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Abstract

This study proposes a methodical approach to model desired speed distributions under dif-

ferent road-weather and traffic conditions followed by identification of road-weather condi-

tions with potentially higher safety risks in rural divided highways located in extremely cold

regions. Desired speed distributions encompassing unique combinations of adverse road-

weather and traffic conditions are modelled as normal distributions characterized by their

means and standard deviations formulated based on two principal statistical theorems and

techniques i.e., Central Limit Theorem and Minimum Variance Unbiased Estimation. Combi-

nation of the precipitation conditions, road surface conditions, time of the day, temperature,

traffic flow and the heavy vehicle percentage at the time of travel were considered in defining

the combinations of road-weather and traffic conditions. The findings reveal that simulta-

neous occurrence of particular precipitation and pavement conditions significantly affect the

characteristics of the desired speed distribution and potentially expose drivers to elevated

safety risks. Jurisdictions experiencing extreme road-weather conditions may adapt the pro-

posed methodology to assess speed behaviour under different road-weather conditions to

establishing and deploying weather-responsive traffic management strategies such as vari-

able speed limit to regulate speeding and improve traffic safety in winter.

Introduction

Highway safety, characterized by the ability of a person to travel freely without injury or death,

has always been the primary objective of traffic engineering and is typically measured by the

rate of crashes belonging to different severity levels [1]. As defined by [2], a cause of a crash

can be defined as “a circumstance or an action that, were it different, the frequency of crashes

and/or their severity would be different”. The contributing factors to crashes can be divided

into four major categories: human factors (driver, pedestrian, etc. behavior), vehicle condi-

tions, roadway conditions and environmental conditions [3]. A significant proportion of

crashes includes weather-related crashes, which are defined as crashes occurring in the pres-

ence of rain, sleet, snow, fog, wet pavement, snowy/slushy pavement, and/or icy pavement [4].
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In fact, [5] identified 307 fatalities resulted from weather-related crashes in Canada in 2016. It

is well documented in the literature that weather-related crashes mostly stem from the impacts

of adverse road-weather conditions on driver behaviour [4, 6].

Speed is considered as one of the major contributing factors to crashes in terms of fre-

quency and severity, thus it has been widely used as a surrogate measure in assessing highway

safety [7]. Speed limits posted by jurisdictions regulate and influence drivers’ speed choice and

attempts to mitigate crash risks [8]. It is hypothesized that particular road-weather conditions

may alter drivers’ speed choice and intensify crash risks. Therefore, fixed speed limits may not

effectively mitigate crash risks under adverse road-weather conditions. Variable Speed Limit

(VSL) which is implemented for real-time crash mitigation [7] is a viable weather-responsive

traffic management strategy to alleviate safety risks imposed by adverse road-weather condi-

tions. Thus, understanding the speeding behaviour under adverse road-weather conditions is

essential for successful implementation of a weather-responsive VSL program. Desired speed,

which is the speed chosen at driver’s discretion at specific traffic and roadway conditions

directly reflects driver behaviour and is extensively used in studying driver behaviour [9, 10].

Desired speed is manifested through the free-flow speed of vehicles [11] and is referred to as

“speed” hereafter in. In fact, [11] recommends taking the speed observed under base condi-

tions at traffic flow volumes less than 1,000 passenger cars per hour per lane, as a reliable mea-

sure of free-flow speed as traffic becomes insensitive to flow rate at this much low traffic

volumes. Distribution of desired speeds at a specific location varies in a wide range mainly

attributing to geometric characteristics of the road, existing road-weather conditions and the

demographics of the drivers. In other words, desired speed explains the speed at which the

drivers are comfortable under the prevalent driving conditions. Adverse road-weather condi-

tions such as icy road surface conditions and poor visibility are proven to affect the desired

speed significantly [9, 12]. Accordingly, speed behavior, which is defined as the choice between

several possible speeds [13], is widely chosen as a measure to study the impacts of adverse

road-weather conditions on driver behaviour.

Past literature explored several approaches to investigate the impacts of adverse road-

weather conditions on speed behaviour including statistical modelling and machine learning

techniques [9, 14, 15]. For instance, [9] developed a group of statistical models to enumerate

the speed variations resulted by adverse road-weather conditions, where the set of multiple lin-

ear regression models with 20-minute aggregate speeds as the dependent variable (Group II

models) was concluded as the best performing model. Hoogendoorn [16] developed a new

unified approach to estimate the free speed distributions based on the composite headway dis-

tribution model and the method of censored observations.

While some studies confirmed significant changes in speed behaviour under adverse road-

weather conditions [12, 14, 17], other studies contradict these observations, mainly in terms of

the intensity of speed dispersion [9, 18]. Further, the performance of conventional approaches

such as regression modelling to study speed behaviour has been criticized [9]. The underlying

reasons for discrepancies in the literature are mainly threefold. The main prospective reason

discussed is limited sampling to represent specific road-weather conditions [9, 19]. On one

hand, adverse road-weather conditions are intrinsically scarce, restricting the number of sam-

ples, which can be collected under specific inclement road-weather conditions. On the other

hand, the travel patterns are significantly affected by adverse road-weather conditions resulting

in reduced traffic volumes under adverse road-weather conditions [20]. Limited sample rate

under adverse road-weather conditions results in inconsistent speed reduction estimations

and limits the applicability of desired speed distribution modelling approaches developed by

previous studies. For instance, free speed distribution models developed in [10] and [16]

require sufficiently large samples to minimize the standard error of the estimates, which may
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not be feasible under adverse road-weather conditions. Second, most of the studies relied on

road-weather data collected from data collection devices located significantly distant from the

traffic data collection stations, which potentially reduces the representativeness of prevailing

road-weather conditions of the collected data. Third, treatment of speed data (e.g. aggregation

interval) also appears to impact the outcomes [9, 12]. While it is common to analyze speed

behaviour through statistical modelling, it should be noted that speed behavior is primarily a

human response. Thus, modelling human psychology through regression modelling, especially

with a limited number of samples is challenging and may lead to questionable results [21]. Fur-

ther, the form of the dependent variables in the statistical models, whether aggregated or disag-

gregated as well as the aggregation interval is proven to impact the study results [9]. In fact, the

optimum aggregation interval for loop detector data (i.e., speed data) depends on the purpose

of the application and traffic conditions [22]. Moreover, many researchers queried about the

functional form to be used in modelling the impacts of road-weather conditions on traffic

stream characteristics of uninterrupted flow [9, 14].

While using identical study data as used by [9], this study intends to fill the gaps identified

in the literature by proposing a novel approach for modeling the distribution of desired speeds

in uncongested highways under different combinations of road-weather and traffic conditions,

rather than quantifying speed variations resulted by adverse road-weather conditions. The

proposed methodology embodies two novelties. First, it attempts to identify the impacts of

adverse road-weather conditions on drivers’ desired speed by modelling desired speed distri-

butions, rather than quantifying the speed variations resulted by adverse road-weather condi-

tions through statistical modelling (e.g., regression analysis), thus avoiding well-documented

issues such as poor goodness of fit and insignificant model coefficients which are attributed to

the low sample sizes and the divergent nature of human behaviour. We attempt to resemble

the speed choice of a specific driver population rather than attempting to confine drivers’

speed behavior by a specific mathematical criterion such as ordinary least squares method.

Accordingly, the proposed methodology can be practiced under limited sampling conditions

as it preserves all observations. Second, we attempt to evaluate the impacts of different road-

weather conditions on a population-level in contrast to the conventional sample-level evalua-

tions. One of the main advantages of the proposed novel approach is that modelling the

desired speed distributions eliminates the need to define a specific function or an aggregation

interval. Moreover, road-weather and traffic data collection devices used in this study are

located alongside each other providing highly accurate data.

Study objectives

This study attempts to address two research questions related to rural divided highways: i)
How does the distribution of desired speeds change in the presence of adverse road-weather

conditions? and ii) Are there specific adverse road-weather conditions, which significantly

intensify safety risks?

The study has two objectives focusing on addressing the research questions:

i. To model the desired speed distributions under the combined effect of specific road-

weather and traffic conditions, and

ii. To identify specific adverse road-weather conditions which significantly intensify the safety

risks.

The distribution of traffic speeds is primarily dependent on drivers’ speed choice ranging

from very low to very high speeds. According to Hauer [23], slow drivers habitually select

lower speeds because they believe that slow driving is safe driving. On the other hand, fast
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drivers trade off safety for lesser travel times [23]. In this study, it is hypothesized that the pop-

ulation of drivers under specific road-weather conditions choose a safe speed to travel based

on their comfort, convenience and confidence to travel under prevailing road-weather condi-

tions. Further, it is hypothesized that the divergent speed selection patterns under specific

adverse road-weather conditions increase the variability of desired speeds, which is an indica-

tion of increased safety risks. The study attempts to test these hypotheses by estimating desired

speed distribution parameters for different populations of drivers under different road-

weather and traffic conditions. The study results will help authorities establish weather-

responsive traffic management schemes i.e., VSL to improve traffic safety and operations

under adverse road-weather conditions in cold regions.

Study data

Data collection

The study data were collected with the courtesy of Alberta Transportation and are of two

types; road-weather and traffic data. Road-weather data were collected by using a Road

Weather Information System (RWIS) and traffic data were acquired by a Weigh-In-Motion

(WIM) station installed alongside of each other (148.7m apart) on a four-lane, two-way

divided highway segment (Fig 1). The study site is located on Highway 16 i.e., a major inter-

provincial highway in Western Canada a.k.a “Yellowhead highway”. It connects Jasper and

Lloydminister via Edmonton, and the study site lies west to the city of Edmonton. The location

configuration of RWIS and WIM sensors (Fig 1) enabled collecting real-time, highly accurate

and representative road-weather information for each vehicle recorded by the WIM station,

adding a distinct feature to this study. The study site was subjected to an Annual Average

Daily Traffic (AADT) of 8,120 vehicles in 2015 [24]. Moreover, the study site is in a level,

straight road section without any on/off ramps nearby. The study data were collected for 15

months ranging from October 2014 to December 2015.

The RWIS station records the pertaining road-weather conditions including air tempera-

ture, atmospheric precipitation situation, pavement surface condition, pavement temperature,

and wind average speed in every 20 minutes. In terms of traffic data, the WIM station detects

the date, time and vehicle-by-vehicle information including travel lane, travel speed, axle

weight and interaxial spacing.

Data preparation

Table 1 summarizes the details of the road-weather conditions as recorded by the RWIS station

and the alterations made to the raw data recorded by the RWIS station, in terms of the catego-

rization of continuous data and/or re-grouping of the categorical data records. Initially, atmo-

spheric temperature, precipitation situation, pavement surface condition, wind speed and time

of the day were selected as independent variables representing road-weather conditions as dis-

cussed in [9]. However, wind speed was not considered in the analysis since the maximum

wind speed recorded at the study site is 45.36 km/h, which is lower than the reported mini-

mum wind speed required (51 km/h) to impact the behavior of passenger car drivers [28]. A

Kolmogorov–Smirnov (K-S) test was conducted to assess the statistical significance of each

level in the remaining categorical road-weather attributes. Consequently, the following alter-

ations were executed:

• Original precipitation conditions recorded by the RWIS station were combined in terms of

the intensities due to the statistically insignificant difference among the “Moderate” and

“Heavy” levels in each precipitation condition (Table 1). The resultant precipitation
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Fig 1. Study site location and the positions of the RWIS & the WIM station (map generated using the data

retrieved from [25–27] and contains information licensed under the Open Government Licence-Canada).

https://doi.org/10.1371/journal.pone.0256322.g001
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conditions only have two levels labeled “slight” and “Moderate & Heavy” each for rain, fro-

zen precipitation and snow.

• Air temperature was categorized into three groups (GI, GII and GIII) based on the numeri-

cal value of the air temperature as shown in Table 1.

• Precipitation condition, pavement surface condition, temperature and time of the day were

modified to have seven, six, three and two levels, respectively. Levels of a particular road-

weather category were subjected to a K-S test to confirm the statistical independence of each

level from the remaining groups for the specific Road-Weather (RW) variable in question.

As for traffic data, erroneous records including “Error”, “Other” and “Not Applicable”

entries as well as vehicles with speeds higher than 200km/h were removed from the analysis.

Further, the study data were aggregated into five-minute intervals, which is suggested as the

optimum interval to investigate traffic operations [29]. Consequently, traffic flow and the per-

centage of heavy vehicles for each five-minute interval count were estimated. Traffic flow was

grouped into eight levels with a bin size of 100 veh/h. Likewise, heavy vehicle percentage was

grouped into 10 levels with a bin size of 10%. Traffic flow and heavy vehicles percentage cate-

gories were also subjected to K-S test to verify their statistical significance. Accordingly, each

five-minute interval during the analysis period was tagged with the prevailing precipitation,

pavement condition, temperature, time of the day, heavy vehicle percentage and traffic flow

categories at the time of travel.

Table 1. Road-weather condition categories.

RW1 condition Description of the raw data as recorded by RWIS Alterations to the raw data

Air temperature Wet bulb temperature falling between minus and plus 40 recorded as a continuous

variable

GI: Temperature �−10˚C

GII: −10˚C<Temperature� 0˚C

GIII: Temperature >0˚C

Pavement surface condition Dry No moisture or unusual condition detected No alterations

Ice warning Detection of ice or black ice

Trace moisture Detection of isolated moisture on pavement surface

Wet Wet roadway with significant moisture detection

Ice watch The risk of the formation of ice or black ice on the roadway

is elevated, but its occurrence, location, and/or timing is

still uncertain

Frost Detection of frost formation

Time of the day Day Time from the sunrise to sunset No alterations

Night Time from the sunset to sunrise

Precipitation condition No precipitation 0 mm/h No precipitation No alterations

Rain <2 mm/h Slight rain No alterations

�2 and <8 mm/h Moderate rain Moderate & heavy rain

�8 mm/h Heavy rain

Snow <2 mm/h Slight snow No alterations

Precipitation condition Snow �2 and <8 mm/h Moderate snow Moderate & heavy snow

�8 mm/h Heavy snow

Frozen precipitation <2 mm/h Slight frozen precipitation No alterations

�2 and <8 mm/h Moderate frozen precipitation Moderate & heavy frozen precipitation

�8 mm/h Heavy frozen precipitation Moderate & Heavy Frozen Precipitation

1 Road-weather.

https://doi.org/10.1371/journal.pone.0256322.t001
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Table 2 tabulates statistical information of the influencing factors with respect to several sta-

tistical attributes; number of vehicles recorded under each level of the influence factor along

with the mean and standard deviation where applicable.

Preliminary analysis. A preliminary data analysis was conducted on the eastbound data

(a similar analysis could be conducted on westbound data) aiming to: i) identify the level of

vehicle interactions at the study site, ii) understand the overall speed behaviour in different

road-weather conditions, and iii) analyze traffic composition and lane utilization patterns at

the study site.

Fig 2 depicts the speed-flow relationship in the eastbound shoulder and median lanes sepa-

rately, where flow and speed are expressed in the hourly equivalent of the five-minute

Table 2. Summary statistics of influencing factors.

Influencing factor Vehicles observed Mean Standard deviation

Road-weather conditions Air temperature GI (� −10˚C) 230,489 -16.58˚C 4.77˚C

GII (−10˚C<&� 0˚C) 441,030 -3.98˚C 2.79˚C

GIII (>0˚C) 880,823 8.74˚C 6.35˚C

Pavement surface condition Dry 958,017 Not Applicable

Ice warning 269,603 Not Applicable

Trace moisture 41,498 Not Applicable

Wet 134,556 Not Applicable

Ice watch 132,540 Not Applicable

Frost 16,128 Not Applicable

Time of the day Day 1,159,360 Not Applicable

Night 392,982 Not Applicable

Precipitation condition No precipitation 1,448,239 Not Applicable

Slight rain 21,429 0.48 mm/h 0.54 mm/h

Moderate & heavy rain 46,397 6.6 mm/h 4.29 mm/h

Slight snow 23,332 0.55 mm/h 0.47 mm/h

Moderate & heavy snow 1,685 2.96 mm/h 2.73 mm/h

Slight frozen precipitation 9,578 0.63 mm/h 0.75 mm/h

Moderate & heavy frozen precipitation 1,682 5.28 mm/h 5.27 mm/h

Traffic conditions Traffic flow category TF: GI (�100 veh/h) 38,923 48 veh/h 27 veh/h

TF: GII (101 veh/h-200 veh/h) 26,544 152 veh/h 28 veh/h

TF: GIII (201 veh/h-300 veh/h) 27,953 248 veh/h 31 veh/h

TF: GIV (301 veh/h-400 veh/h) 10,962 346 veh/h 27 veh/h

TF: GV (401 veh/h-500 veh/h) 3,107 440 veh/h 27 veh/h

TF: GVI (501 veh/h-600 veh/h) 767 538 veh/h 29 veh/h

TF: GVII (601 veh/h-700 veh/h) 170 646 veh/h 29 veh/h

TF: GVIII (701 veh/h-800 veh/h) 94 752 veh/h 30 veh/h

Heavy vehicles percentage category HV: GI (� 10%) 19,492 3.1% 3.8%

HV: GII (11%-20%) 20,410 15.8% 3.0%

HV: GIII (21%-30%) 19,032 25.4% 2.7%

HV: GIV (31%-40%) 16,847 35.2% 23.0%

HV: GV (41%-50%) 13,623 47.5% 3.1%

HV: GVI (51%-60%) 3,919 57.2% 2.5%

HV: GVII (61%-70%) 4,275 66.1% 1.7%

HV: GVIII (71%-80%) 2,656 75.8% 2.7%

HV: GIX (81%-90%) 576 84.6% 1.9%

HV: GX (>90%) 7,690 99.9% 0.3%

https://doi.org/10.1371/journal.pone.0256322.t002
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passenger car volumes per lane and the corresponding five-minute aggregate speed respec-

tively. According to Fig 2, the study site mostly operates under a density of 7pc/h/ln and expe-

riences Level of Service (LOS) “A”, which exhibits free-flow conditions and minimal vehicle

interactions between the vehicles as characterized by [29].

The median lane, however, exhibits a lower range of traffic flow values and higher speeds

compared to the shoulder lane. While presenting two types of descriptive statistics; mean and

standard deviation of the speeds observed in the eastbound shoulder and median lanes, Fig 3

confirms observation of higher speeds in the median lane while highlighting the variations in

the mean and standard deviation of speeds under adverse road-weather conditions in both

lanes.

Further, vehicles travelling in daytime, especially in the shoulder lane travel at slightly

higher speeds. Adverse pavement surface conditions, when coupled with adverse precipitation

conditions tend to reduce speeds significantly. For instance, presence of an ice warning pave-

ment condition under a slight snow recorded significantly lower mean speeds and consider-

ably high standard deviation of speeds irrespective of the temperature conditions, time of day

and the lane type, suggesting that the drivers are more sensitive to perceptible hazards such as

adverse pavement and precipitation conditions. Fig 3 suggests a few counterintuitive implica-

tions potentially due to the small sample sizes. For example, the mean and standard deviation

of speeds of vehicles travelling in the median lane at nighttime in temperature values more

than 0˚C under a dry pavement and a moderate and heavy frozen precipitation recorded a

comparatively higher mean speed which can potentially be attributed to the low sample size

(44 five-minute intervals only).

Fig 4 presents the hourly variation of the heavy vehicles’ percentage and the lane utilization

factor in the eastbound shoulder and median lanes, where the lane utilization factor is

Fig 2. Speed-flow variation in the eastbound shoulder and median lanes at the study site.

https://doi.org/10.1371/journal.pone.0256322.g002
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expressed in terms of the proportion of hourly vehicular flow of each lane to the respective

total hourly vehicular flow of the eastbound direction. According to Fig 4, a substantial portion

of the hourly vehicular flow in the shoulder lane constitutes of heavy vehicles, especially

Fig 3. Distribution of speeds in the study site.

https://doi.org/10.1371/journal.pone.0256322.g003

Fig 4. Hourly variation of the heavy vehicles’ percentage and the lane utilization factor at the study site.

https://doi.org/10.1371/journal.pone.0256322.g004
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around the midnight. Moreover, the high hourly lane utilization factors of the shoulder lane

further imply the preference of the majority of the drivers to use the shoulder lane. Therefore,

only the vehicles observed in the shoulder lane are considered in this study to typify the prag-

matic heterogeneous traffic composition in study site.

Population, sample and sampling distributions

It is hypothesized that drivers possess different speed behaviors under various inclement road-

weather and traffic conditions, characterized by a “population” to which they belong to. Three

important aspects in modelling the distribution of desired speeds are defined namely, popula-

tion, sample and sampling distribution.

Population, in the context of this study, encompasses the desired speeds of individual vehi-

cles observed at the study site under a specific combination of road-weather and traffic condi-

tions. Population groups are identified based on the combination of six criteria explaining the

road-weather and traffic conditions at the time of travel (Fig 5). The distribution of desired

speeds of the individual vehicles observed under a unique combination of road-weather and

traffic conditions is referred to as “population distribution” hereinafter.

The study period is divided into consecutive five-minute intervals analogous to samples

drawn from the speed population in equal intervals. Each five-minute interval belongs to a spe-

cific population labeled with a proper population ID based on the prevailing road-weather and

traffic conditions. The individual speeds in each time interval are considered as “observations”

while the respective five-minute intervals are considered as “samples” drawn from a popula-

tion. Accordingly, the number of vehicles observed in a particular five-minute interval is

referred to as the “sample size” denoted by n (n2Z+) i.e., the five-minute traffic volume. The

number of unique sample sizes that belong to a particular population is denoted by k (k2Z+).

The average speed of all vehicles observed during a five-minute interval represents the sample

mean and is referred to as five-minute aggregate speed. For a particular population, the sam-

pling distribution of mean speed refers to the distribution of the sample mean speeds with a

specific sample size n. Thus, each speed population is represented by k sampling distributions.

For demonstration purpose, Fig 6 presents a graphical illustration of a speed population of

202 individual vehicle speeds recorded under a unique combination of road-weather and

Fig 5. Categories of road-weather and traffic conditions to identify populations.

https://doi.org/10.1371/journal.pone.0256322.g005
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traffic conditions, enclosed in 38 five-minute intervals belonging to three unique sample sizes

(k = 3). Each five-minute aggregate interval in the population is assigned with a unique sample

ID denoted by Sn,m, where n denotes the sample size and m (1�m�M) denotes the sample

number pertaining to the sample size n. The number of five-minute intervals recorded with

identical five-minute volumes is denoted by M (M2Z+). The five-minute aggregate speed in

each five-minute interval represents the sample mean speed and is denoted by �vn;m. The five-

minute aggregate intervals observed with identical number of vehicles are clustered together to

produce sampling distributions of mean speed. Accordingly, Vn represents the sampling

Fig 6. Illustration of a population and samples.

https://doi.org/10.1371/journal.pone.0256322.g006
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distribution of five-minute aggregate speeds pertaining to intervals with traffic volume n. Five-

minute intervals with M = 1 were removed and the rest of the samples are sorted in an ascend-

ing order based on n.

Fig 7 shows an example of a speed population (ID: D-NP-N-T:GIII-TF:GI-HV:GI) i.e. dry

pavement, no precipitation, temperature more than 0˚C, q<100 veh/h and a HV<10% in

nighttime) represented by 8 different sampling distributions of speeds (k = 8) along with the

respective number of five-minute intervals (M). For instance, the fourth sampling distribution

(n = 4, M = 267) in Fig 7 corresponds to the distribution of the five-minute aggregate speeds

Fig 7. Sampling distribution of mean speeds for a population represented by eight sampling distributions (population ID: D-NP-N-T:GIII-TF:

GI-HV:GI).

https://doi.org/10.1371/journal.pone.0256322.g007
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encompassing 267 five-minute intervals with four vehicles observed in each five-minutes. The

frequency of samples for each sample size n tends to decrease as the sample size increases

implying comparatively low traffic volumes observed at the study site, which is in an uncon-

gested rural highway.

Methodology

The proposed methodology to estimate the mean and standard deviation of the distribution of

desired speeds of individual vehicles is founded upon two main assumptions; i) observed

speeds on the study segment represent drivers’ desired speed, and ii) the population of

observed individual vehicle speeds belonging to a unique combination of traffic and road-

weather conditions is normally distributed and is represented by a mean of μ and a standard

deviation of σ. Nevertheless, the study data were carefully checked to scrutinize the contrari-

eties between the theoretical postulations and the empirical indications. To implement the

proposed methodology, the observed speeds should be first affirmed as desired speeds, charac-

terized as the speeds of lead vehicles i.e., non-followers or observed speed of vehicles with min-

imal interactions [10]. For congested highways with significant vehicle interactions a

“follower/non-follower” identification algorithm such as the composite headway distribution

model [16] can be applied to identify “follower” and “non-follower” vehicles. Consequently,

the analysis can be conducted using the desired speed observations from non-follower vehi-

cles. Alternatively, uncongested traffic streams operating at Level of Service (LOS) “A” or “B”

with traffic flow values less than 1,000 veh/h/lane can be reasonably considered to represent

“free-flow” conditions [11], where drivers are free to adopt their desired speeds. The shoulder

lane of the highway segment in this study mainly operates at LOS “A” and “B” with traffic flow

values less than 1,000 veh/h/lane, implying minimal interactions between vehicles (Fig 2).

Thus, observed speeds are assumed to represent desired speeds of drivers due to prevailing

free-flow conditions at the study site.

On the other hand, normal distribution is often used to represent desired speeds [30] except

for deviations under certain situations such as special site characteristics resulting from road

geometry [31] and highly heterogeneous traffic [32]. According to Central Limit Theorem

(CLT), Vn (sampling distribution of mean speeds) will be nearly normal regardless of the sam-

ple sizes given that the speed populations are normally distributed [33]. Accordingly, the char-

acteristics of the study data substantiate the main assumptions of the study.

Mean of desired speeds’ distribution (μ) of individual vehicles’ population

In this study, we hypothesize that the distribution of desired speeds under a specific combina-

tion of road-weather and traffic conditions is represented by a random variable Y following a

normal distribution with a mean of m�y and a standard deviation of s�y . As indicated by CLT,

for a normally distributed population, the population mean is equal to the mean of the sam-

pling distribution even for small sample sizes. However, as each speed population is repre-

sented by k sampling distributions, we propose a methodology to estimate the mean of the

speed population by combining k sampling distributions (k denotes the number of different

distributions of five-minute aggregate speeds with specific traffic volumes (sample sizes), com-

prising a population). In other words, Y � Nðm�y ; s�y
2Þ is analogous to the ultimate result of the

linear combination of k independent normal random variables, i.e. k number of sampling dis-

tributions of five-minute aggregate speeds, where the ith independent normal random variable

and the associated weight factor are denoted by Vi � Nðmi; s
2
i Þ and ai respectively, where

i2Z+|i�k [34].

Theorem: Linear combination of k distributions of five-minute aggregate speeds
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If Vi � Nðmi; s
2
i Þ; 1�i�k, are independent random variables and if ai, 1�i�k are constants,

then

Y ¼ a1V1 þ � � � þ aiVi þ � � � þ akVk � Nðm�y ; s�y
2Þ Eq 1

where,

m�y ¼ a1m1 þ � � � þ aimi þ � � � þ akmk Eq 2

and

s�y
2 ¼ a2

1
s2

1
þ � � � þ a2

i s
2

i þ � � � þ a2

ks
2

k Eq 3

The mean of the distribution of individual vehicle speeds observed under a unique combi-

nation of road-weather and traffic conditions (analogous to a normally distributed population

~N(μ, σ2)), is inferred by m�y i.e., the weighted combination of the mean of the distribution of k
different five-minute aggregate speeds (sampling distributions) representing the population.

Nevertheless, estimating m�y evokes two challenges.

First, the aforementioned Theorem only holds true for mutually independent random vari-

ables. In the context of this study, the existence of vehicle interactions violates the condition of

the observations being mutually independent random variables. Therefore, the mutual inde-

pendence of the observations must be confirmed prior to applying the linear combination of

the distribution of five-minute aggregate speeds. As explained earlier, this study investigates

the speed behavior observed in a rural highway, which mostly encounters traffic flow volumes

less than 1,000 passenger cars per hour per lane (Fig 2). Hence, it is reasonable to assume negli-

gible vehicle interactions in this analysis. In mathematical terms, recorded speed observations

in five-minute intervals can be considered as independent random variables. Thus, k distribu-

tions of five-minute aggregate speeds are mutually independent.

Second, estimation of m�y also requires the estimation of the weight factors ai = 1 to k (Eq 2).

We propose to adapt the “Minimum Variance Unbiased Estimation” (MVUE) technique to

estimate the mean of the weighted combination of the distributions of five-minute aggregate

speeds (m�y ) and the respective weight factors (ai = 1 to k) pertaining to Y bearing the minimum

variance (s�y
2). MVUE represents the unbiased point estimate with a minimum variance of all

the possible unbiased point estimates for a particular parameter [34]. Therefore, the MVUE of

m�y is represented by the mean of a unique distribution i.e., derived by linearly combining k dis-

tributions of five-minute aggregate speeds, possessing the minimum variance among all other

linear combinations. Accordingly, the precise population mean is epitomized by the MVUE of

the population mean. Yet, the widely used methods of estimating the MVUEs such as the Cra-

mér–Rao bound (CRB) directly estimates the MVUE without estimating the weight factors

[35]. CRB estimates the theoretical lower bound for the variance of the unbiased estimator and

a particular estimate is recognized efficient if the CRB is met by the estimate [35]. Nevertheless,

MVUE, which matches the lower bound proposed by the CRB may not exist in certain cases

[35]. Therefore, a more efficient and practical alternative approach is proposed to estimate the

MVUE and the corresponding weight factors for population mean. The precise value of the

MVUE of m�y can be obtained by minimizing the variance of the weighted combination of dis-

tributions of five-minute aggregate speeds s�y
2 as explained below.
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Minimum Variance Unbiased Estimate (MVUE) of μ�y

In the proposed methodology, a population of individual vehicles with the desired speeds

observed under a unique combination of road-weather and traffic conditions is represented by

k sampling distributions of five-minute aggregate speeds, and Y is defined in terms of its mean

m�y and variance s�y
2 as in Eqs 1 through 3, respectively. The weight factors ai = 1 to k, represent

the contribution of the individual sampling distribution of five-minute aggregate speeds Vi in

the resulting population distribution for Y. Therefore, the weight factors sum up to 1.

Xk

i¼1

ai ¼ 1 Eq 4

A statistical approach to estimate m�y involves solving Eqs 2, 3 and 4 while minimizing s�y
2

which eventually yields the MVUE of m�y . Nevertheless, the aforementioned system of equa-

tions consists of k+2 degree of freedom including m�y ; s�y
2 and ai;i = 1 to k, with only four con-

straints (i.e., Eqs 2 through 4 and variance minimization equation) expressing the relationship

between the aforementioned variables. Accordingly, the system of equations becomes indeter-

minate for k>2. However, the system of equations can be still resolved for k = 2 by treating the

cluster of sampling distributions of five-minute aggregate speeds as a chain of the products of

two distributions at a time. Fig 8 graphically illustrates the sequential combination procedure

of k sampling distributions of five-minute aggregate speeds, where all k distributions represent

an identical population. First, k distributions are sorted ascendingly in terms of the five-minute

traffic volume (sample size). Subsequently, the first two out of k distributions; V1 and V2 as

depicted in Fig 8, are combined linearly yielding an intermediate hypothetical distribution of

five-minute aggregate speeds i.e., Y 0
1;2

. Afterwards, Y 0
1;2

is chained with the third distribution of

five-minute aggregate speeds V3, yielding the subsequent intermediate hypothetical distribu-

tion of five-minute aggregate speeds Y 0
1;2;3

. The chaining process is continued until all k

Fig 8. Illustration of the chaining process of k sampling distributions of five-minute aggregate speeds.

https://doi.org/10.1371/journal.pone.0256322.g008
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individual sampling distributions of five-minute aggregate speeds representing the population

of individual vehicle speeds are encompassed in the intermediate hypothetical distributions,

eventually producing Y 0
1;2;3;4;...;i;...;k bearing the MVUE of m�y . Accordingly, an algorithm is pro-

posed to estimate the weight factors ai = 1 to k and the MVUE of m�y which is equivalent to μ
(Fig 9).

For a given combination of road-weather and traffic conditions, the algorithm presented in

Fig 9 initially combines the first two individual sampling distributions of five-minute aggregate

speeds; V1 and V2 according to Eqs 1, 2 and 3, such that the linear combination of V1~(μ1, σ1
2)

and V2~(μ2, σ2
2) yields a normally distributed hypothetical distribution of five-minute aggre-

gate speeds; Y 0
1;2
� ðm0

1;2
; ðs0

1;2
Þ

2
Þ possessing the MVUE of m0

1;2
, which corresponds to the most

representative unbiased estimate of the mean of Y 0
1;2

. In other words, Y 0
1;2

holds the minimum

variance among all distributions representing the linear combination of V1 and V2. The pro-

posed methodology for estimating the exact value of the MVUE of m0
1;2

is presented below.

The linear combination of V1 and V2 corresponds to the bivariate linear combination of

two (i.e., k = 2) sampling distributions of five-minute aggregate speeds. The linear combina-

tion ultimately produces Y 0
1;2

(Eq 1 with k = 2) which is a normally distributed intermediate

random variable characterized by its mean m0
1;2

and variance ðs0
1;2
Þ

2
estimated according to Eqs

2 and 3 respectively with k = 2. The values of m0
1;2

, a0
1
; a0

2
and ðs0

1;2
Þ

2
are estimated as explained

Fig 9. Algorithm for estimation of weight factors and μ.

https://doi.org/10.1371/journal.pone.0256322.g009

PLOS ONE Speed behaviour in rural highways under adverse road-weather conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0256322 August 16, 2021 16 / 31

https://doi.org/10.1371/journal.pone.0256322.g009
https://doi.org/10.1371/journal.pone.0256322


below, while the coefficients in Eqs 2 and 3 i.e., m1; s
2
1
; m2 and s2

2
(mean and variance of sam-

pling distributions) are known for a specific population.

The weight factors a0
1

and a0
2

represent the respective contribution of V1 and V2 in Y 0
1;2

.

Therefore, the two weight factors a0
1

and a0
2

sum up to 1 (Eq 4). Accordingly, the variance of

Y 0
1;2

is expressed by:

ðs0
1;2
Þ

2
¼ ða0

1
Þ

2
s2

1
þ ð1 � a0

1
Þ

2
s2

2
Eq 5

The weight factors a0
1

and a0
2

are estimated by setting the first derivative of ðs0
1;2
Þ

2
with

respect to a0
1
ði:e: dðs0

1;2
Þ

2
=da0

1
Þ to zero to obtain the minimum variance of Y 0

1;2
yielding,

a0
1
¼

s2
2

s2
1
þ s2

2

Eq 6

Substituting a0
1

in Eq 4 (k = 2) yields:

a0
2
¼

s2
1

s2
1
þ s2

2

Eq 7

Substituting a0
1

and a0
2

in Eq 1, Eq 2 and Eq 3 (k = 2) yields:

Y 0
1;2
¼

s2
2

s2
1
þ s2

2

V1 þ
s2

1

s2
1
þ s2

2

V2 Eq 8

m0
1;2
¼

s2
2

s2
1
þ s2

2

m1 þ
s2

1

s2
1
þ s2

2

m2 Eq 9

ðs0
1;2
Þ

2
¼

s2
2

s2
1
þ s2

2

� �2

s2

1
þ

s2
1

s2
1
þ s2

2

� �2

s2

2
Eq 10

Y 0
1;2

is then chained with the next sampling distribution of five-minute aggregate speeds; V3

and a new intermediate hypothetical normally distributed distribution of five-minute aggre-

gate speeds Y 0
1;2;3

is produced. This process is continued until all k original individual distribu-

tions of five-minute aggregate speeds are integrated in the chain of the resulting hypothetical

intermediate distributions. Consequently, the ultimate hypothetical distribution of five-minute

aggregate speeds; Y 0
1;2;3;4;...;i;...;k conveys the characteristics of the population of five-minute

aggregate speeds representing the distribution of individual desired speeds observed under a

unique combination of road-weather and traffic conditions. Therefore, Y 0
1;2;3;4;...;i;...;k is equiva-

lent to Y as expressed in Eq 1 and referred to as Y hereinafter. Moreover, Y possesses the mini-

mum variance (s�y
2) among all combinations of k sampling distributions of five-minute

aggregate speeds leading Y to be the most representative representation of the distribution of

individual speeds under a particular combination of road-weather and traffic conditions (a

population). Consequently, the mean of Y i.e., m�y is concluded as the MVUE for the population

mean, μ.

Estimating the MVUE of m�y according to the proposed algorithm for a population repre-

sented by three sampling distributions (k = 3) is elaborated in the S1 Appendix.
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Standard deviation of desired speeds’ distribution (σ) of individual

vehicles’ population

As explained before, the linear combination of k sampling distributions of five-minute aggre-

gate speeds yields to Y (Eq 1), which is characterized by a variance of s�y
2 (Eq 3). On the other

hand, σi, denotes the standard deviation of the ith sampling distribution of five-minute aggre-

gate speeds (Vi) pertaining to a specific sample size (five-minute traffic volume ni). Vi is one

out of k sampling distributions representing the population of desired speeds of individual

vehicles observed under a unique combination of road-weather and traffic conditions with a

standard deviation σ. Eq 11 defines the relationship between the standard deviation of the pop-

ulation (σ) and that of ith sampling distribution (σi):

si ¼ s=
ffiffiffiffi
ni
p

Eq 11

Substituting σi from Eq 11 to Eq 3 yields,

s�y
2 ¼ a2

1

s2

n1

� �

þ � � � þ a2

i
s2

ni

� �

þ � � � þ a2

k
s2

nk

� �

Eq 12

After rearranging Eq 12, the standard deviation of the distribution of desired speeds of indi-

vidual vehicles observed under a unique combination of road-weather and traffic conditions,

i.e., the population standard deviation can be expressed as:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�y

2

Pk
i¼1

a2
i =ni

s

Eq 13

Identification of road-weather conditions with intensified safety risks

To investigate the impacts of adverse road-weather conditions on the desired speed distribu-

tion characteristics, the combinations of road-weather conditions under prevailing traffic con-

ditions, i.e., traffic flow values from 100 veh/h to 200 veh/h (Fig 2) and heavy vehicle

percentages from 20% and 30% (Fig 4(A)) are explored.

Safety risks in this study are evaluated in terms of two important aspects of a potential crash

i.e., severity and propensity. Speed and the variability of speeds are often acknowledged as

appropriate measures in evaluating crash severity and crash involvement respectively, where

high speeds and high standard deviation of speeds are associated with severe injuries occurred

at a potential crash and high crash involvement rates respectively [36]. A weather-related crash

(hereinafter crash), however, involves the presence of adverse road-weather conditions. More-

over, combination of the most frequent road-weather conditions (dry pavement surface condi-

tion, no precipitation, daytime and temperature values between -10˚C and 0˚C in the context

of this study) can be considered as normal road-weather conditions due to drivers’ frequent

exposure to such road-weather conditions. Therefore, the severity and the propensity of a

weather-related crash can be accurately evaluated by assessing the difference in the desired

speed distribution characteristics under normal and adverse road-weather conditions consid-

ering prevailing traffic conditions.

The distributions of desired speeds under prevailing traffic conditions encompass two types

of road-weather conditions: normal and adverse. The term “adverse” refers to any combina-

tion of road-weather conditions under prevailing traffic conditions. In this study, we denote

the mean and standard deviation of a desired speed distribution belonging to prevailing traffic

and normal road-weather conditions by μNormal and σNormal respectively, where the mean and

standard deviation of a desired speed distribution belonging to prevailing traffic and adverse
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road-weather conditions are denoted respectively by; μAdverse and σAdverse. We propose to

express μAdverse and σAdverse as functions of μNormal and σNormal respectively, considering crash

severity and exposure factors as in Eqs 14 and 15.

mAdverse ¼ aAdverse � mNormal Eq 14

sAdverse ¼ bAdverse � sNormal Eq 15

where,

αAdverse: Crash Severity Factor (CSF)

βAdverse: Crash Exposure Factor (CEF)

Mean speed is well-acknowledged as an indication of crash severity [36]. Therefore, CSF is

considered as a surrogate measure for crash severity under a particular combination of road-

weather conditions. Considering mean desired speed under normal road-weather conditions

as a reference, road-weather conditions with CSF�1 imply lower (or equal) mean desired

speed (μAdverse�μNormal). Thus, potential crashes under such road-weather conditions are clas-

sified as “low severity” as compared to normal road-weather conditions. In contrast, potential

crashes under road-weather conditions with CSF>1 are classified as “high severity”, due to

higher mean desired speed (μAdverse>μNormal).

Similarly, CEF i.e., defined based on standard deviation of desired speed under a particular

combination of road-weather conditions, is considered as a surrogate measure for crash pro-

pensity [37]. Road weather conditions with CEF�1 are classified as “low exposure” due to

lower variability of desired speeds (σAdverse�σNormal). On the contrary, road-weather condi-

tions with CEF>1 are identified as “high exposure” due to high standard deviations of desired

speeds as compared to normal road-weather conditions (σAdverse>σNormal).

Subsequently, each combination of road-weather conditions with the most frequent traffic

conditions are classified into four categories and labelled in terms of crash severity and expo-

sure depending on the values of CSF and CEF as shown in Table 3.

Conditions labelled as “High severity, High exposure” are identified as the road-weather

conditions imposing the highest safety risks followed by conditions labelled “High severity,

Low exposure”, “Low severity, High exposure” and “Low severity, Low exposure” in a descend-

ing order with respect to safety risks.

Modeling results

Data collected from the study site encompassed 933 unique combinations of road-weather

(precipitation condition, pavement surface condition, time of the day, air temperature) and

traffic conditions (traffic flow, heavy vehicles percentage) as shown in Fig 5. Accordingly, the

desired speed distributions of each of the 933 combinations were modelled as normal distribu-

tions characterized by mean (μ) and standard deviation (σ).

To recall, a weight factor (ai) depending on the variance (s2
i ) was assigned to each sampling

distribution of five-minute aggregate speeds representing a specific desired speed population

pertaining to a particular combination of road-weather and traffic conditions. With a few

Table 3. Classification criteria for combinations of road-weather conditions to identify road-weather conditions

with intensified safety risks.

CEF�1 CEF >1

CSF�1 Low severity, Low exposure Low severity, High exposure

CSF >1 High severity, Low exposure High severity, High exposure

https://doi.org/10.1371/journal.pone.0256322.t003
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exceptions, the sampling distributions with a larger variance were assigned significantly

smaller weight factors, i.e., contributing less toward estimating the desired speed distribution

characteristics (Fig 10) that is the direct consequence of implementing MVUE. Thus, the pro-

posed methodology assures that more emphasis is placed on sampling distributions with more

stable speed observations (e.g., lower variance due to larger sample size) while preserving and

using all observations.

Fig 11 presents the number of populations recorded at the study site in terms of traffic flow

and Heavy Vehicle (HV) percentage conditions, indicating that 44 out of the 933 populations

Fig 10. Weight factor VS the variance of the distributions of five-minute aggregate speeds.

https://doi.org/10.1371/journal.pone.0256322.g010
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observed were operating under prevailing traffic conditions for which the characteristics of

desired speed distributions are presented and discussed in the next section.

Impact of road-weather and traffic conditions on estimated desired speed

distributions

Fig 12 depicts the mean (μ) and standard deviation (σ) of the desired speed distributions under

44 unique combinations of precipitation conditions, pavement surface conditions, time of the

Fig 11. Number of populations recorded in terms of the traffic flow and HV categories.

https://doi.org/10.1371/journal.pone.0256322.g011
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day and air temperature categories observed under prevailing traffic conditions. Distribution

of desired speeds under the combination of the most frequent road-weather conditions i.e.,

dry pavement, no precipitation, daytime and temperature values between -10˚C and 0˚C

(Group II) is characterized by a normal distribution with a mean of 112 km/h and a standard

deviation of 6.5 km/h (Fig 12). Fig 12 reveals interesting speed behaviour idiosyncrasies. For

Fig 12. Desired speed distribution characteristics; mean (μ) and standard deviation (σ) of road-weather combinations under the prevailing traffic conditions.

https://doi.org/10.1371/journal.pone.0256322.g012
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instance, the average speed chosen by drivers travelling under ice warning pavement condi-

tions is significantly lower than the average speed chosen by drivers travelling under other

road surface conditions (dry, wet, frost, trace moisture and ice watch), irrespective of weather

conditions prevailing at the time of travel. A closer inspection of Fig 12 further reveals that the

desired speed distributions of vehicles travelling under ice warning road surface conditions

possess comparatively higher values of standard deviation, signifying the diversified speed

choices under ice warning pavement conditions. The higher numerical values for means cou-

pled with higher standard deviation values of the desired speed distributions under ice warn-

ing road surface conditions is intuitive since majority of the drivers are very much attentive

towards the perceptible roadway hazards during driving maneuvers. Nevertheless, each indi-

vidual driver perceives the risk on driving on such perceptible hazards at different levels which

is manifested by the high standard deviation of speeds eventually intensifying the crash risks.

In general, drivers are well aware of the reduced road surface friction under icy pavement con-

ditions and typically incline towards driving at a lower speed compared to the fixed posted

speed limit of 110 km/h. The choice of such lower speed is determined by drivers predomi-

nantly based on their driving experience, confidence, and comfort levels. Accordingly, some

experienced drivers may drive at higher speeds even though they are aware of the deteriorated

driving conditions, leading to higher means of the desired speed distributions (e.g., under frost

and or ice watch conditions) and high crash severities.

The aforesaid argument is further validated in the presence of acute precipitation. For

instance, the desired speed distributions in daytime recorded with a road surface condition of

ice warning, temperature values above 0˚C (Group III) and slight snow evinced a phenome-

nally low mean with a numerical value of 102 km/h, which is the lowest mean among the 44

desired speed distributions, and a considerably low standard deviation (6.39 km/h) compared

to the remaining 43 combinations of road-weather conditions (Fig 12). This observation sup-

ports the hypothesis that the majority of drivers are not comfortable driving at or near the

speed limit of 110 km/h, which is considerably higher than 102 km/h. Moreover, the low stan-

dard deviation of the aforementioned desired speed distribution suggests a comparatively low

variability in the desired speeds implying the alike collective judgment of a safe speed among

the majority of the drivers. In contrast, the highest variability of speeds prevails under ice

warning pavement, slight frozen precipitation, nighttime and temperature values above 0˚C

(Group III) which is manifested through a standard deviation of 20.07 km/h. Nevertheless,

mean of the aforementioned desired speed distribution was estimated as 106 km/h, which is

comparatively low with respect to the rest of the desired speed distribution means presented in

Fig 12. This inconsistency is potentially due to the unexpected slight frozen precipitation

occurring at peculiar temperature values, leading the drivers to prefer speeds in a wide range

depending on their confidence and comfort of driving at a particular speed, yielding a signifi-

cantly higher standard deviation of the distribution of desired speeds.

Surprisingly, however, the presence of precipitation alone does not seem to jeopardize driv-

ers’ uncertainty towards adapting a safe speed to travel under most precipitation conditions.

This is evident from the comparatively higher means of the desired speed distributions under

dry pavement conditions even in the presence of frozen precipitation and snowy conditions.

In fact, the highest mean desired speed (115 km/h) among the combinations of road-weather

conditions considered in Fig 12 was under dry pavement, temperature values between 0˚C

and -10˚C (Group II), nighttime and slight frozen precipitation conditions. Nevertheless, the

aforementioned desired speed distribution possesses a comparatively low standard deviation

(7.49 km/h) signaling a moderate homogeneity of desired speeds under particular combina-

tion of road-weather conditions. On the other hand, the combination of road-weather condi-

tions; wet pavement, slight snow, nighttime and temperature values above 0˚C (Group III)
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recorded the minimum standard deviation of desired speed distributions in Fig 12 with a value

of 0.39 km/h. Meanwhile, the mean of the same desired speed distribution is surprisingly high

with a value of 113 km/h. These rather contradictory results can be attributed to driver experi-

ence as a result of frequent exposure to driving under inclement road-weather conditions. As

discussed before, the study site is located in an extremely cold region which is subjected to fre-

quent adverse road-weather conditions. Hence, it could conceivably be hypothesized that fre-

quent exposure to hazardous driving conditions could be a major factor in the inferred weak

link between the adverse road-weather conditions and the selection of a lower speed as a safe

speed to travel, which is manifested by the high mean and the extremely low standard devia-

tion of the aforesaid desired speed distribution.

With successive increases in the intensity of the atmospheric temperature, the mean speed

of the desired speed distributions gradually increases in the case of ice warning, no precipita-

tion and nighttime conditions. Interestingly, however, both the minimum and the maximum

standard deviation of desired speed distributions under prevailing traffic conditions emerged

under identical time of the day and temperature group, which are nighttime and temperature

values above 0˚C (Group III) respectively. This is rather an important outcome as it reveals

that the variability of speeds is particularly affected by the combination of precipitation and

road surface condition. Nevertheless, there is no convincing evidence to conclude a significant

relationship between the desired speed distribution characteristics and the two road-weather

conditions, time of the day and temperature.

In summary, the characteristics of the desired speed distributions suggest that there is a

strong association principally with the two road-weather conditions i.e., road surface and pre-

cipitation conditions. In particular, the speed considered safe by each driver under identical

road-weather conditions seems to be dependent on their personal comfort levels and confi-

dence to travel, specially under perilous pavement conditions which is manifested through

divergent values of desired speed distribution means and standard deviations.

Adverse road-weather conditions with intensified road safety risks

To identify the specific road-weather conditions with intensified safety risks, mean and stan-

dard deviation of desired speed distribution pertaining to a normal road-weather and normal

traffic conditions; μNormal and σNormal were first estimated as 112 km/h and 6.5 km/h, respec-

tively. Consequently, CSF and CEF values estimated for each combination of road-weather

conditions under prevailing traffic conditions were estimated as presented in Fig 13(A) and 13

(B), respectively. The maximum CSF corresponds to the dry pavement, temperature values

between 0˚C and -10˚C (Group II), nighttime and slight frozen precipitation conditions, while

the minimum CSF corresponds to ice warning road surface conditions, temperature values

above 0˚C (Group III), daytime and slight snow conditions (Fig 13(A)). In terms of the CEF,

the maximum crash exposure is estimated for combination of ice warning road surface condi-

tions, temperature values above 0˚C (Group III), slight frozen precipitation and nighttime.

The minimum CEF is estimated for the combination of wet road surface conditions, tempera-

ture values above 0˚C (Group III), slight snow and nighttime (Fig 13(B)).

Fig 14 classifies each combination of road-weather condition observed under prevailing

traffic conditions in terms of potential safety risks as defined in Table 3. According to Fig 14,

only two combinations of road-weather conditions are classified in the category of extremely

high potential safety risks, i.e., the combination of i) ice watch road surface, temperature values

above 0˚C (Group III), nighttime and no precipitation conditions, and ii.) dry pavement, tem-

perature values between 0˚C and -10˚C (Group II), nighttime and slight frozen precipitation

conditions. Moreover, 14 out of the 44 combinations of road-weather conditions considered
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in the analysis were classified in the category with no significant potential safety risks com-

pared to reference conditions while 10 combinations were classified in the category with high

potential risk of severe crashes. Finally, 18 combinations were classified in the category with

high potential risk of crash occurrence.

Overall, 68% of road-weather combinations under prevailing traffic conditions are classi-

fied to be hazardous in terms of either potential crash severity or potential exposure to crashes,

which conveys the vulnerability of traffic safety under adverse road-weather conditions.

Comparative analysis

To the extent of our knowledge, no study has modelled the desired speed distributions under

the combination of road-weather and traffic conditions for rural highways in cold regions

even though several past studies have estimated the speed variations resulted by adverse road-

weather conditions [9, 12]. Nevertheless, the study results relating to the most frequent combi-

nations of traffic conditions (i.e., traffic flow values between 100–200 veh/h and heavy vehicle

percentages between 20%-30%) are compared with [9] and [11]. Yasanthi & Mehran [9] used

regression modelling to investigate the same study site and data as in the current study which

provides consistent basis for comparison.

Therefore, speed reduction factors for vehicles travelling in the shoulder lane under specific

combinations of road-weather and traffic conditions estimated by Group II models (linear

regression models with 20-minute aggregate speeds as the dependent variables) as suggested

by [9] were considered for comparative evaluation. Further, speed reduction factors suggested

by [11] were also considered for evaluation and comparison. It should be noted that numerical

values for the temperature, heavy vehicle percentage and traffic flow are used to allow better

comparison as well as to represent a practical application of the populations. For instance, a

Fig 13. Crash severity and crash exposure factors for each road-weather combination under the prevailing traffic conditions.

https://doi.org/10.1371/journal.pone.0256322.g013
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numerical value of 5˚C is used for the comparison as compared to using the temperature

group of “GIII” (Table 1) which enables direct estimation of the speed reduction suggested by

[9] and [11].

Table 4 presents speed reduction factors (comparing to reference normal road-weather

conditions) under four combinations of road-weather conditions. To allow better comparison,

only slight and heavy snow are considered. The results show that desired speed distributions

under different road-weather conditions can be characterized by considerably distinctive

means and standard deviations which implies that the speed behaviour of drivers travelling in

rural divided highways under adverse road-weather conditions is affected by pertaining road-

weather conditions, which is consistent with [9] and [11] observations. Both the present study

Fig 14. Classification of each road-weather combination under the prevailing traffic conditions.

https://doi.org/10.1371/journal.pone.0256322.g014
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and [9] revealed that the choice of desired speed is predominantly influenced by drivers’ pre-

cipitation and perceptible road surface conditions at the time of travel.

First, it should be noted that the speed reduction factors (Table 4) estimated by Yasanthi &

Mehran [9], HCM [11] and the current study are founded upon fundamentally different

approaches, which in turn lead to different speed reduction factors as anticipated. For instance,

[9] inferred free-flow speed reductions under different road-weather conditions based on lin-

ear regression models while [16] proposed free-flow speed reductions under different precipi-

tation conditions based on stepwise regression models developed by [38]. Yet, as explained

earlier, representing speed behaviour under adverse road-weather conditions through regres-

sion models is challenging especially considering restricted sampling conditions occurring

under adverse road-weather conditions. For example, each individual 20-minute aggregate

speed used in the “Group II” models in [9] equally contribute to estimating the regression

coefficients irrespective of the number of vehicles (sample size) observed in the respective

20-minute intervals. Therefore, the suitability of a sample-level analysis such as regression

modelling to study the impacts of adverse road-weather conditions on desired speed is ques-

tionable. In contrast, the current study results are based on a population-level analysis that dif-

ferentiates the contribution of each five-minute aggregate speed observed in a particular

combination of road-weather conditions upon the variance of the distributions of five-minute

aggregate speeds representing a specific population. Yasanthi & Mehran [9] concluded one of

the linear regression models produced in their study as the best performing model to represent

the relationship between free-flow speed and road-weather conditions. Yet, the dependent var-

iable of the regression models (free-flow speed) only provides an average estimation of the

free-flow speed under specific adverse road-weather conditions unlike the current study,

which estimates the distribution of all possible desired speeds under specific road-weather

conditions. Further, the regression models developed by [9] include some statistically

Table 4. Comparison of results with past literature.

Combination of Road-weather conditions

Combination I Combination II Combination III Combination IV

Road-weather condition Pavement condition Ice warning Wet Wet Ice warning

Precipitation Intensity (mm/h) 1 1 9 1

Temperature (˚C)1 5 5 5 -15

Time of the day Daytime Nighttime Daytime Daytime

Traffic condition1 Traffic flow (veh/h) 150 veh/h 150 veh/h 150 veh/h 150 veh/h

Heavy vehicles percentage (%) 20% 20% 20% 20%

Desire speed distribution characteristics Mean (Km/h) 102 113 109 110

Standard deviation (Km/h) 6.39 0.39 6.53 3.58

Speed reduction factors2 Present study3 8.93% -0.89% 2.68% 1.79%

Yasanthi & Mehran (2020) Light vehicles4 2.15% 2.16% 3.79% 3.73%

Heavy vehicles5 4.64% 3.47% 1.67% 6.03%

HCM (2016)6 13% 13% 16% 13%

1 Numerical values used to allow better comparison of the existing study’s results with [9] and [11].

2 Speed reduction factor ¼ ðSpeed under normal road� weatherÞ� ðSpeed under adverse road� weatherÞ
Speed under normal road� weather � 100.

3 Speed under normal road-weather conditions: 112 km/h.
4 Speed under normal road-weather conditions: 117 km/h.
5 Speed under normal road-weather conditions: 116 km/h.
6 Speed reduction factors based on HCM (2016) only based on the precipitation condition and a base free-flow speed of 113km/h (70 mi/h in Exhibit 11–21).

https://doi.org/10.1371/journal.pone.0256322.t004
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insignificant regression coefficients pertaining to certain road-weather conditions implying

the absence of a linear relationship between such road-weather conditions and desired speed.

In contrast, the present study only uses four road-weather conditions with statistically different

levels for each road-weather condition (Table 1). Moreover, it should be noted that the speed

reduction factors estimated according to [9, 11] and the present study (Table 4) respectively

consider six, one and four road-weather conditions leading the speed reductions estimated by

the three studies to spread among a different number of factors.

The speed reduction factors suggested in [11] are based on road-weather data collected

from an automated surface observing system (ASOS) located in nearby airports as compared

to the alongside data collection devices used in both the present study and [9]. In fact [38], the

underlying source for the speed reduction factors proposed in [11], highlighted the issue of

obtaining highly representative microclimate data to represent the prevailing road-weather

conditions at the traffic counters. Besides, [11] estimates correspond to a different geographi-

cal region possessing unique characteristics of the driver population, resulting considerably

divergent speed reduction factors compared to the present study.

Conclusion and future directions

This study proposed a novel approach based on Central Limit Theorem to model desired

speed distributions (mean (μ) and standard deviation (σ)) of vehicles travelling in rural divided

highways under different combinations of road-weather and traffic conditions, followed by

identification of the combinations of road-weather conditions imposing significant safety risks

under prevailing traffic conditions. Often, the impacts of adverse road-weather conditions on

the speed behaviour are evaluated largely by enumerating the absolute speed reductions under

adverse-road weather conditions estimated largely through regression analysis at a sample-

level. Speed behaviour, however, reflects the intrinsically divergent driver psychology. This

study, therefore, proposed a robust methodology to model the desired speed distributions at a

population-level, which can in turn be used to identify road-weather and traffic conditions

with potential safety risks. The theoretical models are calibrated with road-weather and traffic

data collected from a study site in Alberta, Canada where a fixed speed limit of 110 km/h is

implemented irrespective of the prevailing road-weather. Yet, the proposed methodology is

adaptable for uncongested divided highways in other geographical locations with similar road-

weather conditions.

The outcomes of the study highlight the importance of paying special attention to traffic

safety under the combination of precipitation and atypical road surface conditions while the

impacts of temperature and time of day were deemed insignificant. The study identified two

specific combinations of road-weather conditions potentially imposing higher crash severity

and involvement risks: i) ice watch pavements, temperature values of above 0˚C, nighttime

and no precipitation conditions and ii) dry pavements, temperature values between 0˚C and

-10˚C, nighttime and slight frozen precipitation conditions.

To the best of our knowledge, this study is the first comprehensive attempt in proposing a

coherent methodology to model the desired speed distributions under different road-weather

and traffic conditions for rural divided highways located in cold regions. The study’s contribu-

tions are twofold. First, it evaluates the impacts of different road-weather and traffic conditions

on the desired speed distributions in uncongested rural highways while identifying road-

weather conditions with potentially higher safety risks. Second, a methodological contribution

is made by proposing an innovative approach to model desired speed distributions which can

be used under different sampling rates and conditions. Thus, the research findings contribute

toward understanding the divergent speed behaviour which is often critiqued as a task not
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trivial due to i) versatile nature of driver psychology and ii) limited sample sizes observed

under adverse road-weather conditions. Transportation authorities which experience extreme

road-weather conditions may adapt the methodology to understand the speed behaviour to

identify prominent road-weather and traffic conditions needing urgent safety precautions

such as implementing a reliable weather-responsive variable speed limit under potentially

high-risk road-weather and traffic conditions. The desired speed distributions can be further

used as input driver behavior parameters in defining the speed distributions in microsimula-

tion applications to realistically simulate traffic operations under different traffic and road-

weather conditions.

The generalization of these results, however, is subject to certain limitations. First, the pro-

posed methodology is only applicable under uncongested traffic conditions. Second, the meth-

odology is not applicable for study sites with special features such as atypical road geometry

and extremely heterogeneous traffic, which may violate the assumption of a normally distrib-

uted desired speed distribution. Notwithstanding these limitations, the results of this research

support the idea that drivers select different speeds under different road-weather conditions

depending on their attitude about a safe speed to travel irrespective of the posted speed limit.

This is particularly manifested through the considerably high standard deviations of the

desired speed distributions in the study area estimated for particular road-weather conditions.

In other words, higher variability of speeds caused by lack of proper communication about the

safe speed to travel, imposes significant safety risks by paving the way toward elevated crash

involvement. Consequently, the research findings provide the following insights for future

research: i) How reliable is the existing speed limit in terms of consistent communication of a

safe speed in different road-weather conditions? ii) How to propose a reliable speed limit to be

implemented under the combinations of road-weather and traffic conditions which are char-

acterized by potentially higher safety risks? and iii) How to predict the performance of a spe-

cific speed limit prior to applying it? Accordingly, further research focusing on proposing a

robust methodology to develop a reliable weather-responsive variable speed limit system

which can be effectively used in uncongested rural highways in extremely cold regions are

recommended.
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