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Abstract We consider estimation and prediction of future records based on observed records from the new Pareto
type distribution proposed recently by Bourguignon et al. (2016), ¡°M. Bourguignon, H. Saulo, R. N. Fernandez, A
new Pareto-type distribution with applications in reliability and income data, Physica A, 457 (2016), 166-175¡±.
We first obtain the maximum likelihood and Bayesian estimators of the model parameters. We then derive several
point predictors for a future record on the basis of the first n observed records. Two real data sets on precipitation
and Covid 19 are analysed and a Monte Carlo simulation study has been performed to evaluate the statistical
performance of point predictors presented in this paper.
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1. Introduction

The Pareto distribution is a skewed and heavy-tailed model which was originated by Pareto [26] to model
income distribution as a result of basic economic mechanisms. This distribution is currently widely used
in different fields including insurance, economics, reliability, hydrology and engineering.

The two-parameter new Pareto-type (PT) distribution proposed by Bourguignon et al. [12] has the
distribution function

F (x; θ, σ) =
xθ − σθ

xθ + σθ
, x ≥ σ, θ > 0, σ > 0, (1)

and density function

f(x; θ, σ) =
2θ σθ xθ−1

(xθ + σθ)2
, x ≥ σ, θ > 0, σ > 0, (2)

where θ and σ are shape and scale parameters, respectively. The density function of the PT distribution is
decreasing and therefore, like the Pareto distribution, this distribution can be used as a model for income
distributions. Depending on the values of its parameters, the PT hazard rate function is decreasing or
upside down bathtub shaped. See Bourguignon et al. [12] for more information on PT distribution. In
recent years, this distribution has been studied by several authors. Different estimation methods for PT
distribution were investigated by Saadati et al. [22]. Saadati et al. [23] considered prediction methods for
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future failure times based on type-II right censored samples. Recently, Saadati et al. [24] investigated the
inferential methods for the PT distribution under progressive type-II censoring.

Let X1, X2, . . . be a sequence of independent and identically distributed random variables with a
distribution function F (x) and probability density function f(x). Then, an observation Xj is called an
upper record value of this sequence if Xj > max {X1, . . . , Xj−1} , j > 1. More specifically, if we define the
sequence {U(n), n ≥ 1} as

U(1) = 1, U(n) = min
{
j : j > U(n− 1), Xj > XU(n−1)

}
for n ≥ 2, then {U(n), n ≥ 1} is called the sequence of upper record times and the sequence

{
XU(n), n ≥ 1

}
is a sequence of upper record values. Record values arise naturally in many real-life applications, including
data related to weather, sports, economics, and reliability. For more details, see Arnold et al. [6]. For some
recent works on statistical inference using record data, see for example Asgharzadeh et al. [8, 9], Aldallal
[4], Chaturvedi and Malhotra [13], Bagheri et al. [10], Basiri et al. [11], Sing et al. [25], Qazi et al. [19],
Raqab et al. [20] and Aly et al. [5].

The PT distribution is a heavy tailed distribution since its moments beyond a certain power do not
exist (Klugman et al. [16]). It follows that large values are likely to occur frequently. Therefore, extreme
values from this distribution deserve special attention, as they are very important to studying the nature
of the phenomena being modeled by this distribution. In such a setting, records, especially upper record
values arise naturally and have obvious importance. An example of such a situation is given by Hayek et
al. [14] where they utilized the theory of record-breaking data to study the evolution of temperature and
precipitation during 2003-2019 in Lebanon. They were concerned with the prediction of the intensity of
the upcoming ¡°highest¡± temperature and precipitation and to compute the timing probabilities for the
future record. There are several other natural occurrences of records are in economics, actuarial science,
sports and reliability studies (Arnold et al. [6]) where the prediction of future records is essential for
taking remedial and corrective actions.

Although the statistical inference for PT distribution based on complete and censored data has been
discussed, to the best of our knowledge, the inference based on record data has not previously been
studied in the literature. In this paper, we will discuss the maximum likelihood and Bayesian estimation
for the PT model based on record data. We will also consider predicting future records based on the first
n observed records.

The paper is organized as follows. We developed the maximum likelihood and Bayesian estimators of
the parameters in Section 2. Classical and Bayesian point predictors of future records are obtained in
Section 3 and were applied to two real data sets on precipitation and Covid 19 in Section 4. In Section 5
we investigated the performance of the estimators and predictors through a simulation study.

2. Estimation of the parameters

Suppose we observe the first n upper record values XU(1) = x1, XU(2) = x2, . . . , XU(n) = xn from the
PT (θ, σ) distribution. For notational simplicity, we will use Xi instead of XU(i). The likelihood function
is given (see Arnold et al., [6]) by

L(θ, σ | x) = f (xn; θ, σ)

n−1∏
i=1

f (xi; θ, σ)

1− F (xi; θ, σ)
,

where f (xi; θ, σ) and F (xi; θ, σ) are, respectively, the density and distribution functions of the PT (θ, σ)
distribution. The likelihood function is obtained as

L(θ, σ | x) = 2θn σθ

(xθ
n + σθ)2

n∏
i=1

xθ−1
i

n−1∏
i=1

(xθ
i + σθ)−1. (3)
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2.1. Maximum likelihood estimates
Taking the logarithm of (3), we obtain the log-likelihood function

lnL(θ, σ | x) = ln 2 + n ln θ + θ lnσ − 2 ln(xθ
n + σθ) + (θ − 1)

n∑
i=1

lnxi −
n−1∑
i=1

ln(xθ
i + σθ). (4)

On differentiating (4) with respect to θ and σ and equating partial derivatives to zero, we obtain the
estimating equations

∂ lnL(θ, σ | x)
∂θ

=
n

θ
+ lnσ − 2

xθ
n lnxn + σθ lnσ

xθ
n + σθ

+

n∑
i=1

lnxi −
n−1∑
i=1

xθ
i lnxi + σθ lnσ

xθ
i + σθ

= 0. (5)

∂ lnL(θ, σ | x)
∂σ

=
θ

σ
− 2θ σθ−1

xθ
n + σθ

−
n−1∑
i=1

θ σθ−1

xθ
i + σθ

= 0. (6)

Equations (5) and (6) can be solved numerically to obtain θ̂ and σ̂, the maximum likelihood estimates
(MLEs) of θ and σ.

2.2. Bayes estimation
To obtain the Bayesian estimates of the unknown parameters θ and σ, we need to specify a joint prior
for (θ, σ). Here, we consider the joint prior for (θ, σ) as

π(θ, σ) ∝ θγσθb−1c−θ, θ > 0, 0 < σ < d, (7)

where the hyper-parameters γ, b, c, d are positive known constants and db < c. This joint prior distribution
is a known prior distribution for Bayesian inference in the two-parameter Pareto distribution, see Lwin
[18] and Arnold and Press [7]. We can rewrite this prior as

π(θ, σ) = π(θ)π(σ | θ),

where π(θ) is the density function of a gamma distribution with parameters γ and log c− b log d, and
π(σ | θ) is the density function of a power function distribution given as

π(σ | θ) ∝ b θ σbθ−1d−bθ, 0 < σ < d.

When γ = −1, c = 1, b = 0 and d → ∞, it is reduced to the non-informative prior

π(θ, σ) ∝ 1

θσ
, θ > 0, σ > 0.

By combining the likelihood function and the joint prior density in (3) and (7), the joint posterior
density function of θ and σ is

π(θ, σ | x) = 1

K(x)
2θn+γ σθ(1+b)−1 (xθ

n + σθ)−1
n∏

i=1

xθ−1
i (xθ

i + σθ)−1, θ > 0, 0 < σ < D, (8)

where D = min(d, x1) and

K(x) =

∫ ∞

0

∫ D

0

2θn+γ σθ(1+b)−1 (xθ
n + σθ)−1

n∏
i=1

xθ−1
i (xθ

i + σθ)−1 dσ dθ.
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Under the squared error (SE) loss function, the Bayes estimate (BE) of any function of θ and σ, say
w(θ, σ), is the posterior mean ŵBE(θ, σ) = E[w(θ, σ)|x]. By (8), we obtain

ŵBE(θ, σ) =
1

K(x)

(∫ ∞

0

∫ D

0

w(θ, σ)2θn+γ σθ(1+b)−1 (xθ
n + σθ)−1

n∏
i=1

xθ−1
i (xθ

i + σθ)−1 dσ dθ
)
. (9)

Since the BEs of θ̂BE and σ̂BE cannot be obtained in explicit forms, the Metropolis-Hastings (MH)
algorithm (see for example, Robert and Casella [21]) can be used to calculate the BEs.

2.2.1. MH algorithm. Here the MH algorithm is used for generating random samples from the posterior
distribution (8) assuming univariate normal candidate distributions for both parameters θ and σ. The
steps are given in the following algorithm.

Algorithm 1
Step 1: Set the initial values (θ0, σ0) and set k = 1;
Step 2: Based on the MH algorithm, we generate (θk, σk) from π(θk−1, σk−1|x) using the bivariate normal
distribution as proposal distribution;
Step 3: Set k = k + 1;
Step 4: Repeat Steps 2 and 3, N times to get the MCMC samples (θ1, σ1), . . . , (θN , σN );
Step 5: Based on the above MCMC samples, the approximate Bayes estimates of θ and σ can be
computed as

θ̂BE =
1

N

N∑
k=1

θk and σ̂BE =
1

N

N∑
k=1

σk,

respectively.

Based on the sample-based estimates of θ and σ generated using the previous algorithm, the 100γ-th
simulated percentiles of θ and σ are easily obtained and then the simulated credible intervals (CIs) of θ
and σ can be constructed. Based on N iterations and the corresponding values of θ′is, we can construct
a 100(1− γ)%(0 < γ < 1) Bayesian CI as

(
θ[ γ2 N]

, θ[(1− γ
2 )N]

)
where θ[ 72N]

and θ[(1− γ
2 )N]

are the
[
γ
2N

]
-th

smallest integer and the
[(
1− γ

2

)
N
]
− th smallest integer of {θt, t = 1, 2, . . . , N}, respectively. The same

method can be used to compute the Bayesian CI for σ.

3. Prediction

Here we investigate the problem of predicting the future records of Y = Xs (s = n+ 1, n+ 2, . . . ) based
on the first n upper records X = (X1, . . . , Xn) from PT distribution and propose maximum likelihood
and conditional predictors.

3.1. Maximum likelihood prediction
The maximum likelihood prediction method was first proposed by Kaminsky and Rodhin [15]. In this
method, a generalized likelihood function is used to solve statistical problems involving both fixed
unknown parameters and unobserved random variables. Kaminsky and Rodhin [15] used this method
to predict the future order statistics and estimate the parameters involved in the model. Let s > n, then
the predictive likelihood of xs is given by (see Raqab et al., [20])
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L∗ (θ, σ, xs) = f (xs; θ, σ)

(
ln
(
1− F (xn; θ, σ)

)
− ln

(
1− F (xs; θ, σ)

))s−n−1

Γ(s− n)

n∏
i=1

f (xi; θ, σ)

1− F (xi; θ, σ)
, xs > xn.

For the PT (θ, σ) distribution we have

L∗ (θ, σ, xs) =
2θσθxθ−1

s

(xθ
s + σθ)

2

[
ln
(

2σθ

xθ
n+σθ

)
− ln

(
2σθ

xθ
s+σθ

)]s−n−1

Γ(s− n)

n∏
i=1

2θσθxθ−1
i(

xθ
i + σθ

)2
(
xθ
i + σθ

)
2σθ

, xs > xn,

which simplifies to

L∗ (θ, σ, xs) =
2θn+1σθxθ−1

s

(xθ
s + σθ)

2

[
ln
(

xθ
s+σθ

xθ
n+σθ

)]s−n−1

Γ(s− n)

n∏
i=1

xθ−1
i(

xθ
i + σθ

) , xs > xn. (10)

The predictive log-likelihood function is given by

l∗ (θ, σ, xs) = c+ (n+ 1) ln(θ) + θ ln(σ) + (θ − 1) ln (xs)− 2 ln
(
xθ
s + σθ

)
+ (θ − 1)

n∑
i=1

ln (xi)

+ (s− n− 1) ln
[
ln
(
xθ
s + σθ

)
− ln

(
xθ
n + σθ

)]
−

n∑
i=1

ln
(
xθ
i + σθ

)
, xs > xn.

(11)

Let
(
θ̃, σ̃, x̃s

)
be the value of θ, σ, xs at which the predictive log-likelihood function is maximized, then

x̃s is the maximum likelihood predictor (MLP) of xs and (θ̃, σ̃) is the predictive maximum likelihood
estimator of (θ, σ). The predictive likelihood equations are given by

∂l∗

∂θ
=
n+ 1

θ
+ ln(σ) + ln (xs)− 2

xθ
s ln (xs) + σθ ln(σ)

xθ
s + σθ

+

n∑
i=1

ln (xi)

+ (s− n− 1)

xθ
s ln(xs)+σθ ln(σ)

xθ
s+σθ − xθ

n ln(xn)+σθ ln(σ)
xθ
n+σθ

ln (xθ
s + σθ)− ln (xθ

n + σθ)
−

n∑
i=1

xθ
i ln (xn) + σθ ln(σ)

xθ
i + σθ

= 0,

∂l∗

∂σ
=

θ

σ
− 2θσθ−1

xθ
s + σθ

+ (s− n− 1)

θσθ−1

xθ
s+σθ − θσθ−1

xθ
n+σθ

ln (xθ
s + σθ)− ln (xθ

n + σθ)
−

n∑
i=1

θσθ−1

xθ
i + σθ

= 0,

∂l∗

∂xs
=

θ − 1

xs
− 2θxθ−1

s

xθ
s + σθ

+ (s− n− 1)

θxθ−1
s

xθ
s+σθ

ln (xθ
s + σθ)− ln (xθ

n + σθ)
= 0. (12)

Numerical methods are needed to find
(
θ̃, σ̃, x̃s

)
, either by direct maximization of the predictive

loglikelihood function given by equation (11) or by simultaneously solving the system of nonlinear
equations given by (12).

3.2. The conditional mean and median predictors
Future record statistics satisfy the Markovian (memoryless) property. Therefore, the distribution of the
future upper record Xs given the set of the first n upper records X = (X1, . . . , Xn) depends only on the
current upper record Xn. Hence, the conditional density function of Xs given X1, . . . , Xn is the same as
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the conditional density function of Xs given Xn. The conditional distribution of Xs given Xn is given by
(Ahsanullah [2])

f (xs; θ, σ | xn) =

(
ln
(
1− F (xn; θ, σ)

)
− ln

(
1− F (xs; θ, σ)

))s−n−1

Γ(s− n)

f (xs; θ, σ)

1− F (xn; θ, σ)
, xs > xn.

For the PT (θ, σ) distribution we obtain

f (xs; θ, σ | xn) =

[
ln
(

xθ
s+σθ

xθ
n+σθ

)]s−n−1

Γ(s− n)

2θσθxθ−1
s

(xθ
s + σθ)

2

xθ
n + σθ

2σθ

=

[
ln
(

xθ
s+σθ

xθ
n+σθ

)]s−n−1

Γ(s− n)

θxθ−1
s

(
xθ
n + σθ

)
(xθ

s + σθ)
2 , xs > xn.

(13)

If the parameters are known, the best unbiased predictor (BUP) of Y = Xs(s = n+ 1, n+ 2, . . . ) can
be found as the conditional expectation

ŶBUP = E (Xs | xn) =

∫ ∞

xn

xsf (xs; θ, σ | xn) dxs. (14)

Therefore,

ŶBUP =

∫ ∞

xn

xs

[
ln
(

xθ
s+σθ

xθ
n+σθ

)]s−n−1

Γ(s− n)

θxθ−1
s

(
xθ
n + σθ

)
(xθ

s + σθ)
2 dxs

=

(
xθ
n + σθ

)
Γ(s− n)

∫ ∞

xn

[
ln

(
xθ
s + σθ

xθ
n + σθ

)]s−n−1
θxθ

s

(xθ
s + σθ)

2 dxs.

Applying integration by substitution with u = ln
(

xθ
s+σθ

xθ
n+σθ

)
→ du =

θxθ−1
s

xθ
s+σθ dxs. Noting that xθ

s + σθ =(
xθ
n + σθ

)
eu and xs =

((
xθ
n + σθ

)
eu − σθ

) 1
θ we obtain

E (Xs | xn) =
1

Γ(s− n)

∫ ∞

0

us−n−1e−u
((
xθ
n + σθ

)
eu − σθ

) 1
θ du, (15)

which can be found numerically.
The conditional median predictor (CMP) can be obtained by solving∫ CMP

xn

f (xs; θ, σ | xn) dxs =
1

2
. (16)

Therefore, the CMP should satisfy(
xθ
n + σθ

)
Γ(s− n)

∫ CMP

xn

[
ln

(
xθ
s + σθ

xθ
n + σθ

)]s−n−1
θxθ−1

s

(xθ
s + σθ)

2 dxs =
1

2
.

Applying integration by substitution with u = ln
(

xθ
s+σθ

xθ
n+σθ

)
→ du =

θxθ−1
s

xθ
s+σθ dxs. Noting that xθ

s + σθ =(
xθ
n + σθ

)
eu, we obtain

∫ CMP

xn

xsf (xs; θ, σ | xn) dxs =
1

Γ(s− n)

∫ ln

(
CMPθ+σθ

xθ
n+σθ

)
0

us−n−1e−udu =
1

2
.
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Let M(s− n, 1) be the median of the Gamma(s− n, 1) distribution, we obtain

CMP =
(
eM(s−n,1)

(
xθ
n + σθ

)
− σθ

) 1
θ

. (17)

A simple, closed form, approximation of CMP may be obtained by using the Wilson-Hilferty
transformation (Abramowitz and Stegun [1])

M(s− n, 1) = (s− n)

(
1− 1

9(s− n)

)3

. (18)

If the parameters are unknown, the best unbiased predictor BUP and the conditional median predictor
CMP can be approximated by substituting the MLEs of the unknown parameters.

The best unbiased and the conditional median predictors may be estimated by simulation as
follows, consider the random variable YC defined by

YC = ln
(
1− F (xn; θ, σ)

)
− ln

(
1− F (Xs; θ, σ)

)
It is shown in Aly et al. [5] that YC ∼ Gamma(s− n, 1). See also Lee et al. [17]. It follows that, for given
values of the parameters, the BUP and the CMP of Xs can be estimated using the following algorithm:

Algorithm 2
Step 1: Generate yC from Gamma (s− n, 1) distribution.
Step 2: Calculate xs by inverting

yC = ln
(
1− F (xn; θ, σ)

)
− ln

(
1− F (xs; θ, σ)

)
.

This leads to
yc = ln

(
xθ
s + σθ

xθ
n + σθ

)
→ xs =

(
eyc

(
xθ
n + σθ

)
− σθ

) 1
θ

Step 3: Repeat steps 1 and 2, N times.
Step 4: Obtain the simulated values of BUP and CMP as the mean and median of the N simulated
values of Xs.

3.3. Bayesian predictor
The predictive probability density function of Xs given Xn is

f∗ (xs | x) =
∫ ∞

0

∫ D

0

f (xs; θ, σ | xn)π(θ, σ | x)dσdθ.

The Bayes predictor of Xs is given by

E∗ (Xs | xn) =

∫ ∞

xn

xsf
∗ (xs | xn) dxs

=

∫ ∞

xn

xs

[∫ ∞

0

∫ D

0

f (xs; θ, σ | xn)π(θ, σ | x)dσdθ

]
dxs

=

∫ ∞

0

∫ D

0

[∫ ∞

xn

xsf (xs; θ, σ | xn) dxs

]
π(θ, σ | x)dσdθ

=

∫ ∞

0

∫ D

0

J (θ, σ)π(θ, σ|x)dσdθ,

(19)
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where
J (θ, σ) =

∫ ∞

xn

xsf (xs; θ, σ | xn) dxs.

Due to the complicated form of f∗ (xs | xn), the Bayes predictor of Xs cannot be computed explicitly. Here,
we propose the following algorithm to compute a simulation-based consistent estimate of f∗ (xs | xn).

Algorithm 3
Step 1: Set the initial values (θ0, σ0) and set k = 1;
Step 2: Generate (θk, σk) from π(θk−1, σk−1|x) using the MH algorithm as described before;
Step 3: Set k = k + 1;
Step 4: By repeating Steps 2 and 3 N times, we get the MCMC samples (θ1, σ1), . . . , (θN , σN );
Step 5: Now, based on the samples (θ1, σ1), . . . (θN , σN ), a simulation-based consistent estimator of
f∗(xs|x) is

f∗(xs|x) =
1

N

N∑
k=1

f(xs; θk, σk|xn); (20)

Hence, by using (19) and (20), we can approximate the Bayes predictor of Y = Xs as

ŶBP =

∫ ∞

xn

xs
1

N

N∑
k=1

f(xs; θk, σk|xn) dxs

=
1

N

N∑
k=1

∫ ∞

xn

xs f(xs; θk, σk|xn) dxs

=
1

N

N∑
k=1

J (θk, σk).

(21)

4. Real data examples

Here, we present the analysis of monthly total precipitation and COVID-19 record data from PT
distribution.

4.1. Precipitation data
Here we illustrate application of the results in Sections 2 and 3 to the monthly total precipitation data
during April recorded at New Jersey (Statewide) from 2000 to 2021, see the link [http://climate.rutgers.
edu/]. The data are as follows: The Kolmogorov-Smirnov (K-S) test is used to fit the PT distribution

3.33 1.83 3.83 2.86 5.32 4.48 3.64 8.45 2.67 4.40 2.51
5.67 2.87 2.60 4.42 2.67 2.26 3.82 4.17 3.97 3.98 2.35

to the above data. The K-S statistics of the distance between the fitted and the empirical distribution
functions (based on the MLEs θ = 2.235 and σ = 1.83) is 0.20 and the corresponding p-value is 0.326.
Therefore, fitting the PT distribution to the above data is acceptable. From the above data, the upper
records until 2021 are :

3.33 3.83 5.32 8.45
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For these upper records, we obtained the MLE and Bayes estimates of θ and σ. Bayes estimates
and corresponding CIs are obtained using MH algorithm with N = 10, 000 replicates. In this algorithm,
we considered the MLEs θ̂ and σ̂ as the initial values of θ and σ. To calculate the Bayes estimates
and corresponding CIs, since we have no prior information, the improper priors on θ and σ, i.e.
c = 1, γ = −1, b = 0 and d = ∞, are used. The results are given in Table 1.

The convergence of samples generated by the MH algorithm can be checked using trace plots. The trace
plots of the 10,000 iterations of θ and σ are presented in Figure 1. These plots show that the values are
randomly scattered around the average and represent the fine mixing of the chains. Also, the histograms
of the 10,000 MH samples of θ and σ in Figure 1, show that choosing normal distributions as proposal
distributions is almost reasonable.

We now apply the methods proposed in Section 3 to derive the point predictors of Xs (s = 5, 6, . . . , ).
Based on the above four observed records, we predicted the upper records X5, X6 and X7 and presented
the results in Table 2.
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Figure 1. Histogram and trace plots for the precipitation data.

The results show the values of the four predictors developed in this paper. It is clear that the Maximum
likelihood predictor is consistently smaller than the other predictors. The BUP and the Bayes estimator
are always close to each other. The CMP predictor for the immediately following record is very close to
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Table 1. Point estimates and %95 Bayesian CI for the precipitation data

MLE BEs Bayesian CI
θ̂ σ̂ θ̂ σ̂ θ̂ σ̂

4.911 3.032 3.773 2.979 (0.920, 8.727) (0.365, 6.088)

Table 2. Different predictors for the precipitation data.

MLP BUP CMP BP
X5 8.45000 10.6694 9.83133 9.78508
X6 9.72874 13.3591 11.8237 14.7224
X7 11.1354 16.7627 14.6206 16.0840

the BUP and the Bayes predictor (an observed feature of the CMP predictor that will be supported by
the simulation results in the next section).

4.2. Covid data
The second data is a Covid-19 data belong to Canada of 25 days, from 10 April to 4 May 2020, see the
link [https://covid19.who.int/]. See also Almetwally et al. [3]. This data formed of mortality rate and
they are as follows:

3.1091 3.3825 3.1444 3.2135 2.4946 3.5146 4.9274 3.3769 6.8686 3.0914
4.9378 3.1091 3.2823 3.8594 4.0480 4.1685 3.6426 3.2110 2.8636 3.2218
2.9078 3.6346 2.7957 4.2781 4.2202

It can be checked that the PT distribution is fitted well to the data.
The records extracted from the above data set are:

3.1091 3.3825 3.5146 4.9274 6.8686

Based on the above records, the MLEs and Bayes estimates of θ and σ are presented in Table 3. The
trace plots and the histograms of the MH sequences of of θ and σ are given in Figure 2. Also, based on
the above five observed records, the prediction of the sixth, seventh and eighth upper records X6, X7 and
X8 are given in Table 4.

Table 3. Point estimates and %95 Bayesian CI for Covid data.

MLE BEs Bayesian CI
θ̂ σ̂ θ̂ σ̂ θ̂ σ̂

6.946 2.982 5.770 2.619 (1.728, 12.094) (0.820, 4.166)

Table 4. Different predictors for Covid data.

MLP BUP CMP BP
X6 6.86860 8.03149 7.57987 8.70066
X7 7.64306 9.34186 8.77517 10.3658
X8 8.47786 10.9479 10.0565 11.5895

The pattern of the results for the predictors in this example follows closely the pattern observed earlier
with the precipitation data.
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Figure 2. Histogram and trace plots for the Covid data.

5. Simulation study

To compare the performances of the different methods of estimation and prediction presented in the
previous sections, a Monte Carlo simulation study is carried out. The performances of the MLEs and
Bayes estimates are compared in terms of bias and mean square error (MSE). In this simulation, the
values of model parameters are considered to be (θ, σ) = (2.0, 0.5) and (3.0, 0.5) and also, we choose
n = 4, 5, . . . , 12. For computing Bayesian estimates and corresponding CIs , we considered the informative
and noninformative priors on (θ, σ) as follows:

Prior 1: c = 5, γ = 0.02, b = 1, d = 2,

Prior 2: c = 1, γ = −1, b = 0, d = ∞.

Tables 5 and 6 provide the bias and MSEs of MLEs and Bayes estimates of θ and σ over 1000 replications.
Also, we compare the performances of the different proposed predictors in term of bias and mean square
prediction error (MSPE). We compare the performances of the point predictors MLP, BUP and CMP
and Bayesian predictor of Y = Xs, (s = n+ 1, n+ 2, . . . ) for different chooses n and s. The results are
reported in Table 7. All calculations are performed using R software.
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From Table 5, the biases and MSEs of the point estimators of θ follow consistently the following pattern.
The bias and MSE of the MLE of θ are the highest under almost all situations considered. The MSE
of the Bayesian estimator under the informative prior appears to be consistently smaller than the MSE
under the non-informative prior. The bias performance of the Bayes estimators is less clear, however, it
appears that for values of n less than 9, the bias under the informative prior is less than the bias under
the non-informative priors.

For estimating the parameter σ, from Table 6, it appears that the Bayes estimator under the
noninformative prior have the worst performance in term of MSE. The Bayes estimator under the
informative prior is uniformly better than the MLE in terms of bias and MSE.

From Table 7, the performance of the point predictors appear to follow a clear pattern as follows. The
MLP predictor appears to have the largest bias and MSPE under all situations considered. The BUP and
the Bayes predictor under the informative prior appear to have the best overall performance with Bayes
predictor having often less bias but larger MSPE than the BUP. The CMP appears to be consistently
negatively biased and, for larger values of θ, it appears to have the least MSPE among all predictors
for predicting the next immediate record. However, for further records, the BUP and the Bayes under
informative priors always have smaller MSPEs.

Table 5. Simulated biases and MSEs of the MLE and Bayes estimates of θ.

θ = 2.0, σ = 0.5 θ = 3.0, σ = 0.5
n MLE BEs MLE BEs

Prior 1 Prior 2 Prior 1 Prior 2
4 Bias 0.9033 -0.3743 0.5246 0.9458 0.5109 -1.2490

MSE 1.1802 0.1844 0.7446 1.2321 1.0181 1.6203
5 Bias 0.8080 -0.2412 0.5112 0.9413 0.4833 -1.0681

MSE 0.8359 0.1066 0.6449 1.2031 0.6315 1.2174
6 Bias 0.7602 -0.2289 0.4892 0.9149 0.4675 -0.9188

MSE 0.6684 0.0729 0.4666 1.1518 0.6131 0.9257
7 Bias 0.7176 0.2261 0.4936 0.9125 -0.6012 -0.7860

MSE 0.5598 0.0704 0.4001 1.1431 0.4943 0.6864
8 Bias 0.6295 0.1649 0.4317 0.7808 -0.4578 -0.7357

MSE 0.4154 0.0342 0.3090 0.7745 0.3397 0.5863
9 Bias 0.5099 0.3444 0.3415 0.6889 -0.3560 0.3764

MSE 0.2663 0.0192 0.2101 0.5862 0.2577 0.4313
10 Bias 0.6879 0.1274 0.3175 0.6629 -0.1968 0.0122

MSE 0.4822 0.0190 0.1182 0.5187 0.1699 0.1783
11 Bias 0.6358 0.0788 0.2500 0.6547 0.2562 0.1285

MSE 0.4073 0.0080 0.0739 0.4878 0.1114 0.1741
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Table 6. Simulated biases and MSEs of the MLE and Bayes estimates of σ.

θ = 2.0, σ = 0.5 θ = 3.0, σ = 0.5
n MLE BEs MLE BEs

Prior 1 Prior 2 Prior 1 Prior 2
4 Bias 0.5623 0.4746 0.4791 0.3331 0.2544 0.9519

MSE 0.5135 0.4082 0.4808 0.1635 0.1104 1.0837
5 Bias 0.4995 0.4462 0.4691 0.3217 0.2512 0.8366

MSE 0.4326 0.4013 0.4598 0.1592 0.1106 0.8801
6 Bias 0.4464 0.3811 0.4221 0.3135 0.2495 0.7714

MSE 0.2983 0.2873 0.3941 0.1522 0.1103 0.7720
7 Bias 0.3912 0.3216 0.3653 0.3028 0.2465 0.7262

MSE 0.2353 0.2075 0.2924 0.1492 0.1125 0.7092
8 Bias 0.3714 0.3067 0.3205 0.2763 0.2266 0.6651

MSE 0.2200 0.1914 0.2296 0.1251 0.0965 0.5967
9 Bias 0.3566 0.2811 0.2850 0.2626 0.2171 0.6350

MSE 0.1992 0.1706 0.1820 0.1205 0.0964 0.5687
10 Bias 0.3412 0.2736 0.2936 0.2582 0.2162 0.6119

MSE 0.1883 0.1581 0.1627 0.1143 0.0924 0.5270
11 Bias 0.2769 0.2553 0.2740 0.2340 0.1965 0.5406

MSE 0.1375 0.1309 0.1378 0.1011 0.0848 0.4477

Table 7. Simulated biases and MSPEs of different predictors.

θ = 2.0, σ = 0.5 θ = 3.0, σ = 0.5
n s MLP BUP CMP BP MLP BUP CMP BP

Prior 1 Prior 2 Prior 1 Prior 2
2 3 Bias -1.2962 0.4045 -0.7849 0.3901 0.0818 -0.7168 0.3203 -0.3763 0.1581 0.5556

MSPE 3.1168 1.2749 1.8637 1.3887 1.3927 1.1469 0.7420 0.7088 0.9657 1.1083
4 Bias -2.7248 0.2412 -1.7045 -0.1805 -0.6168 -1.4084 0.2236 -0.7866 0.2398 -0.2923

MSPE 11.134 2.4968 5.9763 2.7233 4.1818 3.9683 1.7455 2.3796 1.9557 2.0092
3 4 Bias -1.4866 0.5232 -0.6336 0.0425 0.3605 -0.8797 0.3620 -0.3172 0.4204 0.2032

MSPE 3.7715 1.3541 1.6168 1.3785 1.5458 1.6034 0.8684 0.7832 1.0795 1.1500
5 Bias -3.3549 0.1636 -1.8093 -0.4787 -0.7376 -1.5868 0.2558 -0.7002 0.1202 -0.1549

MSPE 15.681 2.6472 6.5663 3.7590 4.5769 4.6264 1.7958 2.2617 2.0424 2.2127
4 5 Bias -1.8950 0.5838 -0.7243 0.2371 -0.0134 -1.0903 0.3623 -0.3598 0.0834 0.3647

MSPE 5.5037 1.5819 1.9239 1.6511 1.6855 2.3037 1.0761 1.0438 1.1127 1.1895
6 Bias -4.1898 0.1845 -2.1276 -0.3072 -0.7651 -1.9102 0.2780 -0.7821 0.0936 -0.2662

MSPE 21.814 2.5759 7.5742 3.6265 4.8932 6.4451 2.1767 2.8685 2.3115 2.4434
5 6 Bias -2.4499 0.5922 -0.9486 0.1874 0.0314 -1.2555 0.4530 -0.3579 0.1240 0.3432

MSPE 8.1345 1.5699 2.3595 1.5770 1.6561 2.8176 1.2483 1.1396 1.2898 1.3302
7 Bias -5.1719 0.2856 -2.5141 -0.6156 -0.9408 -2.3921 0.2787 -0.9829 -0.1875 -0.4326

MSPE 31.640 2.3586 9.4019 4.8181 5.5586 9.1496 2.1620 3.4103 3.0171 3.3748
6 7 Bias -3.2635 0.6256 -1.3019 0.0911 -0.1629 -1.5655 0.4696 -0.4744 0.2752 0.0715

MSPE 12.769 1.4947 3.0156 1.8914 2.1169 4.1045 1.3305 1.4080 1.3759 1.3906
8 Bias -6.5273 0.2757 -3.1699 0.2226 -0.1854 -2.8244 0.2405 -1.1768 -0.2309 -0.4452

MSPE 47.325 2.4953 13.116 5.1736 5.7660 11.470 2.3055 3.9293 2.8501 3.2632
7 8 Bias -4.1422 0.7563 -1.6462 0.0410 -0.1693 -1.7427 0.5733 -0.4799 0.1240 0.0506

MSPE 19.175 1.4503 3.8286 1.9065 2.4937 4.9607 1.4640 1.5174 1.5478 1.5801
9 Bias -8.3213 0.3564 -3.9810 -0.8115 -0.9052 -3.3566 0.2499 -1.4048 -0.2790 -0.5381

MSPE 74.135 2.0830 18.661 5.1848 5.6547 15.354 2.4738 4.8518 3.1293 3.9868
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6. Conclusion

In this paper, we considered the estimation of unknown parameters and the prediction of future records
from the new Pareto-type distribution based on records. Classical and Bayesian approaches were used for
estimation and prediction. Two real data sets and a Monte Carlo simulation study have been conducted
to analyze and evaluate different methods. Comparing different estimators, from simulation results, it
appears that the Bayes estimator under the informative prior is uniformly better than the MLE and
the Bayes estimator under the non informative prior in terms of MSE. Comparing different predictors,
the BUP and the Bayes predictor under informative priors are generally better than other predictors for
predicting further records.
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