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Abstract
Electroencephalogram (EEG) signals suffer substantially from motion artifacts when recorded in ambulatory settings

utilizing wearable sensors. Because the diagnosis of many neurological diseases is heavily reliant on clean EEG data, it is

critical to eliminate motion artifacts from motion-corrupted EEG signals using reliable and robust algorithms. Although a

few deep learning-based models have been proposed for the removal of ocular, muscle, and cardiac artifacts from EEG data

to the best of our knowledge, there is no attempt has been made in removing motion artifacts from motion-corrupted EEG

signals: In this paper, a novel 1D convolutional neural network (CNN) called multi-layer multi-resolution spatially pooled

(MLMRS) network for signal reconstruction is proposed for EEG motion artifact removal. The performance of the

proposed model was compared with ten other 1D CNN models: FPN, LinkNet, UNet, UNet?, UNetPP, UNet3?,

AttentionUNet, MultiResUNet, DenseInceptionUNet, and AttentionUNet?? in removing motion artifacts from motion-

contaminated single-channel EEG signal. All the eleven deep CNN models are trained and tested using a single-channel

benchmark EEG dataset containing 23 sets of motion-corrupted and reference ground truth EEG signals from PhysioNet.

Leave-one-out cross-validation method was used in this work. The performance of the deep learning models is measured

using three well-known performance matrices viz. mean absolute error (MAE)-based construction error, the difference in

the signal-to-noise ratio (DSNR), and percentage reduction in motion artifacts (g). The proposed MLMRS-Net model has

shown the best denoising performance, producing an average DSNR, g, and MAE values of 26.64 dB, 90.52%, and 0.056,

respectively, for all 23 sets of EEG recordings. The results reported using the proposed model outperformed all the existing

state-of-the-art techniques in terms of average g improvement.

Keywords Electroencephalography (EEG) � Motion artifacts correction � 1D-segmentation � Signal reconstruction �
Signal to signal synthesis � 1D convolutional neural networks (1D-CNN) � Deep learning

1 Introduction

Electroencephalogram (EEG) quantitatively measures the

human brain’s electrical activity which takes place due to

the firing of neurons [1] and such brain activity is recorded

non-invasively utilizing several electrodes located in dif-

ferent regions of the scalp [2]. For epileptic seizure

detection, the utilization of long-duration EEG is wide-

spread [3–5]. EEG is also utilized to detect Alzheimer’s

disease [6, 7], estimate drowsiness levels [8–10], recognize

human emotions [11], evaluate cognitive workload [8, 12],

develop brain–computer interfaces (BCIs) [13–16],

implement biometric systems [17–19] and so on.

EEG is an exceptionally crucial physiological signal due

to its widespread usage but is highly susceptible to motion
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artifacts that happen due to the voluntary and/or involun-

tary movement of the test subject during data recording

using wearable devices. In some instances, movement

artifacts may end up so conspicuous that the recorded EEG

signal would lose its usability unless the movement arti-

facts are diminished significantly. Several earlier efforts

were undertaken to reduce movement artifacts from

motion-corrupted EEG data, which were summarized in

[20, 21]. Several single-stage and two-stage motion arti-

facts correction techniques for EEG modality were intro-

duced and implemented in [21]. The authors of [21]

investigated discrete wavelet transform (DWT) [22] using

Daubechies 5 mother wavelet, empirical mode decompo-

sition (EMD) [23], ensemble empirical mode decomposi-

tion (EEMD) [24], EMD in conjunction with independent

component analysis [25] (EMD-ICA), EEMD-ICA, EMD

cascaded with canonical correlation analysis [26] (EMD-

CCA), and EEMD-CCA to decompose the single-channel

EEG data and utilized ‘‘reference ground truth signal’’ and

autocorrelation function separately to identify and discard

motion-corrupted component(s). In [27], the authors uti-

lized singular spectrum analysis (SSA) [28] to decompose

the single-channel EEG signals and then used the adaptive

noise cancellation (ANC) technique to eliminate motion

artifacts. Ghajbhiye et al. [29] used DWT to decompose the

single-channel EEG data into sub-band signals and applied

the total variation (TV) and weighted total variation (MTV)

multi-resolution technique to the approximation sub-band

signal to filter out motion artifacts. For the reduction of

motion artifacts from single-channel EEG, a wavelet

domain optimized Savitzky–Golay filter was implemented

in [30]. Noorbasha et al. [31] used the SSA along with the

generalized Moreau envelope total variation (SSA-

GMETV) technique to lessen motion artifacts from single-

channel EEG signals. To efficiently reduce movement

artifacts from EEG, Shukla et al. [32] suggested a two-

stage artifact correction technique where EEMD and

Gaussian elimination CCA (GECCA) were utilized jointly

whereas in [33], modified EMD in combination with

optimized Laplacian of Gaussian (LoG) filter was proposed

for suppressing movement artifacts. Recently, Hossain

et al. [34] utilized variational mode decomposition (VMD)

[35], VMD cascaded with principal component analysis

[36] (VMD-PCA), and VMD-CCA for the correction of

motion artifacts from single-channel EEG data. In [37], the

wavelet packet decomposition technique in combination

with CCA was proposed. The main limitation of these

studies is their adoption of signal processing techniques.

While there have been some improvements over the years,

the correlation improvement performance from these

studies could not exceed the 70% mark due to the static

nature of these manually tuned techniques. Moreover, the

existing techniques have never been properly evaluated

with robust metrics, both temporally and spectrally, as we

have performed during this study to ensure that the

underlying EEG information is not lost during the process.

EEG signals, in addition to motion artifacts, suffer from

other forms of artifacts among which ocular, muscular, and

cardiac artifacts are prominent. Autoencoders (AEs) based

on fully connected layers were developed by Ghosh et al.

[38] and Yang et al. [39] to eliminate ocular artifacts from

EEG signals. Leite et al. [40], Zhang et al. [41], and Sun

et al. [42] introduced deep convolutional neural network

(DCNN)-based models that can extract spatio-temporal

information and are hence more resilient than typical fully

connected neural networks. In [40], a deep convolutional

autoencoder (DCAE) was developed to reduce eye blink

and jaw clenching aberrations from EEG data. To reduce

muscular distortions from EEG data, authors in [41]

developed a DCNN that progressively increases its width.

Sun et al. [42] reported a residual-connection-based DCNN

for reducing ocular, muscular, and cardiac abnormalities

from noisy EEG data. Recently, authors of [43] proposed

EEGANet, a framework based on generative adversarial

networks (GANs) for the removal of ocular artifacts from

EEG data whereas in [44], the k-means algorithm in

combination with the SSA technique was proposed for the

reduction of eye blink artifacts. Although a fair share of

studies is existent for the removal of ocular, muscle, and

cardiac artifacts from EEG recordings to the best of our

knowledge, the removal of motion artifacts using deep

learning models has not been investigated to date.

Unlike EEG, both classical and deep Machine Learning

techniques have been used to correct motion artifacts from

other physiological signals such as photoplethysmography

(PPG) [45–52], electrocardiogram (ECG) [45, 53–60],

electromyogram (EMG) [61, 62], and phonocardiogram

(PCG) [63]. To fill this void, this study presents a novel 1D

convolutional neural network (CNN)-based signal synthe-

sis or reconstruction approach to correct motion artifacts

from motion-corrupted EEG recordings. The key contri-

butions from this study can be summarized as follows:

• This is the very first study that used any kind of

Machine Learning approach to remove motion artifacts

from EEG signals. All other previous studies used a

combination of traditional signal processing techniques.

• This study used deep learning (CNN)-based 1D signal

reconstruction network to reduce motion artifacts

significantly from motion-corrupted EEG signals with

significantly higher performance in SNR reduction and

correlation improvement than in existing studies.

• This study evaluated the contribution of onboard

accelerometers in reducing motion artifacts from cor-

rupted EEG signals.
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• The methodology or framework proposed in this study

can be extended to any other 1D physiological signal

such as photoplethysmogram (PPG) and electrocardio-

gram (ECG) for signal artifacts correction.

The remainder of this paper is structured as follows:

Sect. 2 illustrates the proposed convolutional neural net-

work (CNN)-based MLMRS-Net segmentation network for

EEG motion artifact correction, which is followed by an

overview of the single-channel EEG benchmark dataset,

and the data preprocessing techniques adopted in this

study. Section 3 discusses in detail the experimental setup

and the performance evaluation metrics used. Sect. 4 pro-

vides the performance of the proposed model as well as ten

other state-of-the-art segmentation networks and discusses

the results along with a comparison to past studies. Finally,

a brief conclusion is presented in Sect. 5.

2 Materials and methods

In this section, the proposed MLMRS-Net segmentation

network for EEG motion artifact removal is discussed in

detail. A brief overview of the EEG benchmark dataset

used as well as the data preprocessing steps adopted in this

study is discussed in two separate sub-sections. Figure 1

shows the framework proposed in this study for effective

EEG motion artifact removal using a 1D-CNN-based seg-

mentation network.

2.1 Overview of MLMRS-Net

The architecture of the proposed MLMRS-Net segmenta-

tion network is illustrated in Fig. 2. MLMRS-Net is a 1D-

CNN-based segmentation network that contains one multi-

resolution pooling (MRP) block in each encoder and

decoder layer of the network. The network itself follows

the UNet framework [64] where the final output of each

encoder level gets concatenated with the decoder layer at

the same level to retain the feature map from the

contracting path. Deep supervision [65] is used in each

decoder layer including the latent layer at the bottom.

Hence, apart from the final output, our proposed model

generates five extra outputs (Fig. 2), all of which are being

deeply supervised at the same time.

2.1.1 Modified spatial pooling (MSP) layer

The architecture of the modified spatial pooling (MSP)

layer is depicted in Fig. 3 which can be modified based on

the input ‘n’ into the layer, as shown in Fig. 4. The input to

the MSP layer gets mix-pooled with a pool size of 2n

(Fig. 3). If the values of ‘n’ for a segmentation network

having ‘k’ levels are represented as,

n ¼ 0; 1. . .; k � 2; k � 1½ �, the pool size for the MSP layers

in each MRP block is, s = [1,2…, 2k�2, 2k�1]. Since we

have designed our proposed MLMRS-Net model with 5

levels, the corresponding pool size is, s = [20, 21, 22, 23,

24] = [1, 2, 4, 8, 16]. Mixed or ‘‘Max-Average’’ pooling

[66], [67] is a combination of max and average pooling.

The outputs from the max and average pooling blocks are

added based on the weight regulator value ‘a’, as formu-

lated in Eq. (1),

xlþ1 ¼ a� fmax xl; 2n
� �� �

� 1 � að Þ � favg xl; 2n
� �� �

ð1Þ

Here, xl and xlþ1 denotes input and output layers, respec-

tively, out of an operation.
0
f
0

denotes a function. The

addition operation is denoted by the
0�0

symbol. In our

study, the value of ‘a’ is chosen as 0.5, i.e., equal weight is

given to both max-pooling and average-pooling.

The pooling layer is followed by a convolutional block

of kernel size = 3. Then, the feature map generated from

the convolutional layer is forwarded into two branches. In

one branch, the features are upsampled with an upsize of 2n

through ‘Bilinear Interpolation’ [68] [Eq. (2)] whereas in

the second branch, the feature map is squeezed through a

transposed convolution block [69] having kernel size and

stride of 1 [Eq. (3)]. The squeezed feature maps are further

fed into a transposed convolution block of kernel size = 3

Fig. 1 Proposed EEG motion artifacts correction framework
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Fig. 2 Proposed multi-layer multi-resolution spatially pooled (MLMRS) network architecture

Fig. 3 Modified spatial pooling (MSP) layer

Fig. 4 Multi-resolution pooling (MRP) block expanded
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and stride = 2n to transform the feature maps to the same

size as the original. Feature maps from these two upsam-

pling paths are concatenated [Eq. (4)]. In this way, the

proposed network gets benefitted from both interpolation

and transposed convolution type feature upsampling tech-

niques [70].

x1 ¼ fupConv fconv xl; k ¼ 3
� �

;
0
Bilinear

0
� �

ð2Þ

x2 ¼ fTransConv fconv xl; k ¼ 3
� �

; k ¼ 1; s ¼ 1
� �

ð3Þ

xlþ1 ¼ x1 � fTransConv x2; k ¼ 3; s ¼ 2nð Þð Þ ð4Þ

Finally, the concatenated feature maps are squeezed

through a transposed convolution block of kernel size and

stride of 1 before outputting [Eq. (5)]. This process reduces

the feature footprint in the next stage during concatenation

[71]. It is evident that the coarseness (or fineness) of the

MSP layer depends on the value of ‘n’. If n = 0, the feature

map is the coarsest, which gets finer as the value of ‘n’ is

increased [72].

xlþ1 ¼ fTransConv xl; k ¼ 1; s ¼ 1
� �� �

: ð5Þ

2.1.2 Multi-resolution pooling (MRP) block

The multi-resolution pooling (MRP) blocks contain MSP

layers equal to the number of levels of the segmentation

model, which is ‘5’ in our proposed model. As discussed

previously, the value of ‘n’ varies from 0 to ‘k � 1’. The

feature maps become finer as the value of ‘n’ increases.

Inside the MRP block, a skip connection from the input is

concatenated to the output from each MSP layer [73], as

shown in Fig. 4. In this way, the model will be able to

capture coarser to finer features from the input signals, the

skip connection being the coarsest and ‘n ¼ k � 1’ being

the finest. Since EEG signals are more unpredictable than

other physiological signals such as ECG or PPG signals,

the proposed model is designed to facilitate capturing

various types of features from the EEG signals. This is also

reflected in the outcome obtained as shown in Section 4,

the results section. The operation in the MRP block is

formulated in Eq. (6), where the term ‘U’ signifies

concatenation.

xlþ1 ¼ xl �
[k�1

n¼0

fMSP xl; n
� �

 !

ð6Þ

It is worthwhile to mention that the model size or the

number of parameters can be reduced by decreasing the

number of MSP layers per MRP block, which is termed the

‘Cardinality’ [74] of the model. Increasing the cardinality

exponentially boosts the number of model parameters. In

this study, the cardinality of the model was kept as five.

2.2 Overview of the EEG benchmark dataset

The dataset used in this study, namely ‘‘Motion Artifact

Contaminated fNIRS and EEG Data,’’ is a publicly avail-

able PhysioNet dataset, contributed by Sweeny et al.

[75, 76]. This dataset contains instances of ‘‘reference

ground truth’’ and motion-corrupted functional near-in-

frared spectroscopy (fNIRS) and electroencephalogram

(EEG) recordings, which were primarily recorded for

evaluating several motion artifact removal techniques.

During the 9 min long EEG data acquisition from each test

subject, two electrodes with the same hardware properties

were placed simultaneously on the test subject’s scalp at

very close proximity (30 mm) where one of the electrodes

was kept unimpacted to record ‘‘reference ground truth

EEG signal’’ while the other one was disturbed by tapping

the sensor for 10–25 s at around two minutes intervals to

record motion-corrupted EEG signal. The lack of motion

artifacts in one sensor and presence in the other was also

documented using 3-axis accelerometers placed along with

each sensor. Simultaneously recorded ‘‘reference ground

truth’’ EEG signals and the corresponding motion-cor-

rupted EEG signals showed a high correlation (* 0.83,

r = 0.2) during the motion-free intervals and a much lower

correlation otherwise (* 0.40, r = 0.19) [75]. The dataset

contains 23 sets of single-channel EEG data, collected from

the prefrontal cortex region of the brain, along with cor-

responding 3-axis accelerometer signals for both ‘‘refer-

ence ground truth’’ and motion-corrupted EEG signals. It is

worth mentioning that all the recorded signals were syn-

chronized through software-based trigger signals for both

EEG and accelerometer. These trigger signals were utilized

during data preprocessing. The ‘‘reference ground truth’’

and motion-corrupted EEG signals in this dataset were

labeled as channel 1 and channel 2, respectively. Each EEG

signal was recorded at a sampling frequency of 2048 Hz

whereas the accelerometer and trigger signals were sam-

pled at a rate of 200 Hz. Figure 5a shows an example of

synchronized plots of EEG Signals (‘‘reference ground

truth’’ and motion-corrupted), corresponding accelerometer

3-axis plots with motion artifacts, and accelerometer trig-

ger during the whole recording duration (9 min), and

Fig. 5b depicts one zoomed-in segment with motion arti-

facts. From Fig. 5, it is clear that EEG channel 1 (‘‘refer-

ence ground truth’’ EEG signal) suffers from baseline drift

whereas the high amplitude fluctuations in motion-cor-

rupted EEG signal are noticeable in four different regions.

2.3 Data preprocessing

The data preprocessing step is one of the most crucial steps

for deep learning applications since the model performance
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greatly depends on how the data are preprocessed. A well-

prepared and preprocessed data can boost the model per-

formance significantly while the same model might fail if

the data are not preprocessed properly. In this study, the

signals were resampled, baseline corrected, segmented, and

normalized in the process of making them suitable for the

segmentation networks. Each step is explained below in

detail.

2.3.1 Resampling

During data acquisition, the EEG and accelerometer signals

were sampled at 2048 Hz and 200 Hz, respectively. EEG

signals had much more sample points in comparison with

the accelerometer signals. To use them concurrently in

deep learning model training, all signals should have a

similar number of data points. To fulfill this prerequisite,

all the signals used in this study were resampled to a single

Fig. 5 Synchronized plots for EEG signals (ground truth and motion-corrupted), corresponding accelerometer 3-axis plots with motion artifacts,

and accelerometer trigger a Whole Duration; b Zoomed-in
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sampling frequency of 256 Hz, i.e., the EEG signals were

downsampled from 2048 to 256 Hz and 3 axis

accelerometer signals were upsampled from 200 to 256 Hz.

Downsampling a signal does not affect the signal mor-

phology much if the interpolation method is chosen care-

fully since we are interpolating from more data points. But

upsampling a signal to a much higher frequency might

change the signal morphology as the algorithm tries to

estimate several intermediate points. For this reason, the

sampling frequency (256 Hz) was kept as close as the

lowest sampling frequency (200 Hz). The linear interpo-

lation method was found to be adequate for this study.

2.3.2 Baseline drift correction

The raw signals, especially ‘‘reference ground truth’’ and

motion-corrupted EEG signals, had baseline drift during

the whole recording for 23 trials. Baseline drifts have

random patterns that are learned by the deep learning

models during training, and it affects the performance.

Moreover, the drift patterns are different for different

channels (as shown in Supplementary Fig. 1), even if they

match, training 1D-CNN models with signals affected by

baseline wandering will instigate the model to produce

baseline corrupted EEG during prediction. So, baseline

wandering needs to be removed or minimized from all

signals (target or predictor) so that the deep learning

architecture can focus on learning only important features.

But for motion-corrupted EEG signals, motion artifacts and

baseline wandering remain mixed. Moreover, the EEG

signals have large DC shifts or offsets which affect the

baseline correction process, so it needs to be removed

beforehand. Our baseline correction process primarily

involves fitting a polynomial along the baseline of the

signal and deducting it. Polynomial order and window

length of the operation are two crucial factors that control

the sharpness of the polynomial [77]. If the polynomial

order is high or the window length is small, even a high-

frequency baseline can be removed, and vice-versa. But it

solely depends on the nature of the baseline. If the baseline

is not highly frequent, a higher-order polynomial will

distort the signal itself. On the contrary, if the baseline is

highly frequent, a lower-order polynomial will not fix the

baseline properly. Moreover, in this case, the baseline

remains mixed with motion artifacts for some segments.

Our segmentation models will work ideally when both

‘‘reference ground truth’’ and motion-corrupted EEG sig-

nals match closely during motion artifacts-free seg-

ments (Fig. 6a) and differ during motion artifacts

contaminated segments (Fig. 6b), and the motion artifacts

should be unaffected by the baseline correction algorithm.

Now, if higher-order polynomials are applied to the whole

signal, it also partially removes the motion artifacts, as

depicted in Supplementary Fig. 2. By doing this, the seg-

mentation network will still perform well but during

evaluation, comparing the estimated EEG signal to the

input signals will result in low performance since baseline

correction partly removed the motion artifacts beforehand.

Moreover, the AI framework will not be justified properly

since removing a portion of motion artifacts before training

made the task less challenging for the network, which will

not be the case during a real-world scenario.

On the contrary, if lower-order polynomials are used, it

does not remove the baseline properly during non-cor-

rupted segments. As shown in Supplementary Fig. 1, dur-

ing a non-corrupted segment, the correlation between EEG

Channel 1 and 2 improved from around 89% to * 99%

due to proper baseline correction (ideally it should be 1).

For clean EEG segments, a very high correlation between

channels 1 and 2 is necessary since the model is trying to

map the relationship between the corrupted (input) and the

clean EEG (output) segments. For this reason, we have

developed an adaptive baseline drift correction scheme that

can handle all the scenarios and fulfill data requirements

for deep learning models. The main idea of the scheme is to

extensively remove the baseline drifts from EEG signals

from both channels using higher-order polynomials during

non-corrupted segments to match them closely; during

motion-corrupted segments, the baseline was removed

using lower-order polynomials so that motion artifacts do

not get removed or reduced during baseline correction to

ensure proper evaluation of the proposed deep learning

framework. After DC offset removal, the baseline of

ground truth EEG signals (channel 1) was approximated by

a higher-order (e.g., 20) polynomial while a lower-order

polynomial (e.g., 3) was used for the motion-corrupted

EEG signals (channel 2). After chopping the signal into

much smaller segments (1024 data samples per segment),

the motion artifacts-free segments from both channels are

hard baseline-corrected further. While keeping the poly-

nomial order at 20, this operation on much smaller seg-

ments removes any remaining high-frequency drifts from

both EEG channels. On the other hand, baseline correction

for accelerometer signals was done using 10th-order

polynomials.

2.3.3 Segmentation

Longer segments of signals are likely to contain several

features which might be overlooked by the deep learning

model while training. Also, relatively smaller signal seg-

ments would reduce higher resource requirements during

training. Considering these two points, the EEG and

accelerometer signals were chopped into segments of 1024

sample points following the approach of the works pre-

sented in [77–79]. During segmenting the waveforms, 50%
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overlapping was carried out to increase the number of

segments to twice. This approach is similar to patching

[80] for images. Signals were processed before and after

segmentation, as discussed in the previous subsec-

tion. After prediction by the deep learning model, the

baseline-corrected segments are overlapped by removing

every even number of the segment. The remaining seg-

ments are concatenated together to form a signal of the

same length as the original signal for evaluation purposes.

2.3.4 Normalization

Each extracted segment was ‘Zscore’ normalized first, then

‘range’ normalized between 0 and 1 [Eq. (7)]. ‘Zscore’

normalization is important for normalizing signals of high

variance [77], and ‘range’ normalization is utilized to

constrain the amplitudes between 0 and 1, which is crucial

for deep learning algorithms [77–79].

EEGi normð Þ ¼ range
EEGi � li

ri

� �
; 0 1½ �

� �
ð7Þ

The predicted signal (after joining) is denormalized later

to calculate the change in signal-to-noise ratio (DSNR)

before and after motion artifact correction. Other studies

conducted in the past also computed DSNR using denor-

malized signals.

2.3.5 Filtering

The EEG signals in this dataset were corrupted with 50 Hz

powerline noise of varying amplitude across trials. A notch

filter was used to clean 50 Hz noise from the signals during

the preprocessing stage. A Quality Factor (Q-Factor) of 10

was found to be suitable for the whole dataset.

3 Experimentation and performance metrics

In this section, the experimental setup and all related

components of this study are discussed in detail. Also, the

evaluation metrics used in this study are introduced in a

separate subsection to quantitatively measure the perfor-

mance of all the deep CNN models in removing motion

artifacts from single-channel EEG recordings.

3.1 Experimental setup

The raw EEG dataset was preprocessed and prepared for

the deep learning pipeline developed using TensorFlow 2.0

in Python and was used to train 1D-CNN-based segmen-

tation networks for motion artifact correction from EEG

signals. A segmentation network in the deep learning

domain is nothing but a one-to-one mapping algorithm.

Therefore, the proposed MLMRS-Net along with ten other

1D-CNN models were trained with a view to mapping

motion-corrupted EEG to their corresponding clean version

and being validated through the Jackknife validation

method. The dataset was divided into 23 folds, each fold

containing processed segments from a single, independent

trial. So, all experiments have been repeated 23 times and

the results are the average of the outcomes from all 23 test

sets. The following two experiments were performed to

evaluate our proposed approach and model.

Fig. 6 Superimposed ground truth and motion-corrupted EEG segments after preprocessing for deep learning: a non-corrupted segment, both

channels are matching closely; b motion-corrupted segment, both channels differ as channel 2 contains large motion artifacts
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3.1.1 Experiment A

In experiment A, the motion-corrupted EEG signal and its

corresponding 3-axis accelerometer signals were fed into

the 1D-CNN model as inputs (predictor signals) whereas

the ‘‘reference ground truth’’ EEG signal was the output

(target signal) which needs to be estimated by the model.

Thus, the models had four input channels and one output

channel. Apart from our proposed MLMRS-Net, ten state-

of-the-art segmentation networks viz. Feature Pyramid

Network (FPN) [81], LinkNet [82], UNet [64], Attention

Guided UNet [71], DenseInceptionUNet [70], Multi-

ResUNet [83], UNet? [84], UNet?? [84], Attention

Guided UNet?? [85] and UNet3? [86] were imple-

mented in this experiment for training and testing. These

deep CNN models were primarily proposed for solving 2D

image segmentation, which we converted into 1D seg-

mentation networks for our purpose. All the parameters of

the networks, such as the number of layers or depth,

number of filters or kernels in each layer, i.e., width, etc.

were kept the same for all models to make the evaluation

procedure fair. All models had 5 layers and the initial layer

had 64 filters which were made doubled in each deeper

level. Each model was trained for 300 epochs with an

epoch patience of 30 in the Google COLAB platform.

Prepared data from MATLAB were imported to the Python

environment and were directly used for training and

evaluation.

3.1.2 Experiment B

In this experiment, the 3-axis accelerometer data were

removed from the input and the proposed MLMRS-Net

model was evaluated to observe the effect and/or contri-

bution of the accelerometer signals (individually or com-

bined) in the motion artifacts correction process. Through

this experiment, the feasibility of using only the EEG data

for motion artifact correction has been analyzed to con-

clude whether the requirement of extra hardware devices

(e.g., accelerometer) during practical implementation can

be excluded or not. It is worth mentioning that all the

studies conducted previously in cleaning motion artifacts

from EEG signals, utilized traditional signal processing

techniques where only EEG data (motion-corrupted and

reference ground truth) were used. To the best of our

knowledge, this is the first study that is using the

accelerometer data parallelly to aid the estimation process

and evaluate the effect of accelerometer signals individu-

ally and combined. Moreover, an interesting experiment

was performed to estimate clean EEG signals from only

3-axis accelerometer signals to understand their standalone

contribution.

3.1.3 Jackknife validation

In this study, the Jackknife validation [87], also known as

the leave-one-out-cross-validation technique, was adopted

for validating the proposed EEG signal motion artifacts

correction method. As mentioned earlier, the benchmark

dataset used in this study had 23 sets of EEG recordings

where each set contained one ‘‘reference ground truth’’

EEG and one motion-corrupted EEG signal. For each

iteration, 22 sets of EEG data were selected for training and

the remaining 1 set for testing, i.e., 23 folds. For each

model, the performance metrics computed and reported in

Section 4 is an average of 23 runs. This validation

approach is robust since the test sets were always inde-

pendent of the training sets and contained data from only a

single trial. On the other hand, the training set was ‘gen-

eral’ due to containing all independent trials apart from the

one in the test set.

3.2 Quantitative evaluation metrics

Since the objective of this study is to reduce artifacts from

motion-corrupted EEG signals, calculating the difference

in SNR DSNRð Þ value between motion-corrected and

motion-corrupted EEG signals, quantifying the improve-

ment in correlation between motion-corrected and refer-

ence ground truth signals (expressed by the percentage

reduction in motion artifact ‘g’) and computing the signal

reconstruction error ‘e’ can robustly assess the efficacy of

the corresponding model in removing motion artifacts.

Evaluating the performance of a signal reconstruction

network using only a single or similar metrics might not

show the complete picture. Hence, in this study, DSNR, g,

and e computed using mean absolute error (MAE) are used

as quantitative performance metrics.

3.2.1 Change in signal-to-noise ratio (DSNR)

Motion artifacts appear as high-power noise components in

both temporal and spectral domains. Removing motion

artifacts from the EEG signals should result in a large

improvement in the SNR of the signals. For the calculation

of DSNR, Eq. (8) is used as provided in [20],

DSNR ¼ 10 log10

r2
x

r2
eafter

 !

� 10 log10

r2
x

r2
ebefore

 !

ð8Þ

Here, r2
x , r2

ebefore
, and r2

eafter
represent the variance of the

‘‘reference ground truth’’ signal, motion-corrupted signal,

and motion-corrected signal, respectively.
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3.2.2 Correlation coefficient (g)

The correlation between the estimated and the ground truth

EEG signals should be more than the correlation between

the ground truth and corrupted EEG channels. In this study,

the Pearson Correlation Coefficient (PCC) is used to

quantify the correlation between signals. To calculate the

percentage reduction in motion artifacts g, Eq. (9) is used

as provided in [20]:

g ¼ 100 1 � 1 � qafter

1 � qbefore

� �
ð9Þ

Here qbefore is the PCC between the ‘‘reference ground

truth’’ and motion-corrupted signals whereas qafter is the

PCC between ‘‘reference ground truth’’ and motion-cor-

rupted signals over the epochs where motion artifact is

absent.

3.2.3 Construction error (e)

MAE is one of the primary evaluation metrics to calculate

the construction error of the reconstructed signals through

1D-segmentation networks [77–79]. Other similar metrics

such as mean squared error (MSE), root mean squared error

(RMSE), or median absolute error can also be used instead.

In this study, the mean and Standard Deviation (SD) of

construction error of all reconstructed segments are

reported as the final metrics. For ground truth signals, Y ¼
Y1;Y2;Y3; . . .;Yn½ � and predicted signals (or vectors),

Ŷ ¼ Ŷ1; Ŷ2; Ŷ3; . . .; Ŷn

� 	
, Construction Error ‘e’, com-

puted using MAE as the primary metric, can be defined as

in Eq. (10),

Construction Error; e ¼

Pn
i¼1

Pm

j¼1
Yij�Ŷijj j
M

� �

N
ð10Þ

where ‘N’ is the number of signal segments and ‘M’ is the

number of samples in each segment, which is 1024 for this

study. Standard Deviation (SD) of Construction Error re;
can be formulated as in Eq. (11),

SD of Construction Error; re

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Pm

j¼1
Yij�Ŷijj j
M

� �
� l

� �2

N

vuuut
ð11Þ

In Eqs. (10) and (11), capital symbols signify that they

represent the whole population (i.e., all the segments in the

dataset in this case). Since the deep learning pipeline out-

puts estimated segments of a length the same as the training

segments, the predicted segments for a single trial were

combined to reconstruct the final estimated signal. DSNR

and g measurements were performed on these signals only.

All evaluation metrics were calculated for each of the 23

folds and averaged to report the performance for each

model.

Quantitative evaluation often fails show to the true

picture of the outcomes of a study, sometimes even after

evaluating from different aspects. For this reason, we also

qualitatively evaluate the motion artifact correction per-

formance of the proposed MLMRS-Net from EEG signals,

both in the temporal and spectral domains.

4 Results

This section provides the quantitative and qualitative

evaluation outcomes from the experiments conducted in

this study along with illustrations.

4.1 Quantitative evaluation

This section mainly provides the quantitative outcomes of

the experiments performed for this study. Here, Table 1

presents the results from Experiment A, and it shows that

MLMRS-Net outperforms all the state-of-the-art segmen-

tation models in terms of construction error and percentage

reduction in motion artifacts. The construction error for

normalized EEG segments is found as 0.056, which is the

lowest among all the trained models. The Standard Devi-

ation of construction error for the MLMRS-Net is also

excellent. The lower value of this parameter signifies that

the variation in construction error is minimal for the net-

work while estimating clean EEG signals. High variability

in performance parameters can easily question the robust-

ness of a deep learning model. Hence, our proposed

MLMRS-Net is robust and reliable since it shows minimal

variation while estimating the clean signal. An outstanding

performance of 90.52% improvement in average percent-

age reduction in removing motion artifacts is observed by

the MLMRS-Net which is the highest compared to the other

deep CNN models. As evident from Table 1, MLMRS-Net

is one of the two models which could exceed 90%. Even

though the MLMRS-Net performed well with an improved

DSNR value of 26.641 dB, no significant difference across

models in terms of DSNR can be observed. Detailed four-

channel result per trial for the MLMRS-Net has been pro-

vided in Supplementary Table 1. Mentionable that in all

tables reporting results, outcomes from the best performing

models have been made bold for individual metrics.

On the other hand, Table 2 presents the results from

Experiment B where the input signals for the MLMRS-Net

model were varied to understand the effect of accelerom-

eter signals on the motion artifact removal performance. At

first, accelerometer signals were removed fully and only

the motion-corrupted EEG was used for the process. Then,
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gradually different axis of the accelerometer was varied

with EEG to understand their respective contribution. Also,

one interesting experiment was performed to estimate clean

EEG signals from only the motion-corrupted 3-axis

accelerometer signals. From Table 2, it is clear that when

only EEG signals were used to train the MLMRS-Net

model, it could reach an average g value of 89.32% while

testing. Using any one of the 3-axis accelerometer data

alongside the EEG signals slightly boosted g whereas

using all three axes accelerometer data along with the EEG

signals produced the best average g value of 90.52%. The

improvement in DSNR value is similar for all the cases.

The impossible experiment of using only 3-channel

accelerometer signals to estimate EEG provides a minor

average g improvement of 15.46% and DSNR value of

15.44 dB, which is expected as the estimated signals from

only accelerometer data was nothing but noise. But this

experiment proves that the accelerometer signals as pre-

dictors along with EEG signals have some positive impact

in improving the average percentage reduction in motion

artifacts with a 1.34% boost in performance. On the con-

trary, using only EEG signals for training a signal recon-

struction model, one can reach optimum results in motion

artifact correction. Thus, during a hardware system design,

accelerometers can be removed, and one can still expect

high performance from MLMRS-Net or similar models in

EEG motion artifact correction.

4.2 Qualitative evaluation

As mentioned earlier, qualitative evaluation is crucial for

such studies since the number cannot always provide a

clear and convincing picture of the feasibility of a newly

proposed approach. From the studies in the current

Table 1 Results for EEG motion artifact correction through signal reconstruction using 1D-CNN

1D CNN segmentation networks Results – experiment A

Average DSNR (In dB) Average percentage reduction in

motion artifacts, g (in %)

Construction error (e)

Mean SD

FPN [81] 26.489 86.197 0.069 0.042

LinkNet [82] 26.491 88.136 0.064 0.035

UNet [64] 26.568 88.817 0.064 0.030

UNet? [84] 26.565 89.283 0.062 0.023

UNet3? [86] 26.674 89.396 0.061 0.026

AttentionUNet [71] 26.666 89.518 0.062 0.028

MultiResUNet [83] 26.648 89.637 0.060 0.026

DenseInceptionUNet [70] 26.546 89.846 0.060 0.024

UNet?? [84] 26.703 89.956 0.059 0.022

AttentionUNet?? [85] 26.632 90.191 0.058 0.021

MLMRS-Net (Proposed) 26.641 90.516 0.056 0.025

Table 2 Effect of the Accelerometer in EEG motion artifact correction performance using MLMRS-Net

Input signals Results – experiment B

Average DSNR (dB) Average percentage

reduction in motion

artifacts, g (%)

Construction error (e)

Mean SD

Acc (3-axis) 15.436 15.462 0.141 0.016

EEG 26.825 89.322 0.060 0.028

EEG, Acc-x 26.672 89.774 0.058 0.025

EEG, Acc-y 26.675 89.623 0.058 0.025

EEG, Acc-z 26.704 89.524 0.059 0.026

EEG, Acc (3-axis) 26.641 90.516 0.056 0.025
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literature provided in Table 3, it can be summarized from

their reported high DSNR that they were good at reducing

noise but might also have reduced the embedded biological

EEG signals in the process; therefore, the correlation

improvement did not exceed 70% even with high DSNR.

However, in the case of the deep learning technique pro-

posed in this work, the motion artifact is removed while

keeping the biological signals intact, which made the

DSNR value slightly smaller than some of the earlier

studies. This can be visualized from the plots shown in

Fig. 7 for various trials or folds across the dataset, for both

clean and corrupted segments. Figure 7a–d shows some

sample corresponding ground truth (EEG channel 1),

(moderate to high) motion-corrupted (EEG channel 2), and

MLMRS-Net estimated EEG segments. Figure 7e, f dis-

plays some segments without any presence of motion

artifacts in EEG channel 2. It can be seen that during

segments with no motion, all three signals show a high

correlation. In such cases, MLMRS-Net tries to keep the

signals as closes as the input EEG segments from channel

2. On the other hand, for even highly motion-corrupted

segments, MLMRS-Net improved the correlation by a great

amount, which proves the robustness of the approach.

So far, we have visualized the performance in the time

or temporal domain. Our claims have been further

strengthened by Power Spectral Density (PSD) plots [87]

and Topographic Maps [88] of EEG signals as shown in

Figs. 8 and 9, respectively. These plots represent the per-

formance of the model in the spectral domain. For spectral

evaluation, segments from all 23 folds were concatenated

and their spectra were analyzed and presented in a single

plot. From Fig. 8, the PSD of the estimated EEG signals

from the proposed deep learning framework greatly mat-

ches that of the ground truth EEG signals over the spec-

trum. On the other hand, even though motion artifacts

insert high power components in the EEG signals all over

the spectrum, in the case of the Delta (d) ffi 0.5 to 4 Hz

band, the distortion is the worst. The proposed framework

could greatly minimize the drastic effect of motion artifacts

in this range, as shown in the PSD plot in Fig. 8 and the

topographic map for the Delta band in Fig. 9b.

Talking about topographic maps, EEG topography is a

neuroimaging technique for visualizing the neural activity

around the brain by computing the bandpower of EEG

signals collected from various electrodes and plotted

smoothly following the gradient. In this case, we have a

single-channel EEG collected from the prefrontal cortex

region of the brain, as explained in detail in the dataset

section. That means we have a single electrode in the ‘Fpz’

location of the brain as denoted by the international 10–20

system for scalp electrode placement for EEG data acqui-

sition [89]. To compute the topographic map, we consider a

total EEG bandwidth of 0.5 to 80 Hz while for the five

EEG frequency components, we have Delta (d) ¼ 0.5–

4 Hz, Theta (h) = 4–8 Hz, Alpha (a) = 8–13 Hz, Beta

(b) = 13–40 Hz, and Gamma (c) = 40–80 Hz [90, 91]. We

combine the EEG signals (ground truth, motion-corrupted,

and estimated) from all 23 folds, calculate the bandpower

and plot the topographic maps while keeping the same

scale for all cases [92]. From the topographic plots shown

in Fig. 9, it can be seen that no matter what the frequency

range is, motion artifacts destroy the topographic maps by

inserting high-power components in the EEG signal, Delta

being the worst affected band. Regardless of the EEG band,

the estimated EEG components contain similar bandpower

to the ground truth. Individual topographic plots for all 23

folds considering the whole EEG band (0.5–80 Hz) are

provided in Supplementary Fig. 3 to understand the per-

formance of the proposed framework in specific cases. It

was observed that there are cases where the ground truth

EEG has more bandpower (Fold 1–11), low bandpower

(Fold 12–15), and medium bandpower (16–23). Regardless

of the case, the model always managed to remove motion

artifacts properly and extract EEG signals with robustness.

So, there are significant improvements in the percentage of

signal correlation and SNR which can be observed from

both temporal and spectral perspectives as presented in

Figs. 7, 8, 9.

4.3 Comparison with the existing works

There have been several studies that worked on removing

motion artifacts due to external perturbations from EEG

signals, and all the studies worked on signal processing

algorithms to reach their solution. Among the earliest

studies, Sweeny et al. [21] used DWT, EMD, and EEMD-

based signal processing techniques combined with ICA and

CCA for motion artifact removal. Maddirala et al. [27] and

Noorbasha et al.[31] proposed SSA and its variations for

the same purpose and found better results. Gajbhiye et al.

[29, 30], in their two studies, used combinations of DWT

along with multi-resolution TV, multi-resolution WTV,

and Savitzky–Golay filtering techniques separately and

reached much better outcomes. Until very recently, Hos-

sain et al. [34, 37] in their two papers developed motion

artifacts correction pipelines that used several single-stage

(VMD, WPD) and two-stage (VMD-PCA, VMD-CCA,

WPD-CCA) signal processing methods and reported good

performance in DSNR estimation. Table 3 summarizes

these works, and from Table 3, the best average DSNR
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value was reported as 30.76 dB using the WPD-CCA

technique utilizing db1 wavelet packet and the highest

average g was 68.76% utilizing DWT along with Savitzky–

Golay filtering. In this work, our proposed MLMRS-Net

model outperformed all the previous works with a stag-

gering 90.52% improvement in average g value. Also, to

the best of our knowledge, this is the very first paper in this

domain that utilized any machine learning concept to clean

motion artifacts from EEG signals. Compared to the tra-

ditional signal processing techniques, which have their

drawbacks, the proposed approach made the deep learning

model learn relevant features from EEG signals for better

motion artifact correction through training. The results are

provided in Table 3 for comparison. For different past

studies reporting similar correlation improvements in

Table 3, DSNR varied by a large margin, i.e., their trend in

change is not similar. As mentioned before, the DSNR

parameter depends more on the data preprocessing steps

rather than the artifact correction technique, which is evi-

dent here and in past studies.

Fig. 7 Corresponding ground truth, motion-corrupted, and motion-corrected EEG segments from various sample Test Folds. In this figure, a–d
represents the proposed MLMRS-Net’s motion correction ability while e–f shows its almost invariable outputs in the case of clean segments
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5 Conclusion

In this extensive study, we have proposed a novel deep

learning-based 1D-segmentation network (MLMRS-Net) to

remove motion artifacts from single-channel, motion-cor-

rupted EEG signals, which is a very novel concept in this

domain. Motion artifacts can severely affect EEG signals,

which sometimes distort the signal morphology itself due

to its very low amplitude. So, it is crucial to develop robust

methods for reducing the effect of motion artifacts from the

EEG signals. The performance metrics obtained from all

the networks tested under this study are a clear indication

of the efficacy of using deep learning models in removing

motion artifacts from EEG signals rather than using

Fig. 8 Periodogram power spectral density (PSD) plots of ground truth, motion-corrupted, and MLMRS-Net Estimated EEG signals from the

whole dataset

Table 3 Comparison of

performance with the recent

literature

References Method EEG (23 records)

Average DSNR (in dB) Average g (in %)

Sweeney et al. [21] DWT and thresholding 8.08 55.3

EMD and IMF selection 7.28 43.2

EEMD and IMF selection 8.21 52.2

EMD-ICA 7.47 44.1

EMD-CCA 7.32 43.4

EEMD-ICA 8.22 52.3

EEMD-CCA 8.21 52.2

Maddirala et al. [27] SSA 11.16 61.35

Gajbhiye et al. [29] DWT-MTV 29.12 68.56

DWT-MWTV 29.29 67.31

Gajbhiye et al. [30] DWT and optimized SG filter 30.59 68.76

Noorbasha et al. [31] SSA-GMETV 31.81 47.41

Hossain et al. [34] VMD(15)-PCA 23.48 56.84

VMD(5)-CCA 24.86 56.84

Hossain et al. [37] WPD(db1)-CCA 30.76 59.51

Proposed approach MLMRS-Net 26.641 90.516
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traditional signal processing techniques. Our proposed

MLMRS-Net has produced the best performance in reduc-

ing the effect of motion artifacts in comparison to

previously reported studies in the literature by reaching a

PCC value of 90.52% between ground truth and estimated

EEG signals along with an average noise reduction (DSNR)

Fig. 9 EEG topographic maps of various EEG frequency bands for the whole dataset to show the robustness of the proposed motion artifact

correction scheme
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value of 26.64 dB while reliably retaining the underlying

biological signals. Also, a very minimal construction error

value is found while the MLMRS-Net model was utilized

for reconstructing motion-corrected EEG signals. This

study is proof that after being trained on a sufficiently large

dataset, such deep learning models can be used to reliably

remove artifacts from corrupted EEG signals in real time.

Moreover, 1D-CNN-based signal reconstruction networks

could be used for motion artifact correction from similar

physiological signals such as electromyogram (EMG),

electrocardiogram (ECG), photoplethysmogram (PPG),

and phonocardiogram (PCG) following a similar experi-

mental setup. In this way, minimal efforts can be given to

developing more efficient signal processing techniques

when artificial intelligence can reliably learn the pattern of

the signals itself.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

022-08111-6.
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