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Abstract

Regenerative/revitalisation endodontic techniques are increasingly used as a treatment approach for the 
management of immature permanent teeth with necrotic pulps. Different chemical irrigants and medicaments 
are routinely used clinically for intra-canal disinfection. However, despite remarkable progress in this 
field, coronal discolouration, cell cytotoxicity, difficulty of removal of organic biofilm from the root canal, 
development of sensitisation and antimicrobial resistance are still challenges to this line of treatment. This 
review critically discusses and challenges the current status quo of antimicrobials used in regenerative 
endodontics and sheds the light on future alternative antimicrobial materials with regenerative potential.
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list of Abbreviations

A. naeslundii Actinomyces naeslundii
A. radicidentis Actinomyces radicidentis
Ag-GO  AgNPs synthesised on an aqueous   
   graphene oxide matrix
AgNPs  silver nanoparticles
C. albicans Candida albicans
C. longa  Curcuma longa
Ca(OH)2  calcium hydroxide
CFUs  colony forming units
CHX  chlorhexidine gluconate
CLSM  confocal laser scanning microscope
DAP  double antibiotic paste
DMSO  dimethyl sulfphoxide
DPSCs  dental pulp stem cells
E. coli  Escherichia coli
E. faecalis Enterococcus faecalis
EDTA  ethylenediaminetetraacetic acid
EEP  ethanol extract of propolis
ERK  extracellular signal-regulated kinases
FtsZ  Filamenting temperature-sensitive   
   mutant Z
L. monocytogenes Listeria monocytogenes
LED  light emitting diode
MBC   minimum bactericidal concentration
MCJ  Morinda citrifolia juice

MIC  minimum inhibitory concentrations
MTA  mineral trioxide aggregate
NaOCl  sodium hypochlorite
NFkB  nuclear factor kappa B
P. acnes  Propionibacterium acnes
PBS  phosphate-buffered saline
pERK  protein R-like endoplasmic reticulum  
   kinase
PDT  photodynamic therapy
POVI  povidone iodine
PPM   part per million
qPCR  quantitative real-time polymerase   
   chain reaction
RET  regenerative/revitalisation endodontic  
   techniques
rGO-Cur  reduced graphene oxide-curcumin
S. aureus  Staphylococcus aureus
S. enterica Salmonella enterica
S. epidermidis Staphylococcus epidermidis
S. mitis  Streptococcus mitis
S. mutans Streptococcus mutans
SCAP  stem cells of the apical papilla
SEM  scanning electron microscope
TAMP  tailored amorphous multiporous
TAP  triple antibiotic paste
TGF β-1  transforming growth factor β1
TS   tryptone soy
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introduction

RET are becoming widely used in the management 
of immature permanent teeth with necrotic pulp 
tissues, in which other alternative treatment options 
offer less successful outcomes (Galler, 2016). RET 
are biologically based treatments that aim to replace 
damaged tissue structures, including the pulp-
dentine complex (Murray et al., 2007). This treatment 
strategy, if successful, could potentially allow the 
continuation of root maturation, therefore, improving 
the long-term prognosis of these compromised teeth 
(Conde et al., 2016; Garcia-Godoy and Murray, 2012). 
Clinically this treatment involves no or very minimal 
root canal instrumentation, disinfection, followed by 
induction of apical bleeding into the root canal space 
(Banchs and Trope, 2004; Iwaya et al., 2001). Due to the 
limited or no mechanical instrumentation, microbial 
elimination is mainly dependent on antimicrobial 
agents for sufficient canal disinfection. Despite 
remarkable progress in the field of RET over the past 
decade, several challenges remain (Tong et al., 2017), 
such as the questionable efficacy of the currently 
available disinfection techniques in promoting 
continuation of root development (Fouad, 2020).
 Furthermore, RET is a stem cell-based regeneration 
strategy. Hence the balance between root canal 
disinfection and keeping the microenvironment 
as hospitable as possible for the stem cells to 
regenerate the pulp-dentine complex is of prime 
importance (Kim et al., 2018). Many of the currently 
used intra-canal irrigants such as NaOCl and CHX 
were proven to have a cytotoxic effect on stem 
cells (Martin et al., 2014; Widbiller et al., 2019). 
The use of topical antibiotic pastes are effective 
endodontic antimicrobials; however, in addition 

to tooth discoloration caused by some of the 
antibiotic combinations (Lenherr et al., 2012), a level 
of cytotoxicity on stem cells in a concentration-
dependent manner is of clinical concern (Ruparel et 
al., 2012). Although using topical antibiotic pastes 
at lower concentrations provided adequate canal 
disinfection, such mixtures are difficult to prepare 
and obtain. The argument about their contribution 
to the global challenge of antimicrobial resistance at 
such low concentrations is yet to be settled (Ayoub et 
al., 2020; Yadlapati et al., 2017; Yadlapati et al., 2014).
 Therefore, the development of alternative 
disinfectant strategies with sufficient antimicrobial 
efficacy, biocompatibility, and regenerative potential 
(with the least harm to the surrounding conductive 
microenvironment) is of importance in this field. 
The achievement of a safer and more predictable 
regenerative outcome is clinically required (Diogenes 
et al., 2014; Fouad, 2020). With the current advances in 
tissue engineering, this gap is being addressed through 
several innovative natural and synthetic strategies, 
such as alternative antimicrobial agents, nano-
based delivery systems, and novel photosensitisers 
combined with PDT which initiate tissue regeneration 
and possess an innate antimicrobial activity (Chung 
and Park, 2017; Samiei et al., 2016). A schematic 
illustration depicting limitations of currently used 
antimicrobial strategies and the potential benefits of 
alternative RET antimicrobial strategies is provided 
(Fig. 1).
 Taking all of the above into consideration, it 
seems comprehensible to develop an alternative 
antimicrobial able to disinfect the root canal system 
without compromising the regenerative environment. 
The aim of this review is to critically discuss and 
challenge the current status quo of antimicrobials 

fig. 1. schematic illustration depicting limitations of currently used antimicrobial strategies and the 
potential benefits of alternative RET antimicrobial strategies. Created with BioRender.com.

versus
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used in regenerative endodontics, and to shed the 
light on future alternative antimicrobial materials 
with regenerative potential.

literature search and scope of the review

An electronic search of PubMed and Elsevier’s 
Scopus was undertaken with appropriate MeSH 
terms and various keyword combinations including 
“antimicrobial”, “antibiotic”, “disinfection”, 
“dentistry”, “pulp revascularisation”, “pulp 
regeneration”, “regenerative endodontic”, “drug 
delivery”, “biomaterials”, and “dental pulp stem 
cells”. The reference list of the relevant articles 
resulting from database searches was further hand-
screened. No limits were applied to the year of 
publication and only English language literature was 
included. However, due to the scope and extent of 
this search, a wide-ranging comprehensive narrative 
review of antimicrobial strategies in regenerative 
endodontics rather than a systematic review was 
undertaken.

Current antimicrobial strategies used in ret

A critical summary of the most commonly used 
disinfectant agents (irrigants and medicaments) 
in terms of their antimicrobial efficacy and 
biocompatibility will be discussed below as these 
have been extensively reviewed in the literature 
(Diogenes et al., 2014; Kim et al., 2018; Martin et al., 
2014).

intra-canal irrigation
NaOCl is one of the oldest endodontic irrigants and 
reported in most published RET studies, albeit in 
various concentrations ranging from 1 – 6 % (Tong 
et al., 2020). NaOCl solution is regarded as the 
irrigant of choice mainly due to its bacteriostatic, 
bactericidal, and tissue dissolution properties (Bryce 
et al., 2009; Zehnder, 2006). The ability of NaOCl to 
dissolve organic tissue is well-documented, as well 
as its negative effects on the mechanical properties 
of root dentine (Dotto et al., 2020; Pascon et al., 2009). 
These mechanical alterations are most likely due to 
the proteolytic action of concentrated hypochlorite 
solution on the collagen dentine matrix (Zehnder, 
2006). Alterations in the dentine-matrix composition 
including the denaturation of growth factors and 
attachment proteins are likely to affect the fate of stem 
cells (Diogenes et al., 2014). Furthermore, NaOCl at a 
concentration between 5-6 %, has shown detrimental 
effects on stem cell numbers and survival as well as 
loss of odontoblast-like phenotype differentiation 
both in vitro and in vivo (Casagrande et al., 2010; 
Galler et al., 2011).
 From a biological perspective, a concentration-
dependent effect of NaOCl on the survival of SCAP 
has been shown, with 6 % NaOCl showing the 

greatest reduction in stem cell survival. This resulted 
in the recommendation for using a low NaOCl 
concentration of 1.5 % (Web ref.1; Martin et al., 2014; 
Trevino et al., 2011). However, controversies remain 
in terms of the ability of low NaOCl concentrations 
to completely eradicate infected biofilms (Ma et al., 
2015; Tagelsir et al., 2016). In an attempt to reduce such 
effect, 17 % EDTA has been recommended following 
the use of NaOCl irrigation. This step has been shown 
to reduce NaOCl detrimental side effects on stem cell 
survival, regardless of the NaOCl concentration used 
(Martin et al., 2014; Trevino et al., 2011). Furthermore, 
combining EDTA within a given irrigation protocol 
was also found to significantly increase the release 
of growth factors such as TGF β-1 into the root 
canal space, hence inducing DPSCs migration and 
differentiation to odontoblasts (Zeng et al., 2016). 
 CHX is also one of the well known endodontic 
disinfectant agents used in RET and clinically 
available in the form of an aqueous solution or 
gel preparation with a dilution range of 0.12 % to 
2 % (Okino et al., 2004). However, the use of this 
irrigant is less prevalent within RET protocols as 
highlighted in a recent survey, in which only 11.4 % 
of respondents used CHX as the sole disinfectant, 
while 22.2 % reported a combined use of CHX and 
NaOCl (Tong et al., 2020). CHX benefits from broad-
spectrum antimicrobial and intra-canal substantivity 
(residual effect) properties (Martin et al., 2014; Okino 
et al., 2004; Trevino et al., 2011). The use of 2 % CHX 
has also been shown to cause unfavourable effects on 
stem cell survival (Trevino et al., 2011) and attachment 
(Ring et al., 2008), with direct cytotoxicity effect in a 
concentration-dependent manner (Widbiller et al., 
2019). On the contrary, CHX lacks organic tissue 
dissolution ability (Okino et al., 2004); therefore, its 
effect on biofilm disruption is questioned (Bryce et 
al., 2009; Trevino et al., 2011).

intra-canal medicaments
Intra-canal medicaments are commonly used inter-
appointment antimicrobial RET dressing (Tong et al., 
2020) and broadly divided into two groups; topical 
antibiotic pastes or Ca(OH)2. Topical antibiotic pastes 
used within RET mainly include; TAP (ciprofloxacin, 
metronidazole, and minocycline), DAP (ciprofloxacin 
and metronidazole), and other modified formulations 
(Tong et al., 2020). Although sufficient antimicrobial 
efficacy is one of the main advantages behind the use 
of topical antibiotic pastes, clinical limitations have 
been raised (Ribeiro et al., 2020).
 Complete removal of the applied antibiotic paste 
is crucially important for a successful regenerative 
outcome and to avoid unwanted, possibly long-
term, side effects. Unfortunately, studies have 
demonstrated that a significant amount of antibiotic 
pastes (88 % residual) remains within the root canal 
system following current irrigation techniques 
(Berkhoff et al., 2014). Indirect negative effects, 
such as reduction in dentinal strength and fracture 
resistance, are reported as early as 1 week post-
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application. These effects were mainly linked to the 
strong demineralisation effect and the acidic nature 
of antibiotic pastes on the surrounding dentine 
matrix (Yassen et al., 2013a; Yassen et al., 2013b). These 
structural changes are thought to affect the fate of 
stem cells and hinder their regenerative potential, 
consequently resulting in inconsistent clinical results 
related to continuation of root maturation, thickening 
of root dentine, and apical closure (Tong et al., 2017).
 A concentration-dependent detrimental effect 
of various topical antibiotic pastes on human SCAP 
survival has been shown in vitro (Althumairy et 
al., 2014; Ruparel et al., 2012). Therefore, to achieve 
optimal results, various antibiotic mixtures and 
concentrations have been tested. A low TAP and 
DAP concentration of 1 mg/mL provided sufficient 
antimicrobial efficacy with no reported negative 
effects on the viability of SCAP when compared to 
higher concentrations (1,000 mg/mL) (Althumairy et 
al., 2014). Furthermore, the potential development of 
bacterial resistance biofilms and/or sensitisation has 
been raised (Berkhoff et al., 2014; Stewart and William 
Costerton, 2001). Coronal discolouration is also a 
commonly reported side effect of the TAP use, which 
is largely linked to minocycline, a semisynthetic 
tetracycline antibiotic (Kim et al., 2010; Lenherr et 
al., 2012; Sato et al., 1996). However, despite omitting 
minocycline within RET protocols tooth discoloration 
continued to be reported (Tong et al., 2017).
 Ca(OH) 2 is  another widely used intra-
canal medicament advocated to overcome the 
undesirable effects of the topical antibiotic pastes 
and recommended by the European Society of 
Endodontology for short-term clinical application 
(Galler et al., 2016). Material advantages such as 
availability and ease of removal from the root canal 

are documented (Berkhoff et al., 2014; Nazzal et al., 
2018).
 Nevertheless, conflicting antimicrobial efficacy 
of Ca(OH)2, as an intra-canal dressing, has been 
reported (Ribeiro et al., 2020). The ability of Ca(OH)2 
to eradicate specific bacteria, such as E. faecalis, 
and yeasts from the root canal systems has been 
questioned (Krithikadatta et al., 2007; Zehnder et 
al., 2004). More recently, a clinical molecular-based 
study showed comparable antimicrobial efficacy and 
regenerative outcome following the use of TAP and 
a combined Ca(OH)2/CHX paste (de-Jesus-Soares 
et al., 2020). From a biological perspective, Ca(OH)2 
provided an environment conducive to stem cell 
survival and proliferation (Althumairy et al., 2014; 
Ruparel et al., 2012). However, the possible side effects 
of Ca(OH)2 on the biological property of dentine-
matrix-derived growth factors have been highlighted 
and requires consideration (Kim et al., 2018).

Possible alternative antimicrobial strategies with 
a regenerative potential for ret 
The development and characterisation of the next 
generation novel materials that can enhance the 
regeneration of pulp-dentine complex as well as 
provide sufficient antimicrobial properties is a recent 
focus area for a safer and predictable regenerative 
outcome (Chung and Park, 2017). Indeed, a recent 
scoping review of the literature concluded that trends 
towards alternative antimicrobials are promising 
and deserve future consideration (Ribeiro et al., 
2020). Word cloud highlighting of both natural and 
synthetic alternative antimicrobial materials and 
strategies for potential use in RET was performed. 
The more a substance has been researched, within 
this specific field, the larger it appears in the word 
cloud (Fig. 2).

fig. 2. Word cloud representing alternative antimicrobial materials and strategies for potential use in 
ret. The more a substance was researched, within this specific field, the larger it appears in the word cloud. 
Created by Wordclouds.com.
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natural materials and strategies

Propolis
Propolis, also known as “bee glue”, is a natural 
resinous substance crucial for both internal and 
external beehive protection (Ghisalberti, 1979; Grange 
and Davey, 1990). This resinous material is initially 
collected by bees (Apis mellifera) from exudates and 
plant buds, subsequently mixed with saliva secretions 
(bee enzymes) and wax (Ghisalberti, 1979; Grange 
and Davey, 1990). Historically, propolis has been 
used by on Egyptian, Greek and Roman traditional 
medicine since 300 BC (Khalil, 2006; Sforcin and 
Bankova, 2011).
 Propolis comprises mainly resins, balsams, and 
wax in addition to amino acids, aromatic compounds, 
phenols, pollens, minerals, and vitamins (Ghisalberti, 
1979; Grange and Davey, 1990; Uzel et al., 2005). The 
resinous portion is mainly composed of flavonoid 
pigments (well-known plant compounds) and is 
regarded the main active component, linked to 
propolis broad-spectrum antimicrobial activity 
(Ghisalberti, 1979; Grange and Davey, 1990). 
Additional therapeutic features include anti-oxidant, 
anti-cariogenic, and anti-inflammatory properties 
(Khalil, 2006; Marcucci, 1995; Uzel et al., 2005).
 This resinous material has been highlighted 
as a promising natural additive to the chemical 
composition of toothpastes (Morawiec et al., 2013) 
and mouthwashes (Dodwad and Kukreja, 2011; 
Halboub et al., 2020). Possible avenues of propolis use 
in dentistry include prevention of dental caries and 
plaque formation (Koo et al., 2000), a cell preservation 
medium for avulsed teeth (Martin and Pileggi, 2004; 
Ozan et al., 2007), management of pulp exposures 
(Ahangari et al., 2012), and as an antimicrobial 
agent for the root canal system (El-Tayeb et al., 2019; 
Pagliarin et al., 2016).
 Although propolis possesses various therapeutic 
properties, its chemical composition varies according 
to the country of origin, botanical source, and time 
of collection (Marcucci, 1995; Uzel et al., 2005). 
Clinically, the variation in chemical composition 
could ultimately result in a range of propolis 
therapeutic deficiencies and raises concerns in terms 
of quality control and batch-to-batch variability for 
standardised new drug development (Marcucci, 
1995; Sforcin and Bankova, 2011). Despite such 
concerns, a standardised propolis extract, known 
as EPP-AF®, has been developed in Brazil (Berretta 
et al., 2012). Due to propolis impurities, a series of 
various purification and extraction methods are 
required, such as maceration or Soxhlet extraction 
(Ghisalberti, 1979). The use of strong solvents, such 
as ethanol or DMSO, during propolis extraction are 
reported and will have a negative effect the on cell 
viability and their regeneration potential, even at 
concentrations as low as 0.1 % (Cunha et al., 2004; 
Sut et al., 2016). The lack of methodologically robust 
studies with detailed propolis chemical composition 
or its extraction method, lead to its limited clinical 

translation (Sforcin and Bankova, 2011). The use of 
nontoxic extraction solvents within well-controlled 
and designed comparative studies are required 
for further assessment of propolis as a promising 
material with potential clinical application in RET 
(Sut et al., 2016).
 Propolis biocompatibility and regenerative 
potential towards soft and mineralised tissues have 
been reported (Ahangari et al., 2012; Al-Shaher et 
al., 2004). Propolis, at concentrations of 4 mg/mL or 
lower, was found to be at least 10 times less cytotoxic 
to fibroblasts of the dental pulp and periodontal 
ligament when compared with Ca(OH)2 (Al-Shaher 
et al., 2004). The use of propolis as a vehicle for 
Ca(OH)2 has also been suggested, with in vitro 
studies concluding efficient diffusion throughout 
the dentinal tubules, and possibly extending to the 
external root surface (Baranwal et al., 2017; Montero 
and Mori, 2012; de Rezende et al., 2008). Furthermore, 
animal studies utilising propolis paste as an intra-
canal medicament have shown promising results 
equal to or superior to TAP in-terms of soft and hard 
tissue deposition (El-Tayeb et al., 2019; Pagliarin et al., 
2016). In vitro and in vivo studies utilising propolis as 
an intra-canal disinfectant agent are summarised in 
Table 1 and 2, respectively.

Chitosan-based particles
Chitosan (poly[1,4],-b-D-glucopyranosamine) is a 
cationic natural nontoxic biopolymer obtained by the 
alkaline deacetylation of chitin (Peter, 1995; Rabea 
et al., 2003). Chitin is the second most abundant 
natural polymer found in the exoskeleton of marine 
crustaceans such as shrimps and crab shells (Peter, 
1995; Rabea et al., 2003).
 Chitosan has a high nitrogen content with a strong 
chelating ability and great commercial interest (Rabea 
et al., 2003). On a production scale, chitosan can be 
produced in several forms, such as a paste or powder, 
with particles at the macro- or nano-scale (Agnihotri 
et al., 2004). Commercially, chitosan is available 
with an average molecular weight of 3,800 - 20,000 
Daltons and 66 - 95 % deacetylation (Agnihotri et al., 
2004). Its versatile commercial applications include 
environmental, agricultural, food additive, and a 
hydrating agent in cosmetics (Peter, 1995; Rabea et 
al., 2003). Chitosan-based particles are regarded as 
an effective drug delivery system (Li et al., 2018), and 
tested as a vehicle for Ca(OH)2 or TAP with promising 
results such as improved stability and promoting a 
sustained release of medicament (Ballal et al., 2010; 
del Carpio-Perochena et al., 2017; Shaik et al., 2014). 
More recently, chitosan has been explored as an 
antimicrobial agent to disinfect the root canal system 
with proposed regenerative potential (Ducret et al., 
2019; Palma et al., 2017).
 This attractive research interest is linked to its 
unique biological properties such as biocompatibility, 
excellent bioadhesive, and broad-spectrum 
antimicrobial properties (Raafat and Sahl, 2009; 
Rabea et al., 2003; Shrestha et al., 2010). A postulated 
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Alternative 
antimicrobial/

origin

study 
design/
usage

study 
groups

Control 
groups microorganism

Assessment 
method/
duration Main findings reference

Propolis/
Nature Home, 

Amman, 
Jordan

Human 
dentine 

block model

Medicament

30 % 
propolis
Ca(OH)2

Saline

Sterile 
uninoculated 

broth

E. faecalis

Microbiological 
samples were 

collected (paper 
points, headstrom 

files and disc 
immersion), 

incubated on agar 
plates and CFUs 

analysed

1 and 2 d

Propolis was 
significantly 

more effective 
than Ca(OH)2 
for short-term 

application

Awawdeh 
et al. 
2009

Propolis

Human 
dentine 

block model

Irrigant

Propolis
MCJ

2 % POVI
2 % CHX gel

Ca(OH)2

Saline E. faecalis

Dentine shavings 
were collected 

(200 and 400 µm 
depths), cultured 

on TS agar 
plates and CFUs 

analysed

21 d

CHX 
produced 

the highest 
antimicrobial 

efficacy 
followed 
by POVI, 

propolis and 
MCJ. Ca(OH)2 

was least 
effective

Kandaswamy 
et al., 
2010

Propolis/
Apis flora, 

Ribeirão Preto, 
Brazil

Human root 
model

Irrigant

12 % 
propolis 
glycolic 
extract

Saline E. coli

Microbiological 
samples were 

collected, 
incubated on agar 
plates and CFUs 

analysed

Propolis was 
effective to 
completely 
eliminate 
E. coli and 
reduce the 
amount of 
endotoxins

Valera 
et al., 
2010

Propolis/
Turkey 

(northeast 
and northwest 

areas)

Human 
dentine 

block model

Irrigant

EEP
2 % CHX 
solution
Ca(OH)2

96 % ethanol

PBS
E. faecalis

Dentine shavings 
were collected 

(300 µm depth), 
cultured on TS 
agar plates and 
CFUs analysed

7 d

Propolis 
antimicrobial 
efficacy was 
higher than 
Ca(OH)2 and 
lower than 

CHX

Kayaoglu 
et al., 
2011

Propolis/
Calgary gold 
bee products, 

Canada

Human root 
model

Medicament

Ca(OH)2
TAP
EEP

ethanol

Saline E. faecalis

Percentage 
reduction

in colony counts

1, 2 and 7 d

Propolis 
was more 

effective than 
TAP at day 2 
and equally 
effective at 

day 7

Madhubala 
et al., 
2011

table 1a. In vitro and ex vivo studies of alternative antimicrobial strategies highlighting antimicrobial type, 
origin, study design, usage, study and control groups, assessment method and duration, microorganisms 
tested and main findings. 

mechanism of chitosan antimicrobial activity is linked 
to the interaction between positively charged chitosan 
(NH3

+ groups of glucosamine) and negatively charged 
cell membrane causing a sequential of events, which 
alter the cell permeability and consequently cell death 
(Raafat and Sahl, 2009; Rabea et al., 2003). Additional 
advantages for extended clinical applications include 
abundance in nature, ease of modification, nontoxic, 
and low production cost (Peter, 1995; Rabea et al., 
2003).
 However,  in spite of chitosan’s proven 
biocompatibility and noncytotoxicity (Renard et al., 
2020), its regenerative potential in dentistry remains 
controversial. Preliminary in vitro work demonstrated 
stimulation of dental pulp tissue formation, in terms 

of mesenchymal stem cells viability and deposition 
of dental pulp-like collagen matrix following the use 
of a novel chitosan-enriched fibrin hydrogel (Ducret 
et al., 2019). In-contrast, the clinical application of 
chitosan scaffolds in immature dog teeth with apical 
periodontitis resulted in no histologic evidence 
of pulp-dentine tissue regeneration nor newly 
formed mineralised tissue (Palma et al., 2017). The 
degradation process of chitosan under inflammatory 
conditions requires careful assessment prior to 
clinical translation (Palma et al., 2017; Yamada et 
al., 2014). In vitro studies utilising chitosan-based 
particles as an intra-canal disinfectant agent are 
summarised in Table 1.
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Curcumin
Curcumin (diferuloylmethane), a dimeric derivative 
of ferulic acid, is the main bioactive substance of 
C. longa (turmeric), a wellknown oriental spice 
(Adamczak et al., 2020). Curcumin pigment, a 
distinctive yellow-orange colouring matter of plant 
origin, was isolated back in 1842 by Vogel and 
Pelletier from the rhizomes of C. longa, originating 
from the ginger family tree native to South Asia 
(Adamczak et al., 2020; Hewlings and Kalman, 2017).
 Curcumin possesses a wide spectrum of bioactive 
and therapeutic properties such as antibacterial, 
antifungal, and antiviral properties (Praditya et 
al., 2019; Rai et al., 2008). Antioxidant and anti-
inflammatory activities are also documented in the 
literature (Hewlings and Kalman, 2017; Rai et al., 
2020; Sinjari et al., 2019). The antimicrobial action of 
curcumins is attributed to their ability to damage the 

bacterial cell membrane through the suppression of 
bacterial cytokinesis, the induction of filamentation, 
and the inhibition of the FtsZ assembly dynamics 
in the Z-ring (Rai et al., 2008). Inhibition of cellular 
proliferation and alterations of gene expression 
are also reported to be behind the bactericidal 
mechanisms of curcumins (Rai et al., 2008; Rai et al., 
2020; Tyagi et al., 2015).
 In the past, the clinical usage of curcumins was 
limited due to their poor water solubility, low oral 
bioavailability, and rapid metabolism (Chang et 
al., 2018; Sinjari et al., 2019). The use of liposomes, 
in order to solubilise curcumin phospholipidic 
bilayer, has been suggested to enhance curcumin 
delivery and improve its therapeutic efficiency 
(Chang et al., 2018; Sinjari et al., 2019). Sinjari et 
al. (2019) closely assessed the direct contact of 
human DPSCs with nanocarrier curcumin-loaded 

Alternative 
antimicrobial/

origin

study 
design/
usage

study 
groups

Control 
groups microorganism

Assessment 
method/
duration Main findings reference

Propolis/
Beehives of 
Najaf Abad, 

Esfahan

Human root 
model

Medicament

EEP
Ca(OH)2
ethanol

No 
medicament

Sterile 
samples

E. faecalis

Microbiological 
samples were 

collected with a 
piezoreamer, plated 
and CFU analysed.

MIC was also 
measured using 

dilution methods

7 d

CFUs and MIC 
of propolis were 
significantly less 

than Ca(OH)2

Zare 
Jahromi 

et al., 
2012

Propolis/
RK’s Aroma 

Products, 
Mumbai

Human root 
model

Medicament

Propolis
2 % CHX 

gel
Ca(OH)2

Saline E. faecalis

Dentine shavings 
were collected 

(depth of 400 µm), 
cultured on TS agar 
and CFUs analysed

1, 3 and 5 d

Propolis 
had greater 

antimicrobial 
efficacy than 

Ca(OH)2 on day 1, 
with no significant 

difference in 
subsequent days

Bhandari 
et al., 
2014

Propolis/
Natural Bee 

Health
Industry, Lima, 

Peru

Human root 
model

Irrigant

Ca(OH)2
Propolis
2 % CHX 

gel

Saline
E. faecalis 

and 
C. albicans

Dentine shavings 
were collected 

(100 and 200 µm 
depths), cultured 
on agar blood or 
agar Sabouraud 
plates and CFUs 

analysed

14 d

Propolis and CHX 
were the most 

effective against E. 
faecalis. However, 

CHX had the 
highest antifungal 

activity

Carbajal 
Mejía, 
2014

Propolis/
Stakich, Royal 

Oak, Michigan, 
USA

Human root 
model

Medicament

95 % 
propolis

TAP
2 % CHX 

gel
Ca(OH)2

Saline C. albicans

Dentine shavings 
were collected (200 
and 400 µm depths) 
and CFUs analysed

1 and 7 d

Propolis was less 
effective on day 

1 and equally 
effective to other 
medicaments on 

day 7

Chua 
et al., 
2014

Propolis/
Herbal 

Biosolutions, 
Delhi

C. longa/
RYM exports,

Mumbai, India

Human 
dentine 

block model

Medicament

2 % CHX 
gel honey
Aloe vera 

gel
20 % C. 

longa gel
11 % EEP
Ca(OH)2

Saline E. faecalis

Dentine shavings 
were collected (200 
and 400 µm depths) 

and CFUs were 
analysed.

1, 3 and 5 d

2 % CHX gel was 
most effective 
followed by 

propolis and C. 
longa

Vasudeva 
et al., 
2017

table 1b. In vitro and ex vivo studies of alternative antimicrobial strategies highlighting antimicrobial type, 
origin, study design, usage, study and control groups, assessment method and duration, microorganisms 
tested and main findings. 
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liposome in the presence of hydrophilic monomers 
(2-hydroxyethyl methacrylate). Quantitative cytokine 
release assessment showed a decreased secretion 
of tested pro-inflammatory cytokines (interleukin 
6, interleukin 8, interferon-gamma, and monocyte 
chemoattractant protein-1), in response to curcumin 
liposome nanocarriers. The authors concluded that 
curcumin liposome nanocarriers had stimulated 
DPSCs proliferation and reduced inflammation via 
the NFkB/ERK/pERK pathways, but did not induce 
odontoblastic differentiation (Sinjari et al., 2019). 
Various loading and encapsulation mechanisms 
for curcumin delivery such as nanoemulsion, 
nanosuspension, lipid nanoparticles, and hydrogel 
nanoparticles were further investigated in the 
literature (Dutta and Ikiki, 2013; Rai et al., 2020).
 Despite the above-mentioned therapeutic 
and bioactive properties, limited studies were 
conducted within the dental field, particularly in RET 
(Neelakantan et al., 2013; Yadav et al., 2018). Emerging 
in vitro studies, with promising results, expanding the 
use of curcumins as an intra-canal disinfectant agent 
are summarised in Table 1.

AgnPs
Inorganic metals, in their standard or ionic forms such 
as Ag or Ag+, are regarded as antibiotic alternatives 
due to their broad-spectrum bactericidal effects 
coupled with the unlikely possibility of developing 
antibiotic-resistant bacterial strains (Oei et al., 2012; 

Rai et al., 2009). Specifically, AgNPs have gained 
recent popularity owing to their distinctive physical 
and biochemical properties (Bapat et al., 2018; Rai 
et al., 2009), synergistic antibiotic effect (Fayaz et al., 
2010), biocompatibility (Franková et al., 2016; Gomes-
Filho et al., 2010), and antimicrobial properties (Lara 
et al., 2010; Rai et al., 2009). The ability of AgNPs 
to disrupt dental biofilms and prevent bacterial 
adhesion are also advantageous (Wu et al., 2014).
 The incorporation of silver particles within 
dental materials is not new and has been practiced 
for decades since the use of silver-containing dental 
amalgam (Noronha et al., 2017). However, with 
advanced nanotechnology, AgNPs have gained 
considerable attention (Bapat et al., 2018; Noronha 
et al., 2017). The incorporation of AgNPs within a 
diverse range of dental materials have been proposed, 
such as composite resins (Cheng et al., 2012; Durner 
et al., 2011), dental implant coating (Cao et al., 2011; 
Wang et al., 2013), calcium silicates cements (Fan et 
al., 2014; Samiei et al., 2013), endodontic sealers (Vilela 
Teixeira et al., 2017), and intra-canal disinfectant 
agents (Afkhami et al., 2017; Afkhami et al., 2015; 
Moazami et al., 2018; Wu et al., 2014).
 The antimicrobial mode of action of AgNPs is 
largely associated with the release of Ag+ ions, which 
consequently penetrate the cell membrane and 
interact with various cellular components, resulting 
in inhibition of cell replication and eventually cell 
death (Bapat et al., 2018; Rai et al., 2009). An immediate 

table 1c. In vitro and ex vivo studies of alternative antimicrobial strategies highlighting antimicrobial type, 
origin, study design, usage, study and control groups, assessment method and duration, microorganisms 
tested and main findings. 

Alternative 
antimicrobial/

origin

study 
design/
usage

study 
groups

Control 
groups microorganism

Assessment 
method/
duration Main findings reference

Chitosan/
Sigma-Aldrich 

Inc.

Well 
plates

irrigant

Chitosan-
nanoparticle
Zinc oxide- 
nanoparticle

-

2 strains of 
E. faecalis in 

planktonic and
biofilm forms

LIVE/DEAD 
staining/confocal 

microscopy/
CFUs

90 d

The incorporation of 
nanoparticles enhanced 
antimicrobial efficacy 
with retained aging 

potential

Shrestha 
et al., 
2010

Chitosan/
Acros Organics

Human 
root 

model

irrigant

15 % EDTA
0.2 % 

chitosan
10 % citric 

acid
1 % acetic 

acid

No final 
irrigation -

SEM/
atomic absorption
spectrophotometry

0.2 % chitosan was 
similar to 15 % EDTA 

in terms of smear 
layer and dentine 
demineralisation

Silva 
et al., 
2013

Chitosan/
Mahtani 

Chitosan Pvt. 
Ltd Veraval, 

India

Human 
root 

model

irrigant

0.25 % 
chitosan

0.5 % 
chitosan
2 % CHX

3 % NaOCl

Saline

E. faecalis
and

C. albicans 
biofilms

Agar-well 
diffusion method/ 

MIC/ biofilm 
susceptibility 

assay/
SEM/

cytotoxicity assay/ 
CFUs

Similar antimicrobial 
efficacy was seen 

between study groups. 
However, chitosan 

showed significant less 
toxicity then NaOCl

Yadav 
et al., 
2017

Curcumin/
Biopurify 

Phytochemicals 
Ltd., Sichuan,

China

Human 
root 

model

irrigant

Curcumin
2 % CHX

3 % NaOCl
PBS E. faecalis 

biofilms

MIC/ MBC/
CFUs

2nd d, 2nd and 
8th weeks

Curcumin 
antimicrobial efficacy 

was similar to 3 % 
NaOCl at 2 d and 2nd 
week, and inferior to 

CHX
at 8th week

Neelakantan 
et al., 
2013



M Matoug-Elwerfelli et al.                                                             What the future holds for regenerative endodontics

819 www.ecmjournal.org

bactericidal antimicrobial effect of AgNPs has been 
shown against several drug-resistant and drug-
susceptible bacteria possibly through inhibiting cell 
wall, protein, and nucleic acid synthesis (Lara et al., 
2010).
 However, there are some cytotoxicity concerns to 
the use of AgNPs, mainly related to adverse events 
of free Ag+. Such concerns are controversial and at 
an early stage of research for sound conclusions to 
be drawn. Franková et al. (2016) assessed AgNPs 
against human dermal fibroblasts and epidermal 
keratinocytes. They concluded that AgNPs inhibit 
the production of pro-inflammatory cytokines and 
contributed positively towards the wound-healing 
process. Quantitative elution testing and qualitative 
on-growth of human osteoblasts also revealed no 
cytotoxicity following the use of 1 % nano-silver 
loaded bone cement in vitro (Alt et al., 2004). Indeed, 
it was proven that AgNPs biocompatibility is 
concentration dependent with increased cytotoxicity 
at higher concentrations (Gomes-Filho et al., 
2010; Newby et al., 2011). In addition to material 
concentration, material-specific characteristics (Cao 

et al., 2011) and incorporation methods (Fan et al., 
2014) also determine the cytotoxicity of AgNPs. To 
investigate the latter, the cytotoxicity of nano-silver 
incorporated using two methods (template and 
absorption method) to mesoporous calcium silicate 
against human bone marrow mesenchymal cells 
was assessed (Fan et al., 2014). Results indicated 
no obvious cytotoxicity following the adoption 
of the template method, in contrast to significant 
cytotoxicity associated with the absorption method 
(Fan et al., 2014).
 Despite the significant advantages of silver-
based materials, potential adverse effects have been 
reported. Argyria, an irreversible skin pigmentation, 
is a well-known silver-related side effect (Drake and 
Hazelwood, 2005). Furthermore, potential tooth 
discoloration is also of concern and requires careful 
investigation prior to clinical usage (Afkhami et al., 
2015). In vitro spectrophotometric analysis showed 
no significant colour changes between AgNPs added 
to Ca(OH)2 compared to Ca(OH)2 alone when used 
as an intra-canal medicament (Afkhami et al., 2017). 
In contrast, spectrophotometric analysis of AgNPs 

table 1d. In vitro and ex vivo studies of alternative antimicrobial strategies highlighting antimicrobial type, 
origin, study design, usage, study and control groups, assessment method and duration, microorganisms 
tested and main findings. 

Alternative 
antimicrobial/

origin

study 
design/
usage study groups

Control 
groups microorganism

Assessment 
method/
duration Main findings reference

Photoactivated
curcumin/
20 μmol/L/

Sigma-Aldrich, 
St Louis, MO, 

USA

Human 
root 

model

irrigant

Curcumin Physiological
solution

E. faecalis 
biofilms

Fibre optic LED 
of 100 mW/cm2

Light duration of 
5 and 10 min was 

investigated

CFUs

Before treatment, 
immediately 

after treatment, 
and after 7 d

Photoactivated
curcumin 

reduced, however 
did not eliminate, 

bacterial count

da Frota 
et al., 
2015

Curcumin/
2.5 mg/mL

Human 
root 

model

irrigant

Curcumin
3 % NaOCI Saline E. faecalis 

biofilms

Ultrasonic 
activated for 30 s 
cycles for 4 min/
photoactivated 

with blue light of 
1200 mW/cm2 for 

4 min/
SEM/
CFUs

Photoactivated 
curcumin 

produced the 
maximum 

elimination of 
biofilm bacteria

Neelakantan 
et al., 
2015

Photoactivated
curcumin/
2.5 mg/mL

Human 
root 

model

Photoactivated 
curcumin

TAP
DAP

2 % CHX 
Ca(OH)2

No 
medicament

E. faecalis 
biofilm

LIVE/DEAD 
staining/
CLSM/
CFUs

14 d

Photoactivated 
curcumin 

produced superior 
antimicrobial  

and antibiofilm 
activity

Devaraj 
et al., 
2016

Curcumin/
2.5 and 5.0 mg/

mL

Well 
plates

irrigant

Curcumin-
electrospun 

modified 
fibres

Curcumin-free
fibres

2 % CHX
1 % NaOCl

TAP

Saline A. naeslundii 
biofilms CFUs

Photoactivated 
curcumin-based 

medicaments 
showed a high 

antibiofilm 
activity when 
used at low 

concentrations

Sotomil 
et al., 
2019
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coated with imidazolium as a root canal irrigant 
resulted in statistically significant darker colour 
changes in comparison with the control groups 
(5.25 % NaOCl, 2 % CHX, and normal saline) 
(Moazami et al., 2018). The colour change caused by 
AgNPs could be linked mostly to the direct contact of 
the irrigant material with the coronal dentine, which 
is practically difficult to control during irrigation. 
Taking the above results into consideration, well-
controlled clinical studies are warranted for sound 
conclusions and clinical recommendations. Emerging 
studies utilising AgNPs within the endodontic field 
as an intra-canal disinfectant agent are summarised 
in Table 1.

graphene-based materials 
Graphene is a recently developed material made of 
densely packed carbon atoms arranged as a two-
dimensional monolayer sheet forming a benzene 
hexagonal structure (Novoselov et al., 2004). 
Examples of graphene derivatives include pristine 
graphene, graphene oxide, reduced graphene oxide, 
few-layered graphene, ultrathin graphite, graphene 

nanosheets, and graphene-based nanocomposites 
(Guazzo et al., 2018; Tahriri et al., 2019). These 
different derivatives mainly differ in the material size, 
number of layers, and specific surface characteristics 
(Guazzo et al., 2018).
 Graphene and its derivatives have a wide range 
of biomedical applications due to their unique 
mechanical, electrochemical, and physical properties 
such as mechanical strength, high surface area, 
thermal stability, and unique surface characteristics 
(Guazzo et al., 2018; Tahriri et al., 2019). Furthermore, 
their ability to combine and functionalise with 
various materials and bioactive molecules to enhance 
or alter specific properties for distinctive applications 
is of interest (Guazzo et al., 2018).
 Graphene-based materials also have broad-
spectrum, yet variable, antimicrobial properties 
(Al-Jumaili et al., 2017; Guazzo et al., 2018). Its 
antimicrobial mode of action is explained through 
different mechanisms. 
1. A sharp knife-edge cutting effect that consequently 

leads to cell membrane rupture, mechanical 
stress induction, and phospholipids extraction 

table 1e. In vitro and ex vivo studies of alternative antimicrobial strategies highlighting antimicrobial type, 
origin, study design, usage, study and control groups, assessment method and duration, microorganisms 
tested and main findings. 

Alternative 
antimicrobial/

origin

study 
design/ 
usage

study 
groups

Control 
groups microorganism

Assessment 
method/
duration Main findings reference

C. longa 
extract/

Curenext, 
Abbott, India

Human root 
model

Medicament

C. longa 
extract

1 % CHX gel
Ca(OH)2

-
E. faecalis 
biofilms

CFUs

24 h

CHX gel showed 
highest antimicrobial 

efficacy followed 
by C. longa extract, 
while Ca(OH)2 was 

least effective

Yadav 
et al., 
2018

Nano-silver 
liquid form/

Nanocid 
Company, 

Tehran, Iran

Test 
tubes and 
inoculated 

plates

Irrigant

Nano-silver 
2 % CHX

5.25 % 
NaOCl

Vancomycin 
bacterial 

susceptibility 
papers

Saline

E. faecalis

MIC/
agar diffusion/

zones of inhibition

6, 18, 24 and 48 h 
of incubation

Nano-silver showed 
equal bactericidal 
action as 5.25 % 

NaOCI

Lotfi 
et al., 
2011

Silver nitrate/
Factory of 
Shanghai 
Chemical 

Reagent Ltd, 
China

Longitudinal 
split root 

human teeth 
model

Nano-silver 
incorporated 
mesoporous 

calcium 
silicate

Ca(OH)2 
deionised 

water
E. faecalis

LIVE/DEAD 
staining/ cell 

counting kit-8

Variable

The incorporation 
of Ag particles 

resulted in enhanced 
antibacterial 
efficacy and 

reduced bacterial 
colonisation

Fan 
et al., 
2014

AgNPs/
Huzheng 

Nano 
Technology 

Ltd, 
Shanghai, 

China

Longitudinal 
split root 

human teeth 
model

Irrigant/ 
medicament

Stage 1;
0.1 % 

AgNPs 
solution

2 % NaOCl
Stage 2; 
0.01 % 

AgNPs gel
0.02 % 

AgNPs gel 
Ca(OH)2

Sterile saline E. faecalis

SEM/ LIVE/DEAD 
staining / CLSM

Stage 1; for 2 min
Stage 2; for 7 d

0.02 % AgNPs gel 
as a medicament 

resulted in 
significant reduction 
in residual biofilms

Wu 
et al., 
2014

Ag-GO

Human root 
model

Irrigant

1 % NaOCl
2.5 % 

NaOCl
2 % CHX

17 % EDTA 
0.25 % Ag-

GO

Saline

P. acnes,
A. radicidentis,
S. epidermidis,
and S. mitis

Paper point 
sampling/ 

microbial counts/
CLSM

Ag-GO resulted in 
significant bacterial 
reduction, however, 

2.5 % NaOCl 
showed highest 

antimicrobial 
efficacy

Ioannidis 
et al., 
2019
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table 1f. In vitro and ex vivo studies of alternative antimicrobial strategies highlighting antimicrobial type, 
origin, study design, usage, study and control groups, assessment method and duration, microorganisms 
tested and main findings. 

Alternative 
antimicrobial/

origin

study 
design/ 
usage study groups

Control 
groups microorganism

Assessment 
method/
duration Main findings reference

AgNPs in 
an aqueous 

vehicle/
Khemia, São 
Paulo, Brazil

Bovine 
dentine 
blocks

Irrigant

94 ppm AgNPs 
solution

2.5 % NaOCl
2 % CHX

Saline
without 

inoculum

E. faecalis 
biofilm and 

infected 
dentinal 
tubules

LIVE/
DEAD 

staining

Variable 
contact 
time of 

5, 15 and 
30 min

AgNPs showed 
variable antimicrobial 

efficacy; however, 
this was inferior to 

NaOCl

Rodrigues 
et al., 
2018

Bioactive 
glass S53P4

Contra-
lateral 
human 

premolar 
teeth

Medicament

Bioactive glass 
Ca(OH)2

No 
medicament E. faecalis

Sampling 
of dentine 

chips/
SEM
10 d

Bioactive glass, in its 
current format, was 

less efficient than 
standard Ca(OH)2

Zehnder 
et al., 
2006

Bioactive 
glass S53P4

Human 
dentine 

block model

Medicament

2 % CHX gel
2 % 

metronidazole 
gel

Bioactive glass 
Ca(OH)2

Saline E. faecalis

CFUs/ 
inhibition 
of growth

1, 3 and 5 d

Bioactive glass S53P4 
antimicrobial efficacy 

was superior to 
Ca(OH)2, but inferior 
to metronidazole and 

CHX gel

Krithikadatta 
et al., 
2007

Bioactive 
glass S53P4

Human root 
model

Medicament

Ca(OH)2 
1 % CHX gel

bioactive glass 
Ca(OH)2 plus 

point
Activ point

Saline E. faecalis and
 S. mutans

CFUs

7 d

CHX-impregnated 
medicaments were 
more efficient than 
alkaline-pH-acting 

medicaments

Atila-Pektaş 
et al., 
2013

TAMP 
bioactive glass 

Human 
dentine 

block model

Medicament

TAMP-
bioactive glass 

100 mg/mL
DAP 1 mg/mL
0.02 % AgNPs 

gel

Without 
bacterial 

contamination

E. faecalis 
biofilms 

and infected 
dentinal 
tubules

Biofilm 
disruption 

assay/ 
CFUs/SEM

1 and 7 d

All tested 
medicaments 

resulted in significant 
biofilms reduction

Sadek 
et al., 
2019

from the cell membrane (Al-Jumaili et al., 2017; 
Zhou and Gao, 2014)

2. Cell entrapment. Aggregated graphene sheets 
can trap and separate microorganisms from 
their microenvironment. This environmental 
disconnection results in preventing nutrient 
consumption, reducing proliferative activity, 
and eventually inactivation of the microorganism 
(Akhavan et al., 2011) 

3. Oxidative stress induction can also act as an 
electron pump transferring electrons out of 
microorganisms (Liu et al., 2011). 

However, the exact antimicrobial effectiveness is 
difficult to predict and is thought to be dependent 
on several factors such as type of microorganisms, 
duration of exposure, and most importantly specific 
structural properties – such as number of layers, 
porosity, size, and shape of the individual graphene 
sheets (Li et al., 2014; Liu et al., 2011; Zhu et al., 2017).
 In general, graphene-based materials are 
biocompatible, promoting cell adhesion, proliferation, 
and differentiation (Menaa et al., 2015; Tahriri et al., 
2019). However, the exact degree of biocompatibility 
and potential cytotoxicity is highly dependent on 
their oxygen functional groups (Guazzo et al., 2018). 

Despite the limited in vivo studies, in vitro studies 
of variable methodologies concluded that most 
graphene-based hydrophilic forms are less toxic than 
the hydrophobic forms (Guazzo et al., 2018; Tahriri et 
al., 2019).
 To further investigate graphenes’ biocompatibility 
and and dental tissue regeneration, Rosa et al. (2016) 
investigated the proliferation and differentiation 
potential of DPSCs on graphene oxide-based 
substrates. Their results indicated an upregulation 
of odontogenic gene expression with graphene 
oxide-based substrates, in comparison to the control 
(glass-based substrates). The same group later 
observed higher osteogenic rather than odontoblastic 
differentiation (Xie et al., 2017). However, in vitro 
studies do not provide robust data distinction 
between osteogenic and odontogenic differentiation, 
and further in vivo studies are required to make this 
distinction.
 More recently, graphene-based materials have 
gained significant attention within the dental field, 
including graphene coated implants (Jung et al., 
2015; Ren et al., 2017), incorporation into commercial 
dental materials such as adhesives and resins 
(Bregnocchi et al., 2017; Sun et al., 2018), and as 
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bioactive cements (Dubey et al., 2017). To enhance 
root canal disinfection, the synthesis of AgNPs on an 
aqueous graphene oxide matrix has shown promising 
preliminary results in terms of antimicrobial activity 
and biofilm disruption (Ioannidis et al., 2019).
 Their versatile and promising properties position 
graphenes as suitable candidates for investigation 
within RET. Emerging studies on them as intra-canal 
disinfectant agents are summarised in Table 1.

Pectin
Pectin is a natural plant-specific carboxylated 
polysaccharide extracted from fruits or vegetables. 
Pectin provides mechanical strength for the cell 
walls of plants and are important for various cellular 
processes, such as water absorption, morphological 
development, and ripening of fruits (Redondo-
Nevado et al., 2001; Vincken et al., 2003). Pectins are 
known for their gelling, thickening and emulsifying 
properties, hence their wide use in the food industry. 
Its emulsification property is affected by the chemical 
characteristics of the raw material as well as extraction 
methods used and can be modified using chemical 
and enzymatic treatments.
 The gelling properties of pectin became of interest 
due to its possible use as an in situ biocompatible 
gelling system for bone tissue engineering (Munarin 
et al., 2010a; Munarin et al., 2011; Munarin et al., 2012), 
an injectable cell delivery system (Mishra et al., 2008), 
and a drug delivery system (Ishii and Matsunaga, 
2001; Munarin et al., 2010b). The structure and 

features of pectins depend on the plant species and 
tissues. However, some characteristics are common 
to all of these polysaccharides. Two main structural 
categories have been recognised, the smooth and 
hairy (or ramified) regions (Varoni et al., 2012).
 Plant-derived pectins have been investigated as 
candidates for surface nano-coating of orthopaedic 
and dental titanium implants, due to their ability to 
enhance osteogenic differentiation of osteoblasts. 
Folkert et al. (2016) investigated the effect of coating 
titanium implants, with unmodified pectin and 
enzymatically modified pectin extracted from potato 
pulps, on in vitro cell proliferation, mineralisation, 
and osteogenic differentiation of osteoblast-like 
cell lines and primary mice osteoblasts. The study 
confirmed that both types of pectin coating enhanced 
cell proliferation, mineralisation, and osteoblastic 
differentiation – particularly modified pectins with 
a high content of galactose (Folkert et al., 2016).
 Conversely, Gurzawska et al. (2017) evaluated the 
effect of nano-coating titanium implants with plant-
cell-wall-derived rhamnogalacturonan-I (pectins), on 
the bone healing and osseointegration of implants 
in the tibia of a rabbit model. The results showed no 
significant difference between coated and non-coated 
implants.
 In dentistry, Nguyen et al. (2013) found that 
different pectins (LM-, HM- and AM-pectin) coated 
liposomes, adsorbed the hydroxyapatite to the tooth 
surfaces in vitro which suggested their possible usage 
as a protective coating on tooth enamel. Furthermore, 

table 1g. In vitro and ex vivo studies of alternative antimicrobial strategies highlighting antimicrobial type, 
origin, study design, usage, study and control groups, assessment method and duration, microorganisms 
tested and main findings. 

Alternative 
antimicrobial/

origin

study 
design/
usage study groups Control groups microorganism

Assessment 
method/
duration Main findings reference

Poly 
(lactic- co -glycolic 
acid) nanoparticles 
with methylene 

blue as a 
photosensitiser

Human 
root 

model

Irrigant

Methylene 
blue loaded 

nanoparticles 
with/without 

light

No light/
no methylene 

blue 
nanoparticles

E. faecalis in 
planktonic and 
biofilm forms

CFUs/ SEM

Light 
application 
for 5 min 

with a 
wavelength 
of 665 nm.

Methylene 
blue loaded 

nanoparticles 
reduced E. faecalis 

counts in both 
planktonic phase 
and within root 

canals

Pagonis 
et al., 
2010

Curcumin/
indocyanine 

green as 
photosensitiser

Well 
plates

Irrigant

5.25 % 
NaOCl,

0.2 % CHX,
2 % CHX,

40 mmol/L 
curcumin 
with LED
1 mg/mL 

indocyanine 
green with 
diode laser

No exposure 
to irrigation 
solutions or 

photosensitisers 

E. faecalis in 
planktonic and 
biofilm forms 

CFUs/ 
crystal violet 

assay

LED 
wavelength 
of 450 nm

Diode laser 
wavelength 
of 810 nm

Photoactivated 
curcumin 

antimicrobial 
efficacy was very 
close to standard 

irrigating solutions 
tested 

Pourhajibagher 
et al., 
2018

rGO-Cur 
photosensitiser

Human 
root 

model

Irrigant

rGO-Cur 
LED group
rGO-Cur 
with LED

2.5 % NaOCl

Only bacterial 
suspension

E. faecalis 
biofilms

MIC/ SEM/ 
real-time 

qPCR

Wavelength 
of 

450 ± 30 nm 
with 300 s

The combined 
usage of rGO-
Cur with LED 

showed promising 
results in terms 
of  antimicrobial 

efficacy and biofilm 
inhibition

Ghorbanzadeh 
et al., 
2020
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in vivo usage of pectin in combination with a chitosan 
scaffold within RET in dog endodontic lesions was 
assessed (Palma et al., 2017). However, the mineral 
content and root closure were better using a blood 
clot alone, in comparison to a pectin-chitosan scaffold 
(Palma et al., 2017).
 Pectin is reported to have bactericidal effects 
against the most widely distributed pathogenic and 
opportunistic microorganisms. It was also found that 
higher concentrations (> 2 %) had an inactivating 
effect on a therapeutic bacteriophage and decreased 
the antimicrobial activity of penicillin (Men’shikov 
et al., 1997). Cinnamaldehyde pectin extracted from 
the papaya puree were found to have antimicrobial 
effects against E. coli, L. monocytogenes, S. aureus, and 
S. enterica (Otoni et al., 2014).
 Although it is still early days for pectin usage 
in the dental field, its gelling properties, unique 
structural variations, and antimicrobial properties, 
makes injectable pectin gels an excellent candidate 
to investigate for regenerative endodontics.

Ascorbic acid
Ascorbic acid, commonly known as vitamin C, is an 
essential vitamin for the health of body tissues and 
especially for natural collagen synthesis. This white 
to light-yellow water-soluble ketolactone with two 
ionisable hydroxyl groups (Du et al., 2012), is the 
most abundant antioxidant vitamin within plant cells 
(Smirnoff, 2000).
 As an electron-donor, ascorbic acid is known 
to have several physiological and biochemical 
properties (Arrigoni and De Tullio, 2002; Du et al., 

2012). Ascorbic acid has antimicrobial properties 
against several bacteria and viruses, ranging from 
bacteriostatic to bactericidal that was reported to 
increase by time (Goldschmidt, 1991).
 Ascorbic acid also has potent anti-inflammatory 
properties (Diomede et al., 2020), therefore; positively 
influencing host-defence mechanism towards tissues 
repair during infection (Goldschmidt, 1991). Its 
antiscorbutic properties play a pivotal role in the 
synthesis of collagen through its ability to act as an 
electron-donor maintaining the ferrous in collagen 
hydroxylases in an active state (Du et al., 2012). 
Ascorbic acid’s potential influence on the formation 
of dentine collagen matrix is of particular interest to 
researchers in pulp-dentine complex regeneration 
(Balic et al., 2009).
 Within the dental field, ascorbic acid has been 
advocated as a biocompatible reducing agent 
integrated into commercial monomers and composite 
systems. Indeed, 10 % ascorbic acid was found to 
restore the dentine bonding strength to adhesive 
resins after deproteinisation with 5 % NaOCl 
irrigation solution (da Cunha et al., 2010; Furuse et al., 
2014; Morris et al., 2001). Additionally, the integration 
of ascorbic acid within dental monomer increased 
DPSCs proliferation rate and decreased unwanted 
cellular morphology alterations due to the monomer 
treatment (Diomede et al., 2020).
 Furthermore, its potential role in promoting 
regeneration of the dental pulp, as a novel endodontic 
compound, has been suggested (Diomede et al., 
2020). Its relative cheap cost, ease of use, antioxidant 
properties, and tissue repair properties makes it an 

material/
origin/

preparation
study design/

usage study groups
Control 
groups

Assessment method/
duration Main findings reference

EEP/
Commercially 

available

Chronically 
exposed 

primary teeth

Irrigant

3 % NaOCl
12.5 % 

alcoholic 
extract of 
miswak

11 % EEP

0.9 % saline

Paper points sampling/
CFUs

Pre- and post-irrigation 
samples

11 % EEP showed 
disappointing results 
with no significance 
difference from the 

control

Shingare 
and 

Chaugule, 
2011

Egyptian 
propolis/

El Monofia 
province

Immature 
non-vital 

dogs’ teeth 
with induced 

periapical 
infection

Medicament 
for RET

Propolis paste 
with propolis 

plug
Propolis paste 

with MTA plug 
TAP with 

propolis plug 
TAP with MTA 

plug

No 
medicament

No 
intervention

Antimicrobial efficacy: 
CFUs/reduction in colony 

counts

3 weeks

Regenerative outcome: 
radiographic/ 

histopathologic evaluation

2 weeks, 1 and 2 months

Propolis showed 
promising results, 

comparable to TAP, in 
terms of antimicrobial 
efficacy and hard and 
soft tissue deposition

El-Tayeb 
et al., 
2019

Propolis/
Farmácia de 
Manipulação 
Nova Derme

Immature 
dog teeth 

with induced 
periapical 
infection 

Medicament 
for RET

TAP
1 % propolis 

paste

No 
medicament

No 
intervention

Histological analysis

7 months

Propolis showed 
promising results, 

superior to TAP, in terms 
of hard and soft tissue 

deposition 

Pagliarin 
et al., 
2016

table 2. In vivo human and animal studies of alternatives antimicrobial strategies highlighting 
antimicrobial type, origin, study design, usage, study and control groups, assessment method and duration 
and main findings. 
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excellent candidate to investigate for regenerative 
endodontics.

synthetic materials and strategies 

bioactive glass
In the early 90s, Hench and colleagues developed 
a novel Class A bioactive glass-ceramic material 
composed of silica and other components such as 
calcium and phosphate (Hench and Paschall, 1973; 
Hench et al., 1971). Following this discovery, bioactive 
glass (calcium sodium phosphosilicate) received 
considerable clinical interest within the dental field 
as a versatile material –as a bone substitute for tissue 
regeneration (Norton and Wilson, 2002; Pereira et 
al., 2018), an implant coating material (Xuereb et 
al., 2015), a drug delivery material (Wu and Chang, 
2014), and an additional component within various 
restorative materials (Sauro et al., 2012; Tirapelli et al., 
2011). This attracted research attention was largely 
related to its inherent material advantages such as 
antimicrobial activity (Munukka et al., 2008; Waltimo 
et al., 2007; Zhang et al., 2010), biocompatibility, and 
hard tissue regenerative potential (El-Gendy et al., 
2015; El-Gendy et al., 2013; El Shazley et al., 2016).
The mechanism of antimicrobial action of bioactive 
glass is attributed to different factors – its alkaline 
pH, the sustained release of silica and/or calcium 
phosphate ions, and specific glass composition 
(Gubler et al., 2008; Zhang et al., 2010). However, 
because conventional micron-sized bioactive glass 
demonstrated mild to moderate antimicrobial activity, 
specifically against E. faecalis, material improvements 
were consistently ongoing (Krithikadatta et al., 2007; 
Waltimo et al., 2007; Zehnder et al., 2006).
 Advances with nano-technology fabrication led 
to the development of nano-scale bioactive glass 
(Lei et al., 2010). The nano-scale bioactive glass 45S5 
was found to increase the pH in a solution and 
increase silica release by a factor of 10 in comparison 
to μm-sized bioactive glass, resulting in improved 
antimicrobial effectiveness (Waltimo et al., 2007). 
Increased ion release of nano-scale bioactive glass also 
enhanced cytocompatibility and tissue regeneration 
properties (Lei et al., 2010; Wang et al., 2020); 
nano-scale bioactive glass also promoted dentine 
mineralisation of higher stability and acid resistance 
compared to micron-scale glass particles (Sheng et al., 
2016).
 Various types of bioactive glass have been 
specifically developed and investigated such as 
TAMP bioactive glass (Sadek et al., 2019) and 
mesoporous bioactive glass (Wu et al., 2011; Yan 
et al., 2004). Furthermore, with improved material 
science, the ability to customise bioactive glass 
functionalised structures with the addition of 
antimicrobial and regenerative agents became 
possible (Ribeiro et al., 2020). The combined addition 
of silver ions to mesoporous bioactive glass has 
shown promising results in terms of improved 

antimicrobial effectiveness (Gargiulo et al., 2013). 
More sophisticated hybrid systems have also been 
developed, such as the incorporation of silver-doped 
bioactive glass within hydrogels with promising 
antimicrobial, anti-inflammatory, and DPSCs 
differentiation potential (Wang et al., 2015; Zhu et al., 
2019).
 Although at an early stage of research, studies 
expanding its use as a disinfectant agent for 
endodontics (Atila-Pektaş et al., 2013; Krithikadatta 
et al., 2007; Zehnder et al., 2006) and RET (Sadek et 
al., 2019) have been performed and summarised in 
Table 1. 

Pdt
PDT, also known as photodynamic inactivation 
or photoactivated disinfection, is advocated as 
an adjunct antimicrobial approach for clinical 
disinfection of the complex root canal system (Gursoy 
et al., 2013; Plotino et al., 2019). This specialised 
technique involves the vibrant interaction between 
a photosensitising agent (photosensitiser) and a 
light source (Hamblin and Hasan, 2004; Konopka 
and Goslinski, 2007). This interaction leads to the 
production of reactive oxygen species, such as free 
radicals and singlet oxygen, resulting in oxidative 
and cytotoxic damage to the target cells (Hamblin and 
Hasan, 2004; Konopka and Goslinski, 2007).
 The antimicrobial mechanism of PDT can be 
explained based on the direct effect on extracellular 
molecules mediated by singlet oxygen of high 
chemical reactivity and the indirect photodamage to 
the polysaccharide bacterial biofilm (Konopka and 
Goslinski, 2007; Wainwright and Crossley, 2004). This 
dual activity is reported as a significant advantage 
over currently used antibiotics (Konopka and 
Goslinski, 2007; Plotino et al., 2019), with effectiveness 
against antibiotic-sensitive and antibiotic-resistant 
microorganisms (Wainwright and Crossley, 2004). 
Furthermore, there is no evidence of bacterial 
resistance to the various metabolic pathways 
associated with the action of singlet oxygen or free 
radicals (Dias et al., 2020; Konopka and Goslinski, 
2007).
 The effect of PDT on the surrounding stem 
cells has been investigated. Li et al. (2020) found 
that the application of PDT provided an inductive 
microenvironment for SCAP growth. Quantitative 
reverse transcriptase-polymerase chain reaction also 
resulted in a positive expression of platelet-derived 
growth factor and vascular endothelial growth 
factor. In-line with the above, PDT resulted in greater 
viability of apical papilla cells (Deluca et al., 2021) and 
significantly less cytotoxicity compared to NaOCl 
irrigation (George and Kishen, 2007; Gomes-Filho et 
al., 2016).
 Within dentistry, the application of PDT is 
expanding into different areas, such as treatment 
of head and neck cancer (Grant et al., 1993; Hopper, 
2000), oral plaque biofilms (Tahmassebi et al., 2015; 
Wood et al., 2006), treatment of peri-implantitis 
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(Bassetti et al., 2014; Bombeccari et al., 2013), and root 
canal disinfection (Asnaashari et al., 2017; Bonsor et 
al., 2006; de Miranda and Colombo, 2018; Soukos et 
al., 2006). More recently, PDT has been recommended 
as a positive adjunct in RET protocols (Deluca et al., 
2021; Devaraj et al., 2016). However, to date, this 
is scarcely documented in vivo. Successful clinical 
and radiographic outcomes, in terms of thickening 
of dentinal walls and apical closure, following the 
adjunct use of tolonium chloride photosensitiser 
followed by platelet-rich fibrin (Johns et al., 2014) or 
collagen resorbable matrix (Abdel Hafiz Abdel Rahim 
et al., 2019) are reported.
 Although most reported studies utilised PDT with 
aid of an intra-canal optic fibre, Nunes et al. showed 
no significant difference in bacterial reduction when 
an intra-canal optic fibre was not used. However, in 
this in vitro study, all teeth were decoronated and only 
standard 15 mm root segments were utilised (Nunes 
et al., 2011). The reduced oxygen concentration within 
the root canals, especially in deep irregularities, can 
directly affect the formation of cytotoxic oxygen 
derivatives and reduce the antimicrobial efficacy 
(Nunes et al., 2011). Modifying the optical fibre 
tip to improve the clinical performance has been 
recommended (George and Walsh, 2011).
 Chemical phenothiazine dyes such as methylene 
blue and toluidine blue (tolonium chloride) are often 
reported within endodontic protocols (Gursoy et 
al., 2013; Siddiqui et al., 2013). However, potential 
adverse effects, such as staining and discoloration are 
documented (Plotino et al., 2019; Ramalho et al., 2017). 
To overcome this clinical limitation, attempts such 
as evaluating a therapeutic efficacy window of the 
chemical dyes have been tested (Gursoy et al., 2013; 
Plotino et al., 2019). Obliteration of dentinal tubules 
as a result of viscous photosensitiser substances 
impregnating the dentine surface is also reported 
(Plotino et al., 2019). Clinically, this could reduce the 
bond strength between the root filling material and 
dentinal walls (Shahravan et al., 2007).
 Therefore, to overcome the above limitations 
and enhance clinical outcomes, research has 
recently focused on the development of novel 
formulations, such as polymer-based nanoparticle 
photosensitiser (Gil-Tomás et al., 2007; Koo et al., 
2007; Shrestha and Kishen, 2014). Nanoparticle-
based photosensitisers have several advantages over 
standard photosensitising molecules such as:
1. increasing production of reactive oxygen species;
2. reducing the possibility of multiple-drug 

resistance;
3. providing selective treatment by localised 

delivery agents;
4. having a nonimmunogenic nature of nanoparticle 

matrix (Koo et al., 2007; Pagonis et al., 2010).
Examples of novel photosensitiser suggested for 
intra-canal disinfection include poly(lacticcoglycolic) 
acid nanoparticles loaded with methylene blue 
(Pagonis et al., 2010). The use of curcumin solution 
as a photosensitiser has gained significant scientific 

interest (da Frota et al., 2015; Ghorbanzadeh et al., 
2020; Neelakantan et al., 2015; Pourhajibagher et al., 
2018; Sotomil et al., 2019). Chitosan nanoparticles 
functionalised with rose-bengal photosensitiser were 
also found to stabilise the structural integrity of root 
dentine in vitro by photo-crosslinking the collagen, 
resulting in sufficient elimination of biofilms, the 
stabilisation of the dentinal matrix (Shrestha and 
Kishen, 2014), and significant inactivation of bacterial 
endotoxin lipopolysaccharides (Shrestha et al., 2015). 
Emerging studies are currently being published of a 
novel photosensitiser as an adjunct for intra-canal 
disinfection, with promising results, as summarised 
in Table 1.

Concluding remarks and future perspectives

Adequate disinfection of the root canal system during 
RET is a prerequisite for successful regeneration of 
the pulp-dentinal complex. However, it should be 
achieved while maintaining a conducive environment 
for stem cell survival and proliferation. Although 
currently adopted antimicrobial protocols provide 
acceptable disinfection, the clinical outcomes 
are still unpredictable and far from ideal. Key 
limitations, such as coronal discolouration, cell 
cytotoxicity, difficulty of removal from the root canal, 
development of sensitisation and resistant bacterial 
strains are widely documented within the literature.
 There is a growing interest in the exploration 
of alternative antimicrobial strategies within RET 
for a predictable biological outcome. Despite the 
above-mentioned promising results of various new 
strategies, it is noteworthy that currently available 
data are mostly drawn from in vitro and limited 
animal studies using single bacterial species, mainly 
E. faecalis. Further investigations into the effect 
of the proposed antimicrobials against complex 
polymicrobial biofilms involved in endodontic 
infections is of extreme importance to finalise the 
conclusion concerning the use of these materials in 
RET. Therefore, the development and testing of the 
proposed alternative antimicrobial materials within 
a well-controlled in vitro, followed by in vivo, studies 
are required.
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