxQDs@MWCNTs-2 nanocomposite only displays nanotube-like
structure, in which the Ti3C2Tx QDs and MoS2 QDs were not noticed, retaining to their ultra-small
sizes. In turn, its precise surface structure, the TEM images of MoS2 QDs, Ti3C2Tx QDs, and
MoS2QDs@Ti3C2TxQDs@MWCNTs-2 were probed [51]. Mn3O4 nanoparticles on the surface of MXene
were investigated by TEM and HRTEM. TEM image evidenced the presence of Mn3O4 nanoparticles
with a diameter of 5–18 nm. The HRTEM image of Mn3O4/MXene displayed the Lattice fringes with
inter-planar distances of 0.307 nm, which was allocated to be (1 1 2) plane of hausmannite. The
inter-planar distance of 0.242 nm resembles the (1 0 3) plane of MXene [46]. The MXene sheets are
layered structures that are even and soft with pointed edges, while Gd3+- and Sn4+-multi doped
bismuth ferrite (BFO) nanocomposites are enclosed on the surface of MXene sheets [65]. In the case
of MXene quantum dots with cuprous oxide nanowire (Ti3C2/Cu2ONWs/Cu) nanocomposite, Cu2O
nanowires cover the MXene porous surfaces (Figure 3d) [44]. MXene/50% CuO (Figure 3a–c) showed
CuO nanoparticles with 60–100 nm diameters, which were randomly deposited on the surface of
MXene nanosheets (Figure 3c), and were stabilized through van der Walls interactions [50].

3.3. Optical Properties

The UV and visible light absorptions are essential for the development of photocatalytic,
optoelectronic, photovoltaic, and transparent conductive electrode devices. MXenes are possible
compounds for adaptable, transparent electrode studies, whereas their greater reflectivity in the UV
range directs towards anti-ultraviolet emissions coating materials, because of their transparent optical
property in the visible range and electrical conductivity. Ti3C2Tx films can absorb light in the range
of UV–visible between 300 to 500 nm. The transmittance of the Ti3C2Tx films varied concerning the
thickness, and the 5 nm thick film displayed transmittance up to 91% (Figure 4a). It has been suggested
that there might be a presence of a strong and wide absorption band at approximately 700–800 nm,
based on the thickness of the film (Figure 4b–c). It results in the pale green color and is essential for
photothermal therapy (PTT) investigations. Remarkably, the transmittance properties can be improved
via varying the film thickness and intercalation of ions. For example, while urea, hydrazine, and
DMSO decrease Ti3C2Tx film transmittance, tetramethylammonium hydroxide (NMe4OH) increases it
from 74.9 to 92.0% (Figure 4d) [66–69].
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spectra of spin cast V2CTx films as a function of 13 h from 10 nm to 60 nm. Reprinted with permission
from [66,67].

The existence of the functional groups also affects the optical properties of 2D components,
as was pointed out by the first principle simulations. The hydroxyl and fluorinated terminations
represent identical characteristics, compared with oxygen species. For example, in the visible region,
−F and −OH terminations reduce the reflectivity and absorption, whereas, in the UV range, all the
terminations improve the reflectivity when likened with the pristine MXene. It has been signified that
weak absorbance is accomplished with the decrement of MXene flake size. Ultimately, it has signified
that the excellent light-to-heat conversion efficiency (~100%), is beneficial for water evaporation and
biomedical treatments. However, certain optical associated characteristics, such as emission colors,
luminescence efficiency, plasmonic, and non-linear optical characteristics, are quiet essential to be
explained in turn to expand the uses of MXenes [70,71].

4. MXene for Energy Storage and Conversion Systems

4.1. MXene for Energy Storage: Batteries

Rechargeable lithium-ion batteries (LIBs) are extensively employed as energy storage devices.
The best LIB holds a good cyclability, high lithium storage capacity, and elevated rate capacity, all
of which rely on the characteristics of the electrode materials existing in LIB’s. Graphite is the very
frequently employed anode component, but it undergoes problems from a low specific capacity of
372 mAh/g and deficient rate capability [72,73]. Broad investigation attempts have opened the growth
of novel anode materials in LIBs substituted by 2D MXenes [74,75].

Soon after their immediate finding, the probability of employing MXenes as anode materials in
LIB was reported [76]. The hypothetical Lithium storage capacity of Ti3C2 (in the form of Ti3C2Li2)
was 320 mAh/g, related to that of graphite 372 mAh/g. Also, the projected diffusion barrier (0.07 eV)
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for Lithium on bare Ti3C2 was less compared to graphite (0.3 eV), which expected outstanding
high-rate performance for simple MXene [77]. Yet, as noticed beyond, all synthesized MXene sheets are
terminated with surface groups, probably worsening their functioning by stimulated steric hindrance.
Contrasted with some additional terminated MXene sheets, an O-terminated MXene was recommended
to retain very good capacitance [78–80].

The higher capacities of MXene based LIBs were ascribed to (i) enhanced electrolyte ions
approachability and diffusion routes to MXene layers; (ii) greater charge storage because of their
delaminating layers; (iii) metal hybridization with greater capacitance and outstanding conductivity;
(iv) speedier ion diffusion; and (v) lesser interfacial charge transfer [81]. For instance, new
structured MXenes-CNTs associations and porous Ti3C2Tx formed by freeze-drying postponed MXenes
re-loading and gave rise to very good properties in comparison to MoS2/graphene nanocomposites
(Figure 5a–c) [82,83]. This should be emphasized that MXenes could also be infused by some additional
metal ions like Na+, K+, Al3+, and Mg2+. Therefore, they could be employed in non-LIBs; those
have their usage recently restricted by suitable electrode properties [79]. Ti2C hypothetical capacities
for Mg2+ and Al3+ were amongst all the uppermost ever projected for both kinds of ion batteries
(687 mAhg−1 and 992 mAhg−1 correspondingly) (Figure 5d–e) [84]. Moreover, the probability of
sodium ions multilayer adsorptions entices with more attention. Current literature also reveals assuring
characteristics as including conductive materials in Li–S type of batteries. It is a promising battery
system that gives hypothetical energy densities up to 1675 mAhg−1 (Figure 5f) [85], but is restricted by
their quick capacity degradation because of polysulfide moving and dissolution, greater enlargement of
volume and worse electrical conductivity of sulfur related cathodes [22,25,86,87]. Therefore, MXene’s
growth could head to novel routes on the electrode materials of NLiBs. From Table 2, the MXene
with metal oxide composite exhibited high reversible capacity and rate capability due to the enhanced
conductivity and contribution of the capacitive capacity.

Table 2. Overview of electrochemical characteristics from MXene and MXene-based composite
for batteries.

Materials Method of Synthesis Reversible Capacity
(mAhg−1)

Rate Capability
(mAhg−1)

Cycles Ref

Ti2CTx Exfoliation 225 70 200 [22]

Ti2C/TiO2 Chemical exfoliation 389 280 1000 [24]

Ti3C2/CNF Liquid-phase impregnation 320 97 2900 [25]

Ti3C2Tx/CNT Chemical vapor deposition 1250 500 100 [26]

Nb4C3Tx Spark plasma sintering 380 320 1000 [27]

Ti3C2Tx/NiCo2O4 In-situ growth 1330 1200 100 [28]

SnO2/ Ti3C2Tx Atomic layer deposition 1041 451 50 [29]

MoS2@ Ti3C2Tx Acid etching 843 132 200 [30]

V2CTx Ball-milling 288 125 150 [86]

Nb2CTx Ball-milling 250 110 150 [86]

Nb2CTx/CNT Amine-assisted delamination process 420 370 100 [88]

Sn(IV)@ Ti3C2 Facile liquid-phase immersion process 635 544 200 [89]

Ti3C2Tx/Ag Direct reduction 310 260 5000 [90]
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Figure 5. (a) Cyclic Voltammetry (CV) plots of the porous Ti3C2Tx/CNT-SA electrode at various scan
rates between 0.1 to 3 mV s−1, (b) galvanostatic charge-discharge profiles at different current densities,
(c) Volumetric capacities of Ti3C2Tx/CNT-SA, (d) Open-Circuit Voltage (OCV), (e) capacity as a function
of x in Ti3C2T2Nax with T = bare, F, and O and (f) Discharge specific capacity and Coulombic efficiency
of Ti3C2Tx/RGO/S composite cathode. Reprinted with permission from [82,84,85].

The lithium storage features of MXene-based materials rely on several factors like the functioning
of 2D MXene and its byproducts for LIBs. This can be understood that the property can be modified
by more prospects like surface decoration, functional group grafting, and variation of composition.
Consequently, the rational nano-engineering of centered materials will vividly endorse their usage
in LIB. Up to now, these are only restricted MXene materials with selected metal that have been
prepared. So, adjusting the MXene components like metal species and a portion of metal/carbon will
largely influence the performance of Li storage. Additional prospects like surface termination and
interlayer distance are also significant to accommodate Li-ions. Through mixing MXenes with other
effective materials with better capacity (such as silicon, metal oxides), the synergistic development
can be accomplished. Enhancing the above-stated factors is the solution to get greater functioning
of MXenes for LIB [83–85]. The MXene-based composite material is conceivable to be a promising
high-performance anode material for LIBs [86–90]. Furthermore, various MXene based metal oxide
composites were suggested for their use in energy storage applications.

4.2. MXene for Energy Storage: Supercapacitors/Dielectrics

MXenes also widely used in developing supercapacitors that are taken into account in replacements
of energy storage devices due to elevated rates of charge/discharge compared to batteries and longer
cycling stability. For example, multilayered Ti3C2Tx offered functioning of 340 F/cm3 in KOH alkaline



Catalysts 2020, 10, 495 11 of 28

solutions [91], which is identical or finer than marketable activated and graphene carbon electrodes
(correspondingly, 200–350 and 180 F/cm3) [92]. When subjected to acidic solutions, such as H2SO4,
the Ti3C2Tx film disclosed very good volumetric capacitance values (900 F/cm3 at 2 mVs−1 rate),
even after 10,000 cycles, without degradation [91–93].

This dissimilar performance in acidic and alkaline electrolytes originates from the variance in the
mechanism of the charge-discharge process. Whereas Ti3C2Tx has shown excellent pseudocapacitive
properties in an acidic solution (e.g., H2SO4), only electrical double layer capacitance is observed
in alkaline or neutral electrolytes that decreases their performance. Notably, pseudocapacitive
performance is connected to closeness towards the electrode surfaces at, or the reversible surface
redox reactions that give elevated energy density. Whereas, the double-layer capacitor depends on
the reversible growth of electrolyte ions deprived of redox reactions. Subsequently, their decreased
electrochemistry performances in basic and organic electrolytes are unfavorable steps towards realistic
applications. Additionally, their charge storage processes above dissimilar electrolyte media are still to
be completely implicit [94–96].

MXenes have a robust tendency of aggregation through hydrogen bonding and van der Waals
attraction. This spoils their performance, mostly due to the lack of accessibility, the loss of surface
area, and interchange of ions limitation. Therefore, other approaches have been adopted to resolve
these issues, like usage of interlayer spacers, customized architectural designs (such as macroporous
structure, hydrogel, or vertically aligned liquid-crystalline), the combination of these approaches and
arrangement with conductive particles (e.g., Nb2O5 and NiO) [97,98]. Other compounds, such as
Mo2CTx [99] and Mo1.33CTx [100], also revealed promising functionality as supercapacitors. Regardless
of the valuable effect of vacancies to Mo1.33CTx capacitance (around 700 F/cm3, 65% higher than
Mo2CTx), their effect on electrochemical functioning yet needs to be further examined. Additionally,
it was currently established that the flake size is quietly associated with the capacitance presentations.
Ultimately, Nb3C2 projected quantum capacitance was greater than graphene, but neither this MXene,
nor it’s MAX phase precursors (Nb3AlC2) have still been prepared, regardless of their projected
stability [101,102].

Moreover, Ti3C2Tx-polypyrrole nanocomposite (1000 F/cm3) can almost reach the “new”
(Mo2/3Y1/3)2CTx [103] and Ti3C2Tx [104] hydrogels performances (~1500 F/cm3) [39], that are among the
best conveyed volumetric capacitance values for any capacitive compound (Table 3) [105]. Ultimately,
regardless of many prepared MXenes, only molybdenum (Mo), titanium (Ti), and currently vanadium
(V) derivatives were examined [106]. Therefore, other compounds must be assessed in turn to enlarge
and improve the latest electrode materials of supercapacitors as the MXene based nanocomposites are
highly suitable for the development of superior capacitors (Table 3).

Table 3. Summary of the capacitance of MXene and their composites.

Materials Synthesis Route Volumetric
Capacitance (F/cm3)

Scan Rate
(mV/s) Ref

90 wt% Ti3C2Tx/10 wt% PVA HF etching 528 2 [31]

Ti3C2Tx Ball milling 900 2 [38]

88 wt% Mxene/GO fiber Liquid crystal-assisted
fiber spinning approach 341 2 [43]

Mxene/rGO-90 fiber
(containing 90 w/w% of Mxene)

Wet spinning assembly
586.4 2 [44]

Mxene/rGO-50 fiber
(containing 50 w/w% of Mxene) 276 2 [44]

EGMX (1:9) Solution process 33 2 [45]

2:1:1.1:2 MO2TiC2 HF etching 413 2 [107]

2D MO2TiCx HCL-LiF 196 2 [108]

Ti3AlC2/Polypyrrole (2:1) HCL-LiF 416 5 [109]
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The dielectric permittivity and loss tangent of MXene/Polymer composites with variation in the
MXene loading and different polymers have also been investigated (Figure 6a). It has been noticed
that the dielectric permittivity of composites increases when MXene filler concentration increases.
Figure 6b shows the dielectric permittivity and loss of the polymer consisting of different types of fillers,
including CNTs, rGO, and MXene. The dielectric constant of different types of insulating polymers
[e.g., P(VDF-TrFE-CFE), P(VDF-TrFE-CTFE), P(VDF-TrFE), and PVP] increases significantly with the
addition of 4 wt% MXene (Figure 6c). To understand the probable microwave absorption property, the
relative complex permittivity and permeability of the prepared samples have also been measured in the
frequency range of 2–18 GHz and evaluated carefully in Figure 6d. The relative complex permeability
(µ’) values of the prepared MXene composites fluctuate over 2–18 GHz and are less than 1.1. The µ′′

values of the prepared samples decreased from 0.78 to nearly 0 due to snoek’s limitation (Figure 6e).
Figure 6f describes the dielectric dissipation factors of the samples. From the figure, the pure iron
sample has quite low dielectric loss factor. MXene composites have shown large tanδ values [110,111].
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Figure 6. (a) Dielectric permittivity and loss of the MXene/Polymer composites on MXene content wt %
measured at RT and 1 kHz, (b) Bar charts comparing the dielectric permittivity and communicating
loss described in the research report employing polymer as a matrix with diverse conductive fillers,
(c) Dielectric constant of various polymers with and without MXene. Inset (i): Dielectric loss of
diverse polymers inserted with MXene stacking; P1: P(VDF-TrFE-CFE); P2: P(VDF-TrFE-CTFE); P3:
P(VDF-TrFE); P4: PVP, (d) Frequency dependence of (a) real part of permittivity and (f) imaginary
parts of permeability for the Fe3O4, TiO2/MXene, and TiO2/MXene/Fe3O4 composites over 10–18 GHz
and (e) Dielectric dissipation factors of the Fe3O4, TiO2/MXene, and TiO2/MXene/Fe3O4 composites in
the frequency range of 2–18 GHz. Copyright: Ref. 41 and 110.

From Table 4, the MXene-based polymer composites exhibit good dielectric property due to the
charge accumulation caused by the formation of microscopic dipoles at the surface between the MXene
and the polymer matrix under an external applied electric field. MXene with polymer composites is
very useful in power capacitors, cryogenic electronics, and radiofrequency applications.
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Table 4. The dielectric constant and dielectric loss of MXene with different polymer composites.

Materials Dielectric Constant Dielectric Loss Ref.

MXene/P (VDF-TrFE-CTFE) 47 0.2 [37]

4% MXene/P (VDF-TrFE-CTFE) 159 0.22 [37]

MXene/P (VDF-TrFE) 18 0.006 [37]

4.3% MXene/P (VDF-TrFE) 80 0.06 [40]

MXene/PVP 2.5 0.01 [40]

4% MXene/PVP 16.4 0.03 [40]

MXene/P (VDF-TrFE-CFE) 55 0.06 [41]

4% MXene/P (VDF-TrFE-CFE) 317 0.17 [41]

4.3. MXene for CO2 Conversion

Due to suitable physical and chemical properties, MXene can potentially be used for CO2

storage and photo-, electrochemical reduction. Recently, CO2 storage on the surface of M2C MXene
(M = transition metals such as Ti, Hf, Zr, V, Ta, Nb, Mo, W) (0001) is described by employing the
state-of-the-art DFT PBE estimations comprising D3 Grimme correction dispersion. Outputs reveal
elevated adsorption energies up to 3.69 eV supplemented by a CO2 stimulation, converted into anionic
CO2 d species with extended d(CO) bonds, bent structures, and an MXene/CO2 charge transfer,
unexpectedly above 2e for Hf2C [112,113]. With these elevated adsorption energies, M2C MXenes are
projected to be most efficient compared to their 3D bulk accompaniment for CO2 capturing, storage,
and stimulation. 2D M2C MXenes are introduced as potential materials for CO2 capture, whereas its
stimulated adsorption is further enchanting for employing them as CO2 conversion catalysts [114–116].

The activity of transition metal carbides as CO2 conversion materials has been described by
Zhou et al.’s that proved M2CO2 with an oxygen vacancy as an effective catalyst for CO2 reduction.
Also, it should be noted that: (i) MXenes have broad metal-terminated surfaces, that may favor CO2

capturing; and (ii) MXenes shows metallic characters, that are useful for the different photo- and
electrochemical reactions [117]. In particular, computing that chemical absorption of CO2 has favored
over chemical absorption of H2O on their surfaces [118–120]. Additionally, the expectation that high
electrical conductivity and the hydrophilic nature will accelerate an electrochemical reduction of CO2,
in consideration of both giving electrons and H+ attachment [121]. From this context, we assume that
groups of IV−VI MXenes, such as carbides of transition-metal with formulas Mn+1Cn (n = 2), can work
as efficient catalysts. MoS2/Si nanostructure exhibits good activity by the photoelectrochemical method
(Figure 7A,B). The CV response of the Bi/C electrode showed an electrochemical reduction of CO2 to
formate at a scan rate of 50 mV/s (Figure 7C).
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Photocatalytic CO2 conversion to beneficial products is an attractive methodology for attaining
the two-fold profits of standardizing additional atmospheric CO2 stages and the fabrication of solar
fuels/chemicals. Consequently, catalysts materials are constantly being established with improved
functioning in agreement with their corresponding areas. Currently, nanostructured catalysts such as
1-D, 2-D, and 3-D/ hierarchical have been a theme of huge significance due to their precise benefits
over composite catalytic materials, comprising huge surface areas, efficient charge separation, steering
charge transport, and light trapping/scattering effects [124–127]. A hierarchical heterostructured,
selectively Ti3C2 quantum dots decorated Cu2O nanowires on Cu mesh, has been fabricated via easy
electrostatic self-assembly. Formation of methanol ensuing from the photocatalytic reduction of CO2 by
Ti3C2 quantum dots /Cu2O nanowires/Cu is 8.25 times or 2.15 times of that from Cu2O nanowires/Cu or
Ti3C2 sheets/Cu2O nanowires/Cu, correspondingly [48]. From Table 5, the TiO2 based nanocomposites
are highly useful in the photoelectrochemical conversion of CO2 to fuels.
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Table 5. Summary of the photochemical catalytic reduction performance of the various reported
composite materials.

Materials Light Source Catalytic Performance Ref.

Sulfur doped g-C3N4/Pt 300 W Xenon lamp CH3OH: 0.04 µmolh−1 [49]

g-C3N4/N-TiO2 nanosheets 300 W Xenon lamp CO: 14.73 µmolg−1

CH4: 03.94 µmolg−1 [117]

TiO2/Ti3C2 300 W Xenon lamp CH4 = 0.22 µmolh−1 [128]

Graphene QDs—TiO2 nanotube arrays (TNT) 100 W Xenon lamp CH4: 1.98 ppmcm−2h−1 [129]

TNT-rGO 100 W Xenon lamp CH4: 5.67 ppmcm−2h−1 [130]

Ordered mesoporous co-doped TiO2 300 W Xenon lamp CO: 0.19 µmolh−1 [131]

TiO2/Mg 300 W Xenon lamp CH4: 0.15 µmolg−1 [132]

Cu modified g-C3N4 sheets with TiO2 nanoparticles 500 W Xe lamp CH3OH: 614 µmolg−1

HCOOH: 6709 µmolg−1 [133]

2-D-g-C3N4 with o-D-TiO2-x nanoparticles 300 W Xenon lamp CO: 388.9 µmolg−1 [134]

Graphene—TiO2 nanostructures
(nanoparticles, nanotubes, nanosheets) 300 W Xenon lamp CO: 75.8 µmolg−1h−1

CH4: 12.3 µmolg−1h−1 [135]

In terms of CO2 electrochemical reduction reaction (CO2RR), different types of MXenes (e.g., Ti2CO2,
V2CO2, and Ti3C2O2, M3C2, O-terminated MXenes, and −OH-terminated MXenes) have been examined
by means of DFT computations [136].

An initial computational study has suggested that among eight different MXenes (pristine and
without surface termination) with formula M3C2 where M belongs to group IV, V, and VI transition-metal,
can potentially convert CO2 into hydrocarbon electrochemically. It has been mentioned that Cr3C2

and Mo3C2 with a minimum energy input of 1.05 and 1.31 eV, respectively, can selectively convert
CO2 into methane. The required input energy can be further reduced to 0.35 and 0.54 eV by using
−O or −OH terminated Cr3C2 and Mo3C2, respectively. Therefore, Chen et al. perform additional
computational study for −OH terminated carbide and nitride MXenes [137]. Sc2C(OH)2 and Y2C(OH)2

were suggested to be the most promising catalysts for the selective production of methane via CO2RR.
Both catalysts can reduce CO2 at significantly less negative potential than the Cu metal. Here it should
be noted that most of the standard nanocatalysts except Cu are not able to produce higher carbon
products during CO2RR [138]. For instance, Au and Ag-based nanocatalysts produce only carbon
monoxide (CO) as a CO2RR product. However, Cu based nanocatalysts can produce hydrocarbon
but suffer from poor selectivity, as discussed in our previous review [139]. Thus, we predict that
MXene-based catalysts offer a breakthrough in CO2RR but still need to be examined experimentally.

4.4. MXene for Proton Reduction

Hydrogen is an excellent energy carrier could potentially replace carbon-based fuel if it is
produced via clean and sustainable technology. In this regard, hydrogen production via hydrogen
evolution reaction (HER) using renewable energy sources offer a feasible approach. Apart from noble
metal catalysts (e.g., Pt, Pd), 2D nanomaterials, including transition metal dichalcogenides such as
MoS2, WS2, and their hybrid structures are reportedly excellent catalysts for HER [140]. With the
discovery of MXene, recent efforts are directed towards exploring the HER catalytic activity of these
nanomaterials [141].

Theoretical and experimental studies have been performed to investigate the HER activity of
MXene. Initially, Zhi et al. performed density-functional theory (DFT) estimations to establish ∆GH

(hydrogen adsorption Gibbs free energy) on MXenes, followed by experiments to verify their DFT
results [142]. Based on DFT calculation, Mo2CTx was predicted to be more functional catalyst due
to smaller ∆GH and theoretical overpotential (0.048 eV, 48 mV respectively) in comparison to the
Ti2CTx (0.358 eV, 358 mV respectively). Recently, Yu-Wen Cheng et al. also performed DFT study, and
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their results indicate the higher HER activity of O*-terminated M2
′

M”C2 due to appropriate binding
strength between hydrogen absorption and termination of O*, and availability of more electrons [143].
When both materials were tested in 0.5 M H2SO4(aq), 609 mV and 189 mV overpotential were recorded
for Ti2CTx and Mo2CTx at a current density of 10 mA cm−2

geo respectively. The superior activity of
Mo2CTx was accredited to the existence of active sites located on the basal plane. Further, Guoxing
Qu et al. synthesized phosphorus-doped Mo2CTx MXenes (P–Mo2CTx) and compared the results with
un-doped Mo2CTx MXenes and commercial Pt/C (Figure 8a,b) [144].
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It has been argued that dopant enhances the conductivity of the materials as evidence by ~5 times
lower charge transfer resistance (Rct) than that of without dopant and reduces the ∆GH* simultaneously.
More interestingly, P–Mo2CTx was stable for 24 h in acidic media. Wenjin Yuan et al. examined the HER
activity of lamellar Mo2C (L-Mo2C) and interestingly 10 mA cm−2

geo current density was achieved at
only 95.8 mV and 170 mV overpotential in 1M KOH and 0.5M H2SO4 solution, correspondingly [145].
The superior HER activity of L-Mo2C was mainly attributed to the lower value of ∆GH (−0.034 eV) of the
C-terminal (1 0 0) plane in Mo2C. Due to the participation of C atoms in HER, L-Mo2C exhibits superior
stability, avoiding poisoning phenomena due to oxidation of atoms. Extracted Tafel slopes of 77 and
99 mV dec−1 in alkaline and acidic solution correspondingly indicate that HER on L-Mo2C is governed
by Volmer–Heyrovsky mechanism. Based on a theoretical study, V-based catalysts should also exhibit
excellent HER catalytic activity. Thus, Minh H. Tran et al. synthesized V4C3Tx and examined HER
activity [146]. However, the results claim poor performance of V4C3Tx as 10 mA cm−2

geo current
density was observed at ~ −800 mV, and a high Tafel slop (~236 mV/dec) was calculated. Surprisingly,
the performance of the catalysts improves after 100 cycles, and 10 mA cm−2

geo current density has
been obtained at 200 mV lower overpotential. Compare to nanoparticles or nanoflakes MXene, MXene
nano-fibers exhibit superior HER activity due to the simple enhancement in an extreme specific surface
area (SSA), and thus, the availability of additional active sites. The catalytic activity can be further
boosted by the creation of interface or hybrid structure. Thus, Jie Xiong et al. created Mo/β-Mo2C
hetero-nanosheets and identified that Mo/β-Mo2C nanocatalysts require only 89 mV to drive HER with
a current density of 10 mA cm−2

geo in 0.5 M H2SO4 [147]. More importantly, Mo/β-Mo2C’s HER activity
remains approximately unaffected after 20 h of long chronoamperometric electrolysis or 4000 I-V
sweeps. Again the origin for improved catalytic activity was assumed due to lower ∆GH (−0.04 eV)
for Mo/β-Mo2C compared to those of individual Mo (−0.39) and β-Mo2C (−0.19 eV). Considering
that the basal plan is responsible for higher HER activity, Albertus D. Handoko performed controlled
experiments by varying the degree of basal plan functionality using Ti3C2Tx as an example [148].
DFT calculations, along with experimental results, confirm that replacing O with F (fluorine) on basal
plan results in higher ∆GH and HER overpotential. Recently Ti3C2Tx and MoS2 hybrid catalysts
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were also designed in search of efficient HER catalysts [149]. In brief, “nanoroll” like MoS2/Ti3C2Tx

hybrid structure was synthesized by quick freezing of the Ti3C2Tx and MoS2 precursor (ammonium
tetrathiomolybdate) followed by annealing in H2/Ar (20%/80%) atmosphere with a heating rate of
5 ◦C/min. The HER results show relatively improved performance as HER initiate only at 30 mV, and
an approximately 25-fold rise in the exchange current density in comparison to the MoS2 nanoflakes.
Double transition metal MXene nanosheets (Mo2TiC2Tx) consisting of Mo vacancies in outer layers
have also been used to immobilize Pt atom and examined for HER [150]. In this configuration, due to
solid covalent interaction among positively charged Pt single atoms and the MXene, it has unusual high
HER activity. The HER takes place at very low potential, and 10, and 100 mA cm−2 current densities
were recorded only at 30 and 77 mV over potential, respectively (Table 6).

MXene based nanomaterials (Table 6) showed the high overpotential at 10 mA cm−2 in 0.5 M
H2SO4 medium (HER activity) due to the increased reaction content area is profitable to the interaction
between Mxenes and hydrogen atoms.

Table 6. HER activity of different 2D nanomaterials with different media.

Materials Over Potential at 10 mA cm–2
geo Media (Aqueous Solution) Reference

Mo2CTx 300 mV 0.5 M H2SO4 [142]

P–Mo2CTx 186 mV 0.5 M H2SO4 [142]

Mo2CTX MXene 283 mV 0.5 M H2SO4 [142]

MoS2 280 mV 0.5 M H2SO4 [142]

Ti2CTx 609 mV 0.5 M H2SO4 [143]

Mo2CTx 189 mV 0.5 M H2SO4 [143,148]

L-Mo2C (lamellar structure β-Mo2C) 170 mV 0.5 M H2SO4 [145]

L-Mo2C (lamellar structure β-Mo2C) 95.8 mV 1 M KOH [145]

Ti3C2 nanofibers 169 mV 0.5 M H2SO4 [149]

Ti3C2 flakes 385 mV 0.5 M H2SO4 [149]

MoS2/Ti3C2Tx 152 mV 0.5 M H2SO4 [149]

4.5. MXene for Oxygen Reduction Reaction

The developments of cutting-edge skills, like fuel cells and metal-air batteries, afford great potential
and supportable replacement solutions to challenge environmental issues and increasing severe
energy [151–153]. Extremely active and long-lasting electrocatalysts for cathodic oxygen reduction
reaction (ORR) are crucial for the extensive range of applications in fuel cells [154]. The state-of-the-art
catalysts are importantly dependent on noble metals such as platinum (Pt), but the costly, inadequate
resources and worse durability have considerably hindered the marketing of the Pt-grounded fuel
cells. Based on this, the investigation of economically cheap metal catalysts has been a leading
theme of the electrocatalysts [155]. During the past, many efforts have been made to expand even
metal-free alternatives or non-Pt family metals as ORR catalysts. Particularly, the quick growth
has been accomplished on metal-free ORR electrocatalysts, such as heteroatom-doped graphene,
mesoporous carbons, and CNTs [156]. Currently, investigations on electrocatalysts of MXenes and
MXene nanocomposites have got much attentiveness [157,158]. MXenes, holding hydrophilic surface
with protuberant stability and conductivity, can be predictable as assuring electrocatalysts. Specifically,
the recent literature has concentrated on the MXene composites for electrocatalysts, such as the overlay
of g-C3N4 and Ti3C2 nanosheets (Figure 9) composites (TCCN) as a catalyst for ORR process [159].
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Figure 9. (a) Linear Sweep Voltammetry (LSV) curves of MoS2QDs@Ti3C2TxQDs@MWCNTs–2 in
O2–saturated 1.0 M KOH solution at a scan rate of 5 mV s–1 with diverse rotation speeds, (b) ORR
polarization curves of MoS2QDs@Ti3C2TxQDs@MWCNTs–2 before and after 1,000 potential cycles,
(c) CV curves of CT2-modified electrodes in O2-saturated and Ar-saturated KOH solution and (d)
CT2-modified electrodes at various rotation rates in O2-saturated KOH solution. Copyright: Ref. [51,52].

The Ti3C2 MXene-based catalyst has shown excellent ORR activity and stability in the basic
medium [160,161]. Through a sandwich-like form comprising of titanium atoms at the terminals or the
surface layer and carbon atoms at the innermost layer, the catalyst is a flawless model system for the
interpretation of the ORR active sites of this type of 2D layer-by-layer catalysts. This provides a new
route to apply Ti3C2 MXene-based catalysts for efficient ORR activity and stability in the basic medium
for fabricating greater-functioning and economically cheap electrocatalysts [47].

X Yu et al. have prepared a facile fabrication of g-C3N4 nanosheets with Ti3C2 nanoparticles.
The gC3N4/Ti3C2 hybrid-structures show a significant improvement for ORR than that of pure g-C3N4

nanosheets (Figure 9c,d). Also, the electrocatalytic activity is intensely depending on the stacking
amount of Ti3C2 nanoparticles. The optimal stacking quantity of Ti3C2 to g-C3N4 is about 2 wt %.
The enhanced catalytic performance is ascribed to the improved oxygen adsorption and well-organized
charge separation because of the electronic coupling among g-C3N4 and Ti3C2. Predominantly,
contrasted with the marketable Pt/C, the g-C3N4/Ti3C2 hybrid-structures reveal good methanol
tolerance then again with no intake of valuable metals [52]. The theoretical study has suggested that
V2C and Mo2C MXenes with N-doped graphene can potentially be used for ORR due to very low ORR
overpotential, i.e., 0.36 V, and low kinetics barriers due to electronic coupling between the n-doped
graphene and the MXene [158].

The MoS2QDs@Ti3C2TxQDs@MMWCNTs catalyst (Figure 9a,b) also shows a superior ORR
mechanism to other non-Pt catalysts, providing a low Tafel slope of 90 mV dec−1 and greater half
potential like E1/2, 0.75 V, that was near to their marketable Pt/C (20%) catalyst (E1/2 of 0.80 V, Tafel
slope of 89 mV dec−1) [162–166]. Besides, the MoS2QDs@Ti3C2TxQDs@MMWCNTs (Figure 10) also
hold better electro-oxidation activity for methanol in basic solution, providing current density at 2.2 V
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of 160 A·g−1 with extreme methanol oxidation. The outputs signified that the grouping of MoS2 and
Ti3C2Tx QDs with MWCNTs could provide a potential for producing the bifunctional electrocatalysts
for MOR and ORR [167–174]. From Table 7, Fe doped MXene materials show high oxygen reduction
reaction activity (half-wave potential) due to increased oxygen adsorption and charge separation.

Table 7. Summary of the ORR activity for the synthesized MXene composites with recently reported
highly active electrocatalysts.

Catalyst Load Mass (mg/cm2) Electrolyte Half-Wave Potential Ref

FeNx embedded in 2D porous nitrogen doped carbon 0.14 0.1 M KOH 0.86 V [46]
B, Fe doped porous carbon 0.6 0.1 M KOH 0.838 V [50]

Fe isolated single atoms on S, N co-doped carbon 0.51 0.1 M KOH 0.896 V [51]
Fe nanoparticles 0.1 0.1 M KOH 0.6 V [65]

MXene 0.1 0.1 M KOH 0.75 V [65]
Fe-N-C/MXene 0.1 0.1 M KOH 0.84 V [65]

Fe-N co-doped carbon nanotubes 0.1 0.1 M KOH 0.83 V [163]
S-doped Fe-N-C 0.6 0.1 M H2SO4 0.836V [164]

Fe-N-co-doped carbon frame 0.5 0.1 M KOH 0.7 V [165]
Fe-N-co-doped carbon frame 0.5 0.1 M HClO4 0.77 V [165]Catalysts 2020, 10, x FOR PEER REVIEW 20 of 29 
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Figure 10. MoS2QDs@Ti3C2TxQDs@MMWCNTs for the methanol oxidation and oxygen reduction
reactions in basic solution. Reprinted with permission from [51].

The as-prepared Mn3O4/MXene hybrid structure shows favorable electrochemical activity for
ORR with a foremost four-electron oxygen reduction route and ~0.89 V onset potential (similar to that
of Pt/C) in basic solution. The metal type conductivity and hydrophilic nature help in raising the speed
of electron transfer and reducing the accumulation of nanoparticles. Additionally, Mn3O4/MXene
shows greater stability compared to Mn3O4/acetylene black due to the most stable Mn3O4/MXene
hybrid structure [175].

The prepared low-cost Fe doped MXene nanocomposites with excellent ORR behavior can be an
assuring candidate as an ORR catalyst and for application in metal-air batteries, fuel cells, and some
other energy storage devices.

5. Concluding Remarks and Prospective

Study reports on MXene have produced immense eagerness in the investigation of 2D materials.
MXene, exfoliated from layered MAX phases, has obtained developing much attention in current time.
These comprise the synthesis of simple MXenes; the exfoliation of novel MXenes, the investigations on
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these 2D systems, the characterization of these electronic, optical characteristics, and their potential
energy storage applications. The characteristic features of MXene sheets cause them auspicious
candidates as replacements to noble metal catalysts for different electrochemical reactions useful for
renewable energy storage systems. This overview summarizes the novel development in research of
MXene and reveals the prompt growth of the MXene research groups. The developments accomplished
in groundwork and features, jointly with the discovered uses of MXene, deliver a robust impetus to
furthest development in the description and application of these latest 2D materials.

All anticipate additional research attempts and improved interpretation. We are certain that this
novel class of 2D materials shows very good ability, and we expect more researchers will develop this
field of materials by replacing graphene and give important scientific elaborations.
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