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ABSTRACT 

MAKABLEH, HADEEL MOHAMMED., Masters: January : 2023, 

Master of Science in Applied Statistics 

Title: Reliability analysis of Stress-Strength model from truncated Pareto distribution 

based on progressively Type-II censored samples 

Supervisor of Project: Dr. Reza Pakyari. 

In this project, we studied the stress strength reliability (SSR) models. The stress–

strength model has many applications in engineering problems, for example the 

strength of a building being subjected to earthquake, the strength of a rocket motor 

being greater than its working pressure, and the strength of a bridge. 

We estimated the reliability parameter using maximum likelihood estimation method 

in three cases (arbitrary case, common truncated case, and common resilience 

parameter case). We computed the maximum likelihood estimator (MLE) of  the 

reliability parameter R and  studied the properties of the estimator of the parameter R 

using a great amount of  simulation studies and illustrate our method through some real 

data examples. Moreover, we compute the generalized confidence intervals passed on 

pivotal quantities. We computed the bootstrap confidence intervals. We found that, the 

confidence interval is wider in the arbitrary parameter case, and that there is no large 

difference between the estimators of reliability parameter using different methods.  
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CHAPTER 1: INTRODUCTION 

1.1 Stress Strength Reliability (SSR) 

The stress strength variable's reliability is defined as the probability that the random 

strength variable X is greater than the stress random variable Y, i.e., R = P (X > Y). 

Individuals fail when the stress exceeds their resistance. Thus, an individual's 

dependability, written as R = P (X > Y), is the probability that the strength variable 

resists the stress variable.  

The stress–strength model has various applications in engineering problems, including 

the strength of a building being subjected to the earthquake design, the strength of a 

rocket motor being greater than its working pressure, and the strength of a bridge.  

In recent years, numerous studies on the stress–strength model have been conducted. 

Numerous applications of the stress-strength model involve engineering or military 

challenges, where it is also known as the load-strength model. 

There are, however, many applications in medicine or psychology involving the 

comparison of two random variables, representing, for instance, the effect of a certain 

drug or treatment delivered to two groups (control and test), thus, reliability has a 

broader meaning. 

Many examples can mention about SSR. Suppose that the bridge that crosses the cars 

represents the strength variable, and the cars that cross the bridge represent the stress 

variable. Here, the bridge's bearing strength must be greater than the pressure of cars 

on it, that is, R = P (X > Y), if the opposite is true, then the bridge will collapse. 
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 Consider another example in the field of engineering. If we assume that the mobile 

needs a certain amount of voltage when charging it, if we charge it more often, it will 

lead to its failure, so the device will remain working if its strength is greater than its 

stress. 

The reliability R can be calculated as probability where strength variable is greater 

than stress variable, so we can obtain this probability based on the joint probability 

distribution of two independent random variables as follows: 

R = P (X > Y). 

 

= ∫ ∫ 𝑓𝑦(𝑦)𝑓𝑥(𝑥)𝑑𝑦𝑑𝑥
𝑥

0

∞

0
, 

 

= ∫ [∫ 𝑓𝑦(𝑦)𝑑𝑦
𝑥

0

] 𝑓𝑥(𝑥)𝑑𝑥
∞

0

. 

 

where X and Y are two continuous independent random variables and f(x) is the 

density function of random variable X, and f(y) is the density function of random 

variable Y. 

1.2 Truncated Distributions 

Truncated distributions are useful for determining when the minimum and maximum 

values of a random variable are bounded, and this can be done for a variety of 

reasons. This is a common occurrence in fields related to reliability. It's possible, for 

instance, that the warranty doesn't cover failures that take place during the warranty 

period. Items may be replaced after a set amount of time under the replacement policy 
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so that defects are not ignored. When an autonomous recording device is used to 

collect data on failure or reliability life tests, the lives less than L and greater than T, 

where (L< T) cannot be assessed in any way, depending on the instrument's resolution 

or other environment. 

Another example is that an upper truncated model can be used to represent empirical 

wind speed data, for instance, when modeling the distribution of wind speed in a 

meteorological study. This is because the observed wind speed data has been confined 

to a maximum value.  

The estimation of truncated distribution parameters and related applications have been 

explored by different authors. A truncated Weibull distribution's parametric analysis 

techniques were considered by Zhang and Xie (2011). Aban et al. (2006) formulated 

the idea of maximum likelihood estimators (MLEs). Nadarajah (2009) offered outline 

for truncated distribution models.  

      For a continuous random variable 𝜇 ≤ 𝑇 ≤ 𝜈, the following is the expression of 

the double truncated using CDF and PDF functions, which can be calculated as 

follows: 

𝐹 𝑇𝐷(𝑡) =
𝐹(𝑡)−𝐹(𝜇)

𝐹(𝜈)−𝐹(𝜇)
   ,  𝑓𝑇 𝐷(𝑡) =

𝑓(𝑡)

𝐹(𝜈)−𝐹(𝜇)
 where   𝜇 ≤ 𝑡 ≤ 𝜈 .   (1)                   

where  𝜇 is the lower truncated parameter and 𝜈 is the upper truncated parameter of 

time t. 

1.2.1 Lower truncated distribution 

When 𝜈 →  ∞, the double truncated distribution is reduced to a lower truncated model 

where the PDF and CDF are given as follows: 
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𝐹𝑇𝐷(𝑡) =
𝐹(𝑡)−𝐹(𝜇)

1−𝐹(𝜇)
   and   𝑓𝑇𝐷(𝑡) =

𝑓(𝑡)

1 −𝐹(𝜇)
, 𝜇 ≤ 𝑡 ≤ ∞ .                                   (2)                                     

1.2.2 Upper truncated distribution 

When 𝜇 →  −∞, the double truncated distribution is reduced to an upper truncated 

model where the PDF and CDF are given as follows: 

𝐹𝑇𝐷(𝑡) =
𝐹(𝑡)

𝐹(𝜈)
   and   𝑓𝑇𝐷(𝑡) =

𝑓(𝑡)

𝐹(𝜈)
, −∞ ≤ 𝑡 ≤ 𝜈  .                                              (3) 

1.3 The Pareto Distribution  

Vilferdo Pareto (1897) presented the Pareto distribution for the first time in 1897. 

Since then, several researchers in the fields of industry and economics have used the 

Pareto distribution or variants of it. Some Pareto distribution applications and 

estimations are discussed by Harris (1968), Malik (1970), Kern (1983), Zaninetti and 

Ferraro (2008), and Arnold (2014). 

The truncated Pareto distribution with the following probability density function will 

be considered as follows: 

𝑓(𝑥) =
𝛼 𝜇𝛼

𝑥𝑎+1
,              0 < 𝜇 ≤ 𝑥  𝑎𝑛𝑑  𝛼 > 0     .  

Where 𝜇  is the truncated parameter and  𝛼 is the shape parameter. 

The cumulative distribution CFD, F(x) is given by: 

𝐹(𝑥) = 1 − (
 𝜇

x
)
𝛼

,              0 < 𝜇 ≤ 𝑥  𝑎𝑛𝑑  𝛼 > 0 . 
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The figure shows the PDF and CDF for the truncated Pareto distribution with 1 ≤ 𝑋. 

 

 

Figure 1. CDF and PDF for the lower truncated pareto distribution. 

 

              The mean value 𝐸(𝑋) exists if 𝛼 >  1 and is given by 

𝐸(𝑋) =
𝛼

𝛼 − 1
𝜇 . 

  

              The variance 𝑉(𝑋) exists if  𝛼 >  2 is given by 

 

𝑉(𝑋) =
𝛼

(𝛼 − 1)2(𝛼 − 2)
𝜇2. 
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1.4 Censored Data 

The challenge of evaluating time-to-event data emerges, despite statistical equipment, 

in many practical disciplines, such as health, science, global health, epidemiology, 

education, economics, and demographics. 

There are two kinds of samples: complete and incomplete or censored data, if the 

researcher doesn't know the exact failure time, the sample is incomplete or censored, 

while complete samples are known in life testing and reliability, a sample is referred 

to as a "complete sample" when the researcher records the failure rates of all units 

during the lifespan test. 

Due to cost and time constraints, most experimenters do not witness all failure times 

and instead view a subset of sample units before terminating the experiment. This 

form of data is known as "censored data". 

We do not know the precise moment at which this incident occurred, also known as 

the time at which it was witnessed or survived. Because even though we know the 

total amount of time someone was followed up on, we do not know how long they 

lived. 

Censoring occurs in most of the prospective observational research. During the 

research period, a participant may become separated from follow-up records and the 

event of interest may not occur before the conclusion of the follow-up term. 

The participant may need to withdraw from the study owing to a negative drug 

reaction, another pressing personal obligation, or any number of other potential 

scenarios. 
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Censoring is a feature unique to time-to-event data that occurs when specific timespan 

events are known to have occurred. Accurate information regarding the remaining life 

expectancy is available. 

 

Censored data is any data for which the actual occurrence time is unknown. Right 

censored, left censored, and interval censored are the three types of censored data. 

Left censoring: If a study subject's expected lifespan is shorter than the censoring 

period, the subject's data will be considered left censoring because the event of 

interest has already occurred for this subject. 

By "interval censoring," we indicate that the range across which a random variable of 

interest is known, rather than its exact value, is unknown. In survival analysis, the 

event of interest (death, illness recurrence, or distant metastases) is a random variable. 

A form of censorship called "right censoring" occurs when the endpoint is known to 

be greater than some fixed threshold. 

In addition to the three forms of censored data, there are two methods for grouping 

censored data: singly censored and multiply censored. 

Censoring of type-I occurs when an event is recorded only if it occurs before a certain 

deadline, there may be some individual variation in the length of time until content is 

blocked. 

When the experimental objects are monitored until a certain number of them fail, this 

is known as type II censoring. Such a layout is unusual in the field of biomedicine, 

although it could be use in commercial situations where the uptime of equipment is a 

top priority. 
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1.5 Progressive Type-II Censoring 

Due to the quick progress in industry and technology, increasingly durable and 

dependable items are being introduced into everyday life.  

Obtaining accurate information about the lifetime of a batch of products is becoming 

increasingly difficult. Consequently, censorship systems are implemented to combat 

this scenario. 

 To address this issue, Cohen and Clifford suggested the gradually censoring scheme, 

a broader method of censorship. 

The most prevalent forms of censoring tests are types I and II. These experiments 

include subjecting n units to a test and stopping the experiment either after a 

predetermined length of time has passed or after m(n) units have failed the test. In 

modern industry, however, the test cost is high, and the product has a long life. 

Progressive censoring tests such as progressive type I censoring, type-II censoring and 

progressive random censoring, etc., have been used to make it easier to collect failed 

samples and enhance the precision of Procedures for making inferences in lifetime 

studies when compared to typical censoring schemes.  

Many authors have done a lot of research on the effects of progressive censorship 

with different life distributions. 

Rarely do lifetime studies observe whole samples. Most life-testing experiments are 

ended before monitoring the lifespan of all units being evaluated. It may occur owing 

to a lack of time, insufficient cash, or another unavoidable cause. 

In recent decades, numerous censorship systems have been promoted in statistical 

literature. Like type-I and type-II censorship systems. The difference between two 
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types is the former stops the test at a certain time, while the latter keeps going until a 

certain number of failures have occurred. 

In Type-I censoring we stop the experiment in specific point of time, whereas type-II 

censoring ends the study once a particular number of failures have been recorded. 

Unfortunately, while testing, none of these censorship solutions allow for the removal 

of live components. Using progressive censoring, the researcher may remove working 

units without affecting the overall results of the study.  

Combining elements of both type-II and progressive censorship, we get "progressive 

type-II censorship". 

 With m and n sample sizes and 𝑅1……𝑅𝑚 positive integers, find those such that: 

 

In order to increase the efficiency of the experiment, we propose using a broader 

definition of type-II censoring is progressive type-II censoring. 

The following becomes an approach of enforcing progressive type-II censorship. Put 

n units through a life test and label their lifetimes( 𝑥1, 𝑥2… . . , 𝑥𝑛). 

Assume that 𝑥𝑖  are uncorrelated random variables that independently satisfy the PDF 

and CDF. 

 We select the censoring procedure and the number of samples to be observed (m) just 

before the experiment begins, where (𝑅 = 𝑅1 , 𝑅2… . . , 𝑅𝑚) 

𝑤ℎ𝑒𝑟𝑒 𝑅𝑖 > 0  𝑎𝑛𝑑 𝑖 = 1,2, … .… ,𝑚  𝑎𝑛𝑑  ∑𝑅𝑖  +  𝑚 =  𝑛

𝑚

𝑖=1

 . 
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The other 𝑅𝑖 units have been removed from the experiment. at random after every ith 

failure. Following this rule, the experiment will continue until m failures are recorded, 

at which point it will end. 

 

Withdraw         Withdraw           Withdraw         Withdraw 

 

𝑅1                  𝑅2                     𝑅𝑚−1                   𝑅𝑚 

 

𝑺𝒕𝒂𝒓𝒕        𝒙𝟏,𝒎,𝒏                𝒙𝟐,𝒎,𝒏  ….       𝒙𝒎−𝟏,𝒎,𝒏               𝒙𝒎,𝒎,𝒏        T 

Figure 2. Generation of Progressive Type-II Censored Data            

                                                                                                   

To further improve the efficiency and cost-effectiveness of data collection in 

experiments, progressive censoring is put into practice. This enables engineers to 

withdraw components from the experiment at various stages. Type II progressive 

censorship has become the standard in the field of progressive censorship. 

Progressive censorship has various advantages over the conventional type I and type 

II censorship techniques. Over the past few years, substantial effort devoted to the 

creation of the progressive censorship procedure. 
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CHAPTER 2: LITREATURE REVIEW 

 

The objective of this chapter is to acquire a better grasp of the recent research that is 

pertinent to our study. Life testing and reliability are important in medical, industry, 

and many other fields of research to predict future life and evaluate product quality. 

Due to the importance of the stress-strength model in theory and applications, several 

authors have contributed excellent works to the literature . 

Reliability parameter is the most essential model for establishing product reliability. It 

is important to note that a capacitor's break-even voltage (X) must be higher than its 

power supply voltage (Y) for the device to operate properly. Related examples of 

rocket engines were described by Kotz et al. (2003). 

For example, there are several studies focused on estimating the stress-strength 

parameter . Censored data is used to shorten the time required to test the reliability. 

Asgharzadeh et al. (2011) discussed inference for the SSR parameter R using 

progressive type-II censored data when the random variables follow the Weibull 

distribution. 

Furthermore, Saraçoglu et al, (2012) estimated reliability for stress strength under 

exponential distribution by using progressive type-II censored data. Tomer and 

Chaudhary. (2018) estimated the reliability parameter using Maxwell distributions 

and when the information was gathered using a Type-II progressively censored 

design. 
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Additional articles are available in Aban (2016), Bai (2019), Wang et al. (2018), and 

Zhang and Xie (2011). 

In recent years, many of papers proposed novel uses for the SSR. Medicare-related 

data was used as an example in the discussion of stress-strength reliability estimation 

by Jose et al (2022). The number of patients who do not have health insurance 

coverage represents stress Y, whereas the number of patients who do have insurance 

represents strength X. 

Using a real data set related to excessive drought afterward, Saini et al. (2021) 

estimated the SSR regarding the generalized Maxwell distribution, with the 

progressive censoring of early failures. If the amount of water achieved in August 

over the last 20 years (Y) is less than the water capacity of a reservoir in an area for 

the next 15 years in August, then there will be no excessive drought afterward (X). 

Data from a clinical trial of an antibiotic ointment for pain treatment was analyzed by 

Liu et al. (2022), who studied at the SSR and a model of the distribution of power 

functions with two randomly censored parameters. 

In recent years several authors, including Balakrishnan (2007), Jaheem and Mousa 

(2002), Krishna and Kumar (2002), Ng et al. (2000), Childs and Balakrishnan (2000), 

researchers have examined distribution characteristics based on progressively 

suppressed samples. 

 Cramer and Iliopoulos (2010) had already put forward a type-II adaptive progressive 

censoring approach that addresses both preset censoring schemes and random 

censoring based on a probability distribution. 
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Singh et al. (2013) used the binomial probability law for the generalized Lindley 

distribution to investigate the predicted total test time when subjected to progressive 

type-II censoring. 

Pareto first proposed the Pareto distribution as a tool for analyzing income inequality, 

it has since found application in fields as varied as insurance, business, economics, 

engineering, hydrology, and reliability. Interested readers may learn more about the 

history and other features of this distribution in Johnson et al  (1994.) . 

Gupta et al. (1999) proposed the exponentiated Pareto distribution that can be 

employed well with assessing a wide range of lifetime data. 

Both Amin (2008) and Soliman (2008) used a subjective Bayesian strategy to estimate 

and predict data under the Pareto distribution exposed to progressive Type-II 

censoring, the key difference between the two methods is their choice of priors for the 

parameters. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

The SSR parameter is expressed in this chapter using a truncated lower Pareto 

distribution. In addition, the likelihood function of the SSR parameter R is established 

for three cases: the arbitrary parameter case, the common truncated parameter, and the 

common resilience parameter.    

The double truncated distribution of lifetime studies has PDF and CDF functions 

Wang,Yu,and Jones (2010) gives the double truncated function as: 

𝐹𝐷𝑇 (𝑡) =
𝐹 (𝑡)−𝐹(𝜇)

𝐹 (𝑣)−𝐹(𝜇)
             𝑎𝑛𝑑       𝑓𝐷𝑇(𝑡) =

𝑓(𝑡)

𝐹(𝑣)−𝐹(𝜇)
, 𝑤ℎ𝑒𝑟𝑒   𝜇 ≤ 𝑡 ≤ 𝑣   .  ( 4)    

with an upper truncated parameter μ and a lower truncated parameter v. 

Suppose a random variable T is drawn under the generalized distribution with the 

CDF function, and PDF: 

𝐹(𝑡; 𝜃) = 1 − [�̅�(𝑡)]𝜃  𝑎𝑛𝑑  𝑓(𝑡; 𝜃) = 𝜃𝑔(𝑡)[�̅�(𝑡)]𝜃−1, 𝑤ℎ𝑒𝑟𝑒 𝑡 > 0    .    (5) 

where 𝜃 > 0, is the resiliance parameter, 

 �̅�(𝑡) = 1 − 𝐺(𝑡)    is the survival function  stisfiying �̅�(0) = 1 and  

�̅�(𝘤𝘤) = 1. 

For lower truncated distribution of proportional hazard rate, can be determined from 

(1) and (2) with the following PDF and CDF: 

𝐹𝐿𝑃(𝑡; 𝜃, 𝜇) = 1 − [
�̅�(𝑡)

�̅�(𝜇)
]

𝜃

  𝑎𝑛𝑑   𝑓𝐿𝑃(𝑡; 𝜃, 𝜇) =
𝜃𝑔(𝑡)

�̅�(𝜇)
[
�̅�(𝑡)

�̅�(𝜇)
]

𝜃−1

   .       (6) 

  where 𝜃 > 0 and  𝑡 ≥ 𝜇 . 
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The lower truncated pareto distribution LTP can be obtained from equation (6): 

by putting   G̅(t) =
1

t
   ,were  

 G̅(t) = 1 − G(t) , G(t) = 1 −
1

t
  , and g(t) =

1

t2
     .       (7) 

3.2   SSR Under Truncated Pareto Distribution  

In this section, we will provide the formulas for the stress strength model's reliability 

under truncated Pareto distribution in three cases. 

Let X and Y be two independent random variables with X being a random variable of 

strength with parameters  θ1, μ1 following  LTP  and Y being a random variable of 

stress with parameters  θ2, μ2 following LTP  : 

-under an arbitrary parameter case for a lower truncated distribution, the SSR can be 

formulated as follows: 

When 𝜇1 > 𝜇2, 

R = P(X > Y) = ∫ [∫ fLP(y; θ2, μ2) dy
x

μ2

] fLP(x;θ1, μ1) dx = 1 −
θ1

θ1 + θ2
[
G̅(μ1)

G̅(μ2)
]

θ2

∞

μ1

 

=(1 −
𝜃1

𝜃1+𝜃2
[
𝜇2

𝜇1
]
𝜃2
)         .                                                                                          (8) 

When 𝜇1 < 𝜇2 

R= 𝑃(𝑋 > 𝑌) = 1 − 𝑃(𝑌 > 𝑋) =

∫ [∫ 𝑓𝐿𝑃(𝑥; 𝜃1, 𝜇1) 𝑑𝑥
𝑦

𝜇1
] 𝑓𝐿𝑃(𝑦, 𝜃2, 𝜇2) 𝑑𝑦

∞

𝜇1

=(
𝜃2

𝜃1+𝜃2
[
�̅�(𝜇2)

�̅�(𝜇1)
]
𝜃1
) 

=(
𝜃2

𝜃1+𝜃2
[
𝜇1

𝜇2)
]
𝜃1
)                   .                                                                                       (9) 
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Therefore: 

R= (1 −
𝜃1

𝜃1+𝜃2
[
�̅�(,𝜇1)

�̅�(,𝜇2)
]
𝜃2
) 𝐼(𝜇1>𝜇2) + (

𝜃2

𝜃1+𝜃2
[
�̅�(𝜇2)

�̅�(𝜇1)
]
𝜃1
)  𝐼(𝜇1≤𝜇2)    .                       (10) 

Using equation (7) we get Pareto lower truncated distribution. 

R= (1 −
𝜃1

𝜃1+𝜃2
[
𝜇2

𝜇1
]
𝜃2
) 1(𝜇1>𝜇2)   +     (

𝜃2

𝜃1+𝜃2
[
𝜇1

𝜇2)
]
𝜃1
)  1(𝜇1≤𝜇2)         .                                   (11) 

-under common truncated parameters, where μ1 = μ2 = μ , 

𝑅 =
𝜃2

𝜃1+𝜃2
  .                                                                                                            (12) 

-Under common resilience case when 𝜃1 = 𝜃2 = 𝜃   

𝑅 = (1 −
1

2
[
�̅�(𝜇1)

�̅�(𝜇2)
]
𝜃

) 𝐼(𝜇1>𝜇2) + (
1

2
[
�̅�(𝜇1)

�̅�(𝜇2)
]
𝜃

)  𝐼(𝜇1≤𝜇2)         .                                      (13) 

From (4), then R under Pareto distribution has the following form: 

𝑅 =

(

 1−
1

2
[

1
𝜇1
1
𝜇2

]

𝜃

)

 𝐼(𝜇1>𝜇2) +

(

 
1

2
[

1
𝜇1
1
𝜇2

]

𝜃

)

  𝐼(𝜇1≤𝜇2) 

𝑅 = (1 −
1

2
[
𝜇2

𝜇1
]
𝜃

) 𝐼(𝜇1>𝜇2) + (
1

2
[
𝜇2

𝜇1
]
𝜃

)  𝐼(𝜇1≤𝜇2)                  .                       (14) 

  

3.3 Maximum Likelihood Estimation   

Assume X is the variable representing strength  =)𝑥1, 𝑥2,… . . , 𝑥𝑛( from progressive 

Type-II censored  data under truncated Pareto distribution and have parameters  

(𝜃1, 𝜇1 ) ,and assume Y is the variable stress random variable =  )𝑦1, 𝑦2,… . . , 𝑦𝑛 )from  

progressive Type-II censored  data under  truncated Pareto distribution and have 

parameters (𝜃2, 𝜇2 ). 
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The likelihood function of strength random variable X. Balakrishnan and 

Cramer(2014): 

𝐿(𝜃1, 𝜇1) = 𝑐1∏ 𝑓𝐿𝑃(𝑥𝑖; 𝜃1, 𝜇1)[1 − 𝐹𝐿𝑃(𝑥𝑖; 𝜃1, 𝜇1)]
𝑟𝑖
𝑥
=𝑚1

𝑖=1

𝑐1𝜃1
𝑚1∏

𝑔(𝑥𝑖)

�̅�(𝑥𝑖)

𝑚1
𝑖=1 [

�̅�(𝑥𝑖)

�̅�(𝜇1)
]
(𝑟𝑖
𝑥+1)𝜃1

 .                                                                              (15) 

where  𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛) is the progressive typ − IIcensored data with 𝑅𝑥= (𝑟1
∗, 

𝑟2
∗, … . . , 𝑟𝑚1

∗ ) 𝑎𝑛𝑑 

𝑐1 = 𝑛1∏(𝑛1 − 𝑖 −∑𝑟𝑖
𝑥

𝑖

𝑗=1

)    

𝑚1

𝑖=1

. 

-The likelihood function of stress random variable Y: 

𝐿(𝜃2, 𝜇2) = 𝑐2∏𝑓𝐿𝑃(𝑦𝑗; 𝜃2, 𝜇2)[1 − 𝐹𝐿𝑃(𝑦𝑗; 𝜃2, 𝜇2)]
𝑟𝑗
𝑦

 

𝑚2

𝑗=1

= 𝑐2𝜃2
𝑚2∏

𝑔(𝑦𝑖)

�̅�(𝑦𝑖)

𝑚2

𝑗=1
[
�̅�(𝑦𝑖)

�̅�(𝜇2)
]

(𝑟𝑗
𝑦
+1)𝜃2

        .              (16) 

(𝑦1, 𝑦2, … . , 𝑦𝑛) is the progressive typeII censored data with censoring scheme 𝑅𝑦

=(𝑟1
𝑦

, 𝑟2
𝑦
, … . . , 𝑟𝑚2

𝑦
) 

and                  𝑐2 = 𝑛2∏ (𝑛2 − 𝑖 − ∑ 𝑟𝑖
𝑦𝑖

𝑗=1 )     
𝑚2−1
𝑖=1 . 

  We can calculate MLEs of the SSR parameter R for both the arbitrary parameter 

case and the common truncated parameter case. 

 

 

 



 

18 

3.3.1 Estimation under arbitrary parameter case 

From equations (15) and (16) by applying the logarithm and differentiating with 

respect to the parameters 𝜃1, 𝜇1, 𝜃2, 𝜇2 the MLEs will be given by (Wang, 2020): 

�̂�1 = 𝑋1,    𝜃1 =
𝑚1

𝜔1(𝑋1)
      𝑎𝑛𝑑     �̂�2 = 𝑌1,       𝜃2 =

𝑚2

𝜔2(𝑌1)
                   .                         (17) 

  

𝜔1(𝑡) =∑ (𝑟𝑖
𝑋 + 1) 𝑙𝑛 [

1
𝑡
1
𝑥𝑖

]  ,      

𝑚1

𝑖=1

𝜔2(𝑡) =∑ (𝑟𝑗
𝑦
+ 1) 𝑙𝑛 [

1
𝑡
1
𝑦𝑖

]

𝑚2

𝑗=1

 

𝜔1(𝑡) =∑ (𝑟𝑖
𝑋 + 1) 𝑙𝑛 [

𝑥𝑖

𝑡
]  ,      

𝑚1

𝑖=1
𝜔2(𝑡) =∑ (𝑟𝑗

𝑦
+ 1) 𝑙𝑛 [

𝑦𝑖

𝑡
]

𝑚2

𝑗=1
      .                  (18) 

By using the invariance property, the MLE of SSR in this case is: 

�̂� = (1 −
�̂�1

�̂�1+�̂�2
[
�̂�2)

�̂�1
]
�̂�2
) 𝐼(�̂�1>�̂�2) + (

�̂�1

�̂�1+�̂�2
[
�̂�1)

�̂�2
]
�̂�1
) 𝐼(�̂�1≤�̂�2)          .                                            (19) 

 

 

 

 

 

 

 

3.3.2 Inference about common truncated parameters 
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Suppose X strength variable  =)𝑥1, 𝑥2,… . . , 𝑥𝑛( from progressive Type-II censored  

data with truncated Pareto distribution with  parameters (𝜃1, 𝜇1 ) ,and suppose Y stress 

random variable =  )𝑦1, 𝑦2,… . . , 𝑦𝑛 )from  progressive Type-II censored  data with  

truncated Pareto distribution and have parameters (𝜃2, 𝜇2 ) . 

When the truncated parameter 𝜇1 = 𝜇2 =  𝜇 ,then the joint likelihood function can be 

reformulated as follows: 

L(𝜃1, 𝜃2, 𝜇) = 𝜃1
𝑚1𝜃2

𝑚2∏[
�̅�(𝑥𝑖)

�̅�(𝜇)
]

(𝑟𝑖
𝑥+1)𝜃1

∏[
�̅�(𝑦𝑖)

�̅�(𝜇)
]

(𝑟𝑗
𝑦
+1)𝜃2

  .                 

𝑚2

𝑗=1

𝑚1

𝑖=1

(20) 

By taking the logarithm for equation (17) and getting the first partial derivation with 

respect to  θ1, θ2 and μ ,   

The MLE for parameters are: 

θ́1 =
m1

𝜔1((μ)́
  ,          θ́2 =

m2

𝜔2((μ)́
        and �́� = min {𝑋1 , 𝑌1}            .                            (21) 

 The MLE of SSR parameters R: 

Ŕ =
θ́2

θ́1+θ́2
    ,Where μ1 = μ2 = μ                                          .                                         (22) 

 

 

 

 

3.3.3 Estimation about common resilience parameters when 
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𝜽𝟏 = 𝜽𝟐 = 𝜽. 

The joint likelihood function under this case can be obtained as follows  

𝐿 (𝜇1, 𝜇2, 𝜃) ∝ 𝜃
𝑚1𝜃𝑚2∏ [

�̅�(𝑥𝑖)

�̅�(𝜇1)
]
(𝑟1
𝑥+1)𝜃

𝑚1

𝑖=1

∏ [
�̅�(𝑦𝑖)

�̅�(𝜇2)
]
(𝑟𝑗
𝑦
+1)𝜃

     .                

𝑚2

𝑗=1

(23) 

The MLE of parameters after applying the logarithm for equation (20) and 

differentiating it with respect to  𝜇1, 𝜇2, and  𝜃   are : 

μ̀1 = X1,      μ̀2 = Y1       and     θ̀ =
m1+m2

ω1(X1)+ω2(Y1)

̀
                          .                 (24) 

The MLE of SSR parameter R can be obtained as follows: 

R̀ = (1 −
1

2
[
μ̀2

μ̀1
] θ̃) 1(μ̀1>μ̀2) + (

1

2
[
μ̀1

μ̀2
] θ̃)  1(μ̀1≤μ̀2)                       .                      (25) 

 

3.4 Generalized Confidence Interval (GCI) 

 Theorem l. let X and Y are a progressively type-II censored samples, where 

x=(𝑥1𝑥2,…x.), y= (𝑦1,,𝑦2, … . 𝑦), be stress strength samples with parameters                  

( 𝜃1, 𝜇1) 𝑎𝑛𝑑 (𝜃2, 𝜇2)  

 

Respectively denote the pivotal quantities (Weerahandi,1993): 

𝜉1 = 2𝑛1𝜃1𝑙𝑛 [
𝑋1
𝜇1
] ,    𝑤ℎ𝑒𝑟𝑒 𝜂1 = 2𝜃1𝜔1(𝑋1) . 

𝜉2 = 2𝑛2𝜃2𝑙𝑛 [
𝑌1
𝜇2
] ,    𝑤ℎ𝑒𝑟𝑒 𝜂2 = 2𝜃2𝜔2(𝑌1). 
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  𝜔1(𝑡) =∑ (𝑟𝑖
𝑋 + 1) 𝑙𝑛 [

𝑋𝑖
𝑋1
]  ,      

𝑚1

𝑖=1

𝜔2(𝑡) =∑ (𝑟𝑗
𝑦
+ 1) 𝑙𝑛 [

𝑌𝑖
𝑌1
] ,

𝑚2

𝑗=1

 

where 𝜉𝑖  and 𝜂𝑖 , 𝑖 = 1,2 ,have  2 and 2(𝑚𝑖 − 1) degrees of freedom, according to 

chi-square distribution. 

3.4.1 GCI under arbitrary parameters case 

The pivotal variables of ( 𝜃𝑖 , 𝜇𝑖 ) can be displayed as: 

𝑠𝜇𝑖 = [1 − �̅�𝑖], 𝑖 = 1,2    ,  

𝐺−1(𝑡) =
1

1 − 𝑡
= [1 − 𝑡]−1 

,were 𝐴𝑖 = 1 −
1

�̂�𝑖𝜃
𝑒𝑥𝑝 [

𝐶𝑖𝑚𝑖

𝑈𝑖𝑛𝑖�̂�𝑖𝜃
]         ;    𝑖 = 1,2 

𝑆𝜃𝑖 =
2𝑚𝑖𝜃𝑖

�̂�𝑖

𝜃𝑖𝑜

2𝑚𝑖
=

�̂�𝑖°
2𝑚𝑖
𝑥𝑖(𝑚𝑖−1) =

�̂�𝑖𝑜

2𝑚𝑖
𝑈𝑖              ,𝑖=1,2. 

where ci and vi, i=1,2 have chi-square distribution with 2, 2(m-1) degree of freedom 

respectively. 

Based on 𝑠𝜃𝑖  and 𝑠𝜇𝑖    ,i=1,2 and utilizing the alternative methodologies of 

Weerhandi(1993),a generalized pivotal quantities of  Reliability  can be construct as  

𝑠𝑅 = ((1 −
𝑠𝜃1

𝑠𝜃1+𝑠𝜃2
[
𝑠𝜇1

𝑠𝜇2
]
𝑠𝜃2
) 𝐼𝑠𝜇1 > 𝑠𝑢2) + (

𝑠𝜃2

𝑠𝜃1+𝑆𝜃2
[
𝑠𝑢1

𝑠𝜇2
]
𝑠𝜃1
) 𝐼(𝑠𝜇1 ≤ 𝑠𝑢2)  .   (26) 
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3.4.2 Generalized confidence interval with common 

truncated parameters 

let similar truncated parameters exist 𝜇1 = 𝜇2 = 𝜇   , and depending on 

pivotal factors and put forward on Section arbitrary parameter case one may create the 

generalization pivotal variables using R as: 

�́�𝑅 =
𝑠𝜃2

𝑠𝜃1+𝑠𝜃2
         .                                    (27) 

3.4.3 GCI under common resilience parameters: 

Let 𝜃1 = 𝜃2 = 𝜃 then the generalization pivoptal quantities for 𝜇1 can be constructed 

as: 

𝑆𝜇1 = [1 − [1 −
1

𝜇 ̀ 1𝑜
𝑒𝑥𝑝 [

𝑚1 +𝑚2
𝑛1𝜃0

′

𝑐1
𝑈
]]]

−1

 

 

𝑈~𝑋2(𝑚1+𝑚2−2)
2  

 

 

 for 𝜇2, 

 

𝑆𝜇2 = [1 − [1 −
1

𝜇 ̀ 2𝑜
𝑒𝑥𝑝 [

𝑚1 +𝑚2
𝑛2𝜃0

′

𝑐2
𝑈
]]]

−1
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A generalized pivotal variable for can be constructed as  

𝑠𝜃 =
�̀�𝑜

2(𝑚1 +𝑚2)
𝑈 

Therefore, a generalized pivotal variable for SSR under this case can be provided as  

𝑠𝑅 = (1 −
1

2
(
𝑠𝑚2

𝑠𝑚1
)
𝑠𝜃

) 𝐼(𝑠𝜇1 > 𝑠𝜇2) + (
1

2
(
𝑠𝜇1

𝑠𝜇2
)
𝑠𝜃
) 𝐼(𝑠𝜇1 ≤ 𝑠𝜇2)      .      (28) 

 

 

3.5 Bootstrap confidence interval 

Using the bootstrap method by Ephron (1987) the bootstrap is a technique for 

calculating confidence intervals and estimating the variance of an estimator. As a 

result of Bradley Ephron's 1970 invention of bootstrapping, which has now been 

around for more than 40 years, numerous types and techniques have been created. 

Bootstrapped approaches often involve simulating the unknown population and 

replacing the genuine population with the estimated population to estimate the 

characteristic. 

 

-The algorithm of bootstrapping can be calculated as follows: 

• Step 1.  Estimate parameters 𝜃1, 𝜇1 and 𝜃2, 𝜇2 say 𝜃1̂, 𝜇1̂ and 𝜃2̂, 𝜇2̂ . 

• Step 2.  Generate censored bootstrap samples 𝑥1
∗, 𝑥2

∗, … . . , 𝑥𝑚1
∗  and 

𝑦1
∗, 𝑦2

∗, … . , 𝑦𝑚2
∗ based on 𝜃1̂, 𝜇1̂  and 𝜃2̂, 𝜇2̂ . 
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•  Step 3. Compute MLEs of 𝜃1, 𝜃2 and 𝜇1, 𝜇2, and obtain bootstrap estimate �̃�∗ 

of R. 

 

•  Step 4. Repeat Step 2 and Step 3 N times.  

• Step 5. Rearrange the N values of �̃�∗ in ascending order and obtain �̃�∗ lower is 

((�̃�𝑏𝑜𝑜𝑡 (
𝛾

2
)N) and the r upper=(�̃�𝑏𝑜𝑜𝑡 (1 −

𝛾

2
)N). 

 

 

3.6 Testing hypothesis 

The question of whether the parameters stress and stress variable are equivalent or not, 

therefore one might be interesting in conducting a test to determine whether the 

resilience and truncated parameters are the same. 

We can use the likelihood ratio test be presented to evaluate the stress strength 

character. 

The joint likelihood function of truncated and resilience parameters can be written as 

follows: 

 

𝐿1(𝜃1, 𝜇1, 𝜃2, 𝜇2)  = 𝑐1𝑐2𝜃1
𝑚1𝜃2

𝑚2∏
1

𝑥𝑖

𝑚1
𝑖=1 [ 

𝜇1

𝑥𝑖
](𝑟𝑖+1)𝜃1 ∙ ∏

1

𝑦𝑖

𝑚2
𝑗=1 [ 

𝜇2

𝑦𝑖
](𝑟𝑗+1)𝜃2 
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the log likelihood function calculate as follows: 

𝑙1(𝜃1, 𝜇1, 𝜃2, 𝜇2)   = 𝑚1𝑙𝑜𝑔𝜃1 +𝑚2𝑙𝑜𝑔𝜃2 + ∑ [−log (𝑥𝑖
𝑚1
𝑖=1 ) + (𝑟𝑖 + 1)𝜃1log (

𝜇1

𝑥𝑖
)]+ 

∑ [−log (𝑦𝑖
𝑚2
𝑗=1 ) + (𝑟𝑗 + 1)𝜃2log (

𝜇2

𝑦𝑖
)]. 

The testing hypothesis is examined as follows: 

𝐻0:       𝜇1 = 𝜇2 = 𝜇          𝑉𝑠         𝐻1:    𝜇1 ≠ 𝜇2  .   

 

The likelihood function under common truncated parameter cases: 

𝐿2(𝜃1, 𝜃2, 𝜇) = 𝜃1
𝑚1𝜃2

𝑚2∏ 

𝑚1

𝑖=1

[ 
𝜇

𝑥𝑖
](𝑟𝑖+1)𝜃1 ∙∏ 

𝑚2

𝑗=1

[ 
𝜇

𝑦𝑗
](𝑟𝑗+1)𝜃2 

The loglikelihood function with common truncated parameter can be calculated as 

follows: 

𝑙2(𝜃1, 𝜃2, 𝜇) = 𝑚1𝑙𝑜𝑔𝜃1 +𝑚2𝑙𝑜𝑔𝜃2 + ∑ [ 𝑚1
𝑖=1 (𝑟𝑖 + 1)𝜃1log (𝜇/𝑥𝑖)] + ∑ [𝑚2

𝑗=1 (𝑟𝑗 +

1)𝜃2log (μ/yj)] . 

Note that according to asymptotic property of the LRT statistics for large n we have, 

−2{𝑙1(𝜃1̂, 𝜃2̂, 𝜇1̂, 𝜇2̂) − 𝑙2(𝜃1,́ 𝜃1,, �́�́ )}  → 𝜒1
2. 

Similarly for testing, 

𝐻0:       𝜃1 = 𝜃2 = 𝜃          𝑉𝑠         𝐻1:    𝜃1 ≠ 𝜃2 . 

The likelihood function under common resilience parameter cases is given by: 

𝐿3(𝜇1, 𝜇2, 𝜃) ∝ 𝜃
𝑚1+𝑚2∏ 

𝑚1

𝑖=1

[ 
𝜇1
𝑥𝑖
](𝑟𝑖+1)𝜃1 ∙∏ 

𝑚2

𝑗=1

[ 
𝜇2
𝑦𝑗
](𝑟𝑗+1)𝜃2 
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The loglikelihood statistics can be calculated as follows: 

𝑙3(𝜇1, 𝜇2, 𝜃) = (𝑚1 +𝑚2)𝑙𝑜𝑔𝜃 + ∑ [ 𝑚1
𝑖=1 (𝑟𝑖 + 1)𝜃log (

𝜇1

𝑥𝑖
)]+ ∑ [𝑚2

𝑗=1 (𝑟𝑗 + 1)𝜃log (
𝜇2

𝑦𝑗
)] 

Note that for large n we have: 

−2{𝑙1(𝜃1̂, 𝜃2̂, 𝜇1̂, 𝜇2̂) − 𝑙3(𝜃1,́ 𝜃1,, �́�́ )}  → 𝜒1
2. 
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Chapter4: simulation study 

To further explain the procedures described in the previous chapter and to assess the 

relative merits of various point and interval estimates, simulation studies were 

developed to test the following quantities: 

1) (AB) the absolute bias of the reliability estimator R can be defined as follows: 

1
𝑁⁄ ∑ |�̂� − 𝑅|𝑁

𝑛=1    where N is the number of simulations runs. 

2) (MSE) mean square of the point estimator �̂� can be obtained by1 𝑁⁄ ∑ (�̂� − 𝑅)2𝑁
𝑛=1   

, where N is the number of simulations runs. 

3) (CP) coverage probability of (1-𝛼) % for a confidence interval of R, it can be 

thought of as the likelihood that the predicted confidence interval includes the actual 

parameter. 

4) Average width (AW) of confidence interval of R. 

Steps for simulation procedure: 

Step1: In the numerical simulations, we simplify matters by assuming, 𝑛1=𝑛2 and 

𝑚1 = 𝑚2 the same censoring method is used for the variables of strength and stress, 

Various censoring strategies (𝑅1, 𝑅2……𝑅𝑚) and sample sizes (n, m) are taken into 

account. The study covers twelve different case studies, each with its own set of 

simulation parameters layouts are shown in Table 1 below. 

 Tables 2 and 3 display the criteria quantities for point and interval estimations of SSR 

based on 5000 iterations. The level of significance for interval estimations is set at 

0.05. 

Step2: Given 𝜇1 ,𝜃1, 𝜇2, 𝜃2 we can calculate the true value of the reliability parameter. 
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Step3: According to the simulation algorithm provided by Balakrishnan and Sandhu, 

we can create Type-II censored samples 𝑈1, 𝑈2,…. 𝑈𝑚 from a uniform distribution U. 

Step4: Compute the MLE of  𝜇1 ,𝜃1, 𝜇2,  𝜃2 based on the generated progressive type 

two samples. 

Step5: Calculate the MLE of parameter R based on 𝜃1, 𝜃2, �̂�1, �̂�2. 

Step6: Calculate generalized confidence interval based on pivotal quantities and 

bootstrap confidence intervals. 

 

Table 1. Design simulation schemes. 

 (𝒓𝟏……………………… , 𝒓𝒎) m n cs 

(8,0,0,0,0,0,0,0) 8 16 1 

(0,0,0,0,0,0,0,8) 8 16 2 

(2,0,2,0,2,0,2,0) 8 16 3 

(1,1,1,1,1,1,1,1) 8 16 4 

(14,0,0,0,0,0,0,0,0,0,0,0) 12 26 5 

(0,0,0,0,0,0,0,0,0,0,0,14) 12 26 6 

(2,0,2,0,2,0,2,0,2,0,2,0,2) 12 26 7 

(1,1,1,1,1,1,1,1,1,1,1,1,1) 12 26 8 

(16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 20 36 9 

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16) 20 36 10 

(2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,) 20 36 11 

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 20 36 12 
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Table.2   Arbitrary parameter case, average bias (ABs) of the points estimates of SSR 

parameter and the mean square error.   

 

 

 

 

Table.3 Arbitrary parameter case, average width (AW) of bootstrap and generalized 

confidence intervals and the coverage probability(cp). 

                                                                                                                                                  

CP (coverage 

probability for 

GCI) 

AW (generalized 

confidence 

interval) 

               CP 

(coverage 

probability for 

BCI)       

AW (bootstrap CI)                           cs 

0.9500 0.3191 0.9000 0.2622 1 

0.9700 0.3046 0.9000 0.2434 2 

0.9200 0.3006 0.8600 0.2410 3 

0.9400 0.2912 0.8200 0.2286 4 

0.9900 0.2557 0.9500 0.2260 5 

0.9600 0.2415 0.9300 0.2089 6 

0.9300 0.2318 0.8400 0.2002 7 

0.9400 0.2340 0.8600 0.2015 8 

0.9300 0.1944 0.9400 0.1812 9 

0.8900 0.1801 0.8300 0.1658 10 

0.9200 0.1871 0.8800 0.1732 11 

0.9400 0.1812 0.9400 0.1671 12 

 

 

(𝜃1,, 𝜇1,𝜃2, 𝜇2 ) = (0.7.1.4,1.3,0.6) 

MSE(GPE) ABs (generalized point 

estimate) 

    MSE (MLE)                         ABs (maximum 

likelihood 

estimates)                      

cs 

0.0080 0.0701 0.0061 0.0655 1 

0.0066 0.0618 0.0051 0.0594 2 

0.0080 0.0701 0.0637 0.0643 3 

0.0055 0.0591 0.0045 0.0556 4 

0.0046 0.0515 0.0034 0.0472 5 

0.0040 0.0478 0.0035 0.0480 6 

0.0042 0.0515 0.0039 0.0534 7 

0.0035 0.0457 0.0034 0.0455 8 

0.0030 0.0424 0.0025 0.0399 9 

0.0025 0.0417 0.0024 0.0420 10 

0.0031 0.0419 0.0028 0.0411 11 

0.0020 0.0362 0.0020 0.0365 12 
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Table .4 Common truncated parameter case, bias (ABs) of the points estimates 

of SSR parameter and the mean square error.   

 

 

 

MSE(GPE) RGP ABs (generalized 

point estimate) 

    

MSE(MLE) 

ABs (maximum 

likelihood 

estimates 

CS 

0.0134 0.0948 0.0155 0.0999 1 

0.0115 0.0869 0.0126 0.0919 2 

0.0139 0.0950 0.0152 0.0998 3 

0.0107 0.0856 0.0121 0.0924 4 

0.0067 0.0681 0.0072 0.0709 5 

0.0091 0.0733 0.0097 0.0757 6 

0.0077 0.0724 0.0083 0.0758 7 

0.0075 0.0690 0.0079 0.0707 8 

0.0044 0.0515 0.0046 0.0530 9 

0.0042 0.0535 0.0044 0.0543 10 

0.0053 0.0577 0.0054 0.0587 11 

0.0062 0.0600 0.0065 0.0614 12 

 

 

Table5. Common truncated parameter case, average width (AW) of bootstrap 

and generalized confidence intervals and the coverage probability(cp). 

 

CP (coverage 

probability for GCI) 

AW (generalized 

confidence interval) 

               CP 

(coverage 

probability for 

BCI)         

AW (bootstrap CI) CS 

0.9100 0.4103 0.9200 0.4053 1 

0.9100 0.4171 0.9100 0.4111 2 

0.9100 0.4164 0.9100 0.4166 3 

0.9100 0.4061 0.9200 0.3996 4 

0.9700 0.3458 0.9700 0.3420 5 

0.8900 0.3404 0.8900 0.3376 6 

0.9300 0.3387 0.9500 0.3397 7 

0.9500 0.3467 0.9500 0.3465 8 

0.9200 0.2691 0.9400 0.2674 9 

0.9700 0.2697 0.9700 0.2682 10 

0.9000 0.2708 0.9000 0.2721 11 

0.9700 0.2675 0.9700 0.2672 12 

(𝜃1,, 𝜃2, 𝜇  ) = (1.8,0.9,2) 
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Table .6 Common resilience parameter case, bias (ABs) of the points estimates of SSR 

parameter and the mean square error.                                                                                                                                                                      

 

 

MSE(GPE) RGP ABs 

(generalized point 

estimate) 

    MSE(MLE) ABs (maximum 

likelihood estimates 

CS 

0.0159 0.0947 0.0238 0.1094 1 

0.0254 0.1134 0.0408 0.1407 2 

0.0126 0.0887 0.0187 0.1022 3 

0.0136 0.0925 0.0217 0.1102 4 

0.0076 0.0690 0.0098 0.0745 5 

0.0116 0.0745 0.0158 0.0813 6 

0.0070 0.0643 0.0093 0.0711 7 

0.0086 0.0717 0.0133 0.0875 8 

0.0064 0.0642 0.0077 0.0690 9 

0.0052 0.0533 0.0066 0.0604 10 

0.0043 0.0509 0.0052 0.0554 11 

0.0047 0.0561 0.0056 0.0614 12 
 

Table7. Common resilience parameter case, Average width (AW) of bootstrap 

and generalized confidence intervals and the coverage probability(cp). 

 

CP (coverage 

probability for 

GCI) 

AW (generalized 

confidence interval) 

               CP 

(coverage 

probability for 

BCI)   

AW (bootstrap 

CI) 

CS 

0.8700 0.3897 0.8700 0.2388 1 

0.8400 0.4206 0.8400 0.2358 2 

0.8800 0.3873 0.6500 0.2413 3 

0.9100 0.4015 0.6400 0.2390 4 

0.8900 0.3067 0.8900 0.1742 5 

0.8900 0.3180 0.7000 0.1736 6 

0.9300 0.3086 0.6900 0.1738 7 

0.9300 0.3291 0.6600 0.1737 8 

0.8700 0.2398 0.6100 0.1149 9 

0.9100 0.2430 0.9100 0.1150 10 

0.9200 0.2374 0.9100 0.1150 11 

0.9200 0.2368 0.9100 0.1144 12 

 

(𝜃 , 𝜇1, 𝜇2  ) = (1,0.9,1.2) 
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Figure 3. Plot of mean square error for arbitrary parameter case when 𝜃1 = 0.7, 𝜇1 =

1.7, 𝜃2 = 1.3, 𝜇2 = 0.6 .  
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Figure 4. Plot of average bias for arbitrary parameter case when 𝜃1 = 0.7, 𝜇1 =

1.7, 𝜃2 = 1.3, 𝜇2 = 0.6 .  

 

 

 

Figure 5.Plot of mean square error for common truncated parameter case when 𝜃1 =

1.8, 𝜃2 = 0.9, 𝜇 = 2 .  
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Figure 6. Plot of average bias for common truncated parameter case when 𝜃1 =

1.8, 𝜃2 = 0.9, 𝜇 = 2 .  

  

 

 

 

 

Figure 7. Plot of common residence parameter case when   𝜃 = 1, 𝜇1 = 0.9, 𝜇2 = 0.2 .  
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Figure 8. Plot of average bias for common resilience case when   when   𝜃 = 1, 𝜇1 =
0.9, 𝜇2 = 0.2 . 

 

 

 

 



 

36 

 

Figure 9. Plot of average widths for bootstrap and generalized confidence interval for 

arbitrary and parameter case when 𝜃1 = 0.7, 𝜇1 = 1.7, 𝜃2 = 1.3, 𝜇2 = 0.6 .  

  

 

 

 

 

 

Figure 10. Plot of average widths for bootstrap and generalized confidence interval 

for common truncated parameter case when 𝜃1 = 1.8, 𝜃2 = 0.9, 𝜇 = 2 .  
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 . 

 

 

 

Figure 11. Plot of average widths for bootstrap and generalized confidence interval 

for common  resilience  parameter case when   𝜃 = 1, 𝜇1 = 0.9, 𝜇2 = 0.2  . 
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According to figures 3,5 and 7 it is evident that the mean square error decrease when 

the actual sample size increases by either n or m or both n and m for all the censoring 

schemes. 

According to figures 4,6 and 8 it is evident that the average bias (AB) decreases for 

generalized point estimate and maximum likelihood estimate when the actual sample 

size increases by either n or m or both n and m for all the censoring schemes. 

It is found that the GPEs of SSR parameters outperform the MLEs in terms of MSEs 

under the specified CSs. 

The bootstrap confidence intervals (BCIs) have a marginal advantage over the 

generalized confidence intervals (GCIs) with regards to the size of the confidence 

intervals under SSR scenarios, both BCI and GCI show that increasing effective 

sample sizes increase coverage probability (CPs) while decreasing related average 

widths (AWs). 
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Ch.5 Real data analysis 

In this chapter, we will  study two real examples to explain the procedures in Chapter 

3 . Note that the reliability parameter 𝑅 = 𝑃(𝑋 > 𝑌), has many applications in the 

context of survival analysis. Our first example, illustrate an application in medical 

study. 

For each set of data, we will use the  truncated Pareto model and find the 

estimates 𝜃1, 𝜃2, �̂�1, �̂�2  for stress strength model. we will find the confidence intervals 

for generalized point estimation and bootstrap confidence intervals. 

Example1 head and neck cancer patient from (Efron,1988) 

 A real data set was discussed by Ephron (1988). The research was carried out by the 

Northern California Oncology Group. It is about a head and neck cancer study and 

represents the survival times of patients treated with radiotherapy with 𝑁1 = 34 and 

another group of head and neck cancer patients treated with radiotherapy and 

chemotherapy with 𝑁2 = 29. 

The first group data set, which will refer to as X, contains information about the 

lengths of 34 head and neck cancer patients who had radiation treatment, in contrast 

with another group of datasets, designated Y, which represents 29 patients who were 

treated for head and neck cancer with a combination of radiation and chemotherapy.  
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Table. 8 Kolmogorov-Smirnov distances and p-values of truncated Pareto 

model.  

 

i dataset 𝜇𝑖 𝜃𝑖 KS-

distance 

p-value 

1 X 108 1.2314 0.1319 0.5502 

2 Y 92 0.8129 0.1050 0.8731 

Table .9 Estimates of truncated Pareto distribution. 

 

 MLE (maximum 

likelihood 

estimates) 

RGP (generalized 

point estimate) 

Arbitrary parameter case 0.4712 0.4753 

Common truncated parameter case 0.4557 0.4525 

Common resilience parameter case 0.5742 0.5722 

 

 

Table .10 Estimates of bootstrap confidence intervals. 

 

 LBC (lower 

bound) 

UBC (upper 

bound) 

AWB 

(average 

width) 

Arbitrary parameter case 0.3252 0.6346 0.3094 

Common truncated parameter case 0.3206 0.6139 0.2933 

Common resilience parameter case 0.5189 0.6240 0.1050 
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Table.11 Estimates of generalized confidence intervals. 

 

 

 

We select the progressive type-II censored data from the complete samples based on 

the given censoring scheme 𝑅𝑥= (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 

0, 0, 0, 0), where 𝑚1 ≤ 𝑛1 depending on a certain algorithm. 

Step1: set the complete sample in an ascending order with the complete data with 

length of strength n= 34, X= (108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 

157, 160, 160, 165, 173, 176, 218, 225, 241, 248, 273, 277, 297, 405, 417, 420, 440, 

523, 583, 594, 1101, 1146, 1417) . 

Step2: Remove the first observation where 𝑥[1] = min{𝑥1}}. 

Step2: Remove 𝑥[1]from the complete sample, where length 𝑥 = 𝑛 − 1. 

Step3 Remove randomly 𝑅𝑥 values from 𝑋 where length of 𝑥 = 𝑛 − 1 − 𝑅𝑚. 

Step4:  Repeat step 3 𝑚1 times to get samples 𝑥 =(108, 112, 129, 133, 133, 139, 140, 

146, 149, 154, 157, 160, 160, 165, 173, 218, 241, 273, 277, 405, 417, 420, 583, 594, 

1101). 

With 𝑚1 = 25 where 𝑚1 is fauiler time of strength variable 𝑋. 

 LGCI (lower 

bound) 

UGC (upper 

bound) 

AWG 

(average 

width) 

Arbitrary parameter case 0.3232 0.6174 0.2942 

Common truncated parameter case 0.3167 0.5949 0.2782 

Common resilience parameter case 0.5329 0.6157 0.0827 
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For stress variable Y with n=29, where y= (92, 94, 110, 112, 119, 127, 130, 133, 140, 

146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 459, 519, 633, 725, 

817, 1557, 1776) . 

We repeat the similar algorithm to with censoring scheme 

𝑅𝑦(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0)  ,we get  y= {92, 94, 110, 119, 127, 

130, 140, 146, 155, 159, 179, 194, 209, 249, 432, 459, 519, 725, 817, 1776}, with 

𝑚2 = 20 , where  m2 is fauiler time of stress variable 𝑦. 

 

First, we put our strategies to the test using these datasets. The Kolmogorov-Smirnov 

test was used to determine whether the data set X and Y was fit by the truncated 

Pareto model. The MLE and p-values are shown in Table 8. The large p-values for the 

Kolmogorov-Smirnov test (0.55024) and (0.873156) for the X and Y data sets, 

respectively, indicate that a truncated Pareto distribution can be used to fit these 

datasets. 

 

The following figures show the empirical distributions of X and Y datasets obtained 

from the empirical distribution function of data x and y most closely fitted by the 

Pareto distribution. 

From quantile plots, it is seen that the Pareto distribution is the most fit distribution 

for these survival data. 
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Figure 12. Plot of empirical Distribution of X Datasets.  

 

 

Figure 13. Plot of empirical Distribution of Y Datasets. 

 

 

 

Figure.14  Plot of quantiles Plots for X Data Sets. 
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Figure.15  Plot of quantiles Plots for y Data Sets. 

Example2 average of sulfur-dioxide from (Priest and Bader,1982) 

 

A real data It was first published by Preist and Badr (1982). The data consist of two 

groups of datasets: the first group is the strength variable was mentioned as the 

average of 1-hour levels of sulfur-dioxide in parts per million on the beach in Los 

Angeles, California, over the period of nineteen years in May, and the second group is 

the stress variable dataset, which obtained the average of sulfur dioxide in October. 

The first group data set, which will refer to as X, contains information about the 

lengths of 17 levels of sulfur-dioxide in May, in contrast with another group of 

datasets, designated Y, which represents 19 levels of sulfur-dioxide in October. 

This led them to their conclusion, sulfur-dioxide levels in May are fewer than they 

were of average in October. We check the reading from May to October to support 

this conclusion. 

First, we put our strategies to the test using these datasets. The Kolmogorov-Smirnov 

test was used to determine whether the data set X and Y was fit by the truncated 

Pareto model. The MLE and p-values are shown in Table 12. The large p-values for 

the Kolmogorov-Smirnov test (0.259811) and (0.679038) for the X and Y data sets, 
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respectively, indicate that a truncated Pareto distribution can be used to fit these 

datasets. 

 

Table. 12 Kolmogorov-Smirnov distances and p-values of truncated Pareto model.  

i dataset 𝜇𝑖  𝜃𝑖 KS-distance p-value 

1 X 8 2.0973 0.2352 0.2598 

2 Y 10 1.3439 0.1571 0.6790 

 

 

Table .13 Estimates of truncated Pareto distribution. 

 MLE (maximum 

likelihood 

estimates) 

RGP (generalized 

point estimate) 

Arbitrary parameter case 0.7931 0.7702 

Common truncated parameter case 0.7348 0.7284 

Common resilience parameter case 0.7090 0.6978 

 

 

 

Table .14 Estimates of bootstrap confidence intervals. 

 LBC (lower 

bound) 

UBC (upper 

bound) 

AWB 

(average 

width) 

Arbitrary parameter case 0.6556 0.9403 0.2847 

Common truncated parameter case 0.5711 0.8645 0.2933 

Common resilience parameter case 0.6646 0.7898 0.1251 

 

 



 

46 

Table.15 Estimates of generalized confidence intervals. 

 

 

 

Figure.16  plot of empirical distribution of x datasets. 

 

 

 

Figure.17 Plot of  empirical distribution of y datasets. 

 LGCI (lower 

bound) 

UGC (upper 

bound) 

AWG 

(average 

width) 

Arbitrary parameter case 0.6226 0.9118 0.2891 

Common truncated parameter case 0.5957 0.8727 0.2782 

Common resilience parameter case 0.6281 0.7641 0.1359 
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The following figures 7&8 show the empirical distributions of X and Y datasets 

obtained from the empirical distribution function of data x and y most closely fitted 

by the Pareto distribution. 

 

We select the progressive type-II censored data from the complete samples based on 

the given censoring scheme 𝑅𝑥 = (15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0), where 

𝑚1 ≤ 𝑛1 depending on a certain algorithm. 

We select the progressive type-II censored data from the complete samples based on 

the given censoring scheme 𝑅𝑦 = (16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0), where 

𝑚2 ≤ 𝑛2 depending on a certain algorithm. 

With 𝑚1 = 15 where 𝑚1 is fauiler time of strength variable 𝑋 and with 𝑚2 = 16 

where 𝑚2 is fauiler time of strength variable 𝑌. 

  

For stress variable Y with n=18, where y= (2, 3, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 13, 

15, 17, 19, 20, 24, 37) . 

We repeat the similar algorithm was mentioned in example 1we get y= { 8, 8, 8, 8, 9, 

10, 10, 10, 10, 11, 13, 15, 17, 19,20}, with 𝑚2 = 15. 

 For strength  variable X with n=19, where X= (10, 11, 11, 12, 13, 14, 14, 15, 15, 16, 

16, 20, 26, 27, 28, 29, 31, 40, 41)we repeat the similar algorithm was mentioned in 
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example 1we  get x= { 10, 11, 11, 12, 13, 14, 14, 15, 15, 16, 16, 20, 26, 27, 28,29}, 

with 𝑚1 = 16. 

 

 

 

 

 

Conclusion remarks 

We have demonstrated the usefulness of the proposed inferential technique by 

carrying out some simulation experiments and real data examples. From real 

examples, we can note that the confidence interval is wider in the arbitrary parameter 

case, and that there is no large difference between estimates of reliability using 

different methods. 

We can say that the stress strength parameter can be estimated depending on 

progressive type-II censored samples obtained from a truncated Pareto distribution. 

To obtain point estimation under the arbitrary parameter case and common truncated 

parameter cases, maximum likelihood estimation is established. We obtained a 

generalized point estimator and confidence intervals based on pivotal quantities. Also, 

we obtained a bootstrap confidence interval based on an algorithm presented by 

Balakrishnan and Sandhu (1995). 
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Appendix  

 

Table of notations 

Notation  Description  

CS Censoring Scheme 

ABS Absolute Average Bias 

LGC Lower Bound Generalized Confidence Interval 

LBC Lower Bound Bootstrap Confidence Interval 

UBC Upper Bound Bootstrap Confidence Interval 

UGC Upper Bound of Confidence Interval 

RGP Reliability of the Generalized Estimator 

 


