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Abstract: Metformin constitutes the foundation therapy in type 2 diabetes (T2D). Despite its multiple
beneficial effects and widespread use, there is considerable inter-individual variability in response to
metformin. Our objective is to identify metabolic signatures associated with poor and good responses
to metformin, which may improve our ability to predict outcomes for metformin treatment. In
this cross-sectional study, clinical and metabolic data for 119 patients with type 2 diabetes taking
metformin were collected from the Qatar Biobank. Patients were empirically dichotomized according
to their HbA1C levels into good and poor responders. Differences in the level of metabolites between
these two groups were compared using orthogonal partial least square discriminate analysis (OPLS-
DA) and linear models. Good responders showed increased levels of sphingomyelins, acylcholines,
and glutathione metabolites. On the other hand, poor responders showed increased levels of metabo-
lites resulting from glucose metabolism and gut microbiota metabolites. The results of this study
have the potential to increase our knowledge of patient response variability to metformin and carry
significant implications for enabling personalized medicine.

Keywords: metformin; type 2 diabetes; response variability; metabolic signatures; personalized medicine

1. Introduction

Metformin constitutes the foundation therapy in type 2 diabetes due to its multiple
positive effects; it is still the most commonly prescribed oral anti-diabetic medication
worldwide [1]. In addition to its anti-diabetic effects, metformin is considered a potential
drug for bone diseases, malignancies, neurodegenerative diseases, and recently COVID-
19 [2]. Metformin has a long-term safety and efficacy profile, low risk of hypoglycemia,
additive or synergistic effects in combination therapy, low cost, and wide availability [3].
Although metformin has been in use for several decades, its underlying mechanism of
action, as well as its effects on metabolism, are not very well understood. Proposed
mechanisms of metformin action include suppression of hepatic gluconeogenesis through
activation of AMP-activated protein kinase and inhibition of mitochondrial respiration
by acting on complex I [4,5]. Recent studies demonstrated that metformin alteration of
the composition of the gut microbiota mediates some of its anti-diabetic effects [6,7]. The
interplay between metformin and gut microbiota includes maintaining the integrity of the
intestinal barrier, promoting the production of short-chain fatty acids, and regulating bile
acid metabolism [8].

Despite all the positive features of metformin, the response to this drug varies sig-
nificantly across individuals. Previous studies have demonstrated that metformin did
not achieve optimal glycemic control in 35% of patients and that the failure rate of met-
formin therapy could reach 50% in newly diagnosed T2D adolescents [9,10]. Pharma-
cometabolomics is a rapidly developing field within metabolomics that focuses on identify-
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ing novel metabolic biomarkers associated with drug effects. It aims to provide valuable
insights into the underlying mechanisms involved in drug responses and enable individ-
ualized assessment of drug therapy [11–13]. Gaining a comprehensive understanding of
the intricate mechanisms of action of metformin holds the potential to uncover validated
metabolic biomarkers. These biomarkers, in conjunction with genetic data, could facilitate
the classification of individuals based on their response to the drug. This, in turn, will pave
the way for personalized metformin therapy strategies.

Our primary goal is to identify distinct metabolic signatures that are correlated with
both poor and good responses to metformin. By achieving this objective, we aim to enhance
our ability to predict the outcome of metformin response and potentially implement
changes in patient management. To achieve this, we are conducting a retrospective cross-
sectional study that focuses on the identification of novel blood metabolites associated with
a response to metformin.

2. Materials and Methods
2.1. Data Source and Study Participants

This study obtained data from participants through the Qatar Biobank (QBB). The
QBB database contains a deep phenotype of a population of Qatari nationals or long-term
residents (≥15 years living in Qatar) aged 18 years and older in the State of Qatar. Exten-
sive baseline socio-demographic data, clinical and behavioral phenotypic data, and others,
including body mass index, blood pressure, glycosylated hemoglobin (HbA1c), fasting
glucose level, insulin levels, lipid profile (total cholesterol, LDL, HDL, triglycerides), liver
and kidney enzymes, creatinine, citric acid, lactate, and multiple other clinical biochem-
istry parameters were measured at the central laboratory of Hamad Medical Corporation
(HMC), accredited by the College of American Pathologists. QBB data also included ques-
tionnaires related to their history of diabetes, medication usage, and metabolomics data for
1000 metabolites. This research study was approved by the Institutional Review Boards of
the Qatar Biobank (QF-QBB-RES-ACC-00125). All participants provided informed consent.
Among the participants, a total of 119 patients with Type 2 Diabetes who were taking
metformin (daily doses range from 1000 to 2000 mg) and had available metabolic data were
selected (Figure 1). Patients were empirically dichotomized according to their HbA1C lev-
els, which is the most widely used measure of glycemic control [14], into poor responders
(HbA1C ≥ 7) and good responders (HbA1C < 7) in accordance with the American Diabetes
Association guidelines and previous studies [15,16].
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2.2. Metabolomics

All participant serum samples were subjected to untargeted metabolomics using estab-
lished protocols [17]. Metabolites measurement was performed using a Thermo Scientific
Q-Exactive high resolution/accurate mass spectrometer (Thermo Fisher Scientific, Inc.,
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Waltham, MA, USA) interfaced with a heated electrospray ionization (HESI-II) source
and Orbitrap mass analyzer operated at 35,000 mass resolution along with Waters AC-
QUITY ultra-performance liquid chromatography (UPLC) (Waters Corporation, Milford,
MA, USA). A thorough explanation of the process has already been provided [17]. Hits
were matched to pre-existing library entries containing over 3300 pure standard chemicals
to identify compounds. Compounds were divided into several groups according to their
sources. Internal standards and quality checks have been previously published [18]. In
short, to adjust for discrepancies in sample preparation and instrument performance, a
combination of stable isotope-labeled chemicals was utilized as internal standards. The
stability and repeatability of the procedure were tracked over time using quality control
samples. To reduce variability and guarantee the integrity of the samples, a systematic
methodology was employed for pre-analytical sample management, including sample
collection, storage, and preparation.

2.3. Statistical Analysis

Metabolomics data were inverse rank normalized. The software SIMCA® (Version
18.0.0) [19] was used. SIMCA® is a versatile multivariate data analysis software that em-
ploys advanced algorithms and interactive visualizations to explore, analyze, and interpret
complex datasets. Multivariate analyses were run, including unsupervised (principal
component analysis) PCA and supervised (orthogonal partial least square-discriminant
analysis) OPLS-DA. R software (version 4.2.1) [20] was used to perform linear models for
each metabolite (as the response variable) versus ‘poor responders’ vs. ‘good responders’
(as the explanatory variables). The model also included the following confounders: age,
gender, BMI, and principal components 1 and 2. The nominal p-values were adjusted using
the multiple testing correction method (False Discovery Rate, FDR). Statistical significance
was defined as FDR < 0.05. Functional enrichment analysis was run on all p-value-ordered
metabolite lists from the linear model performed in this study. This analysis was conducted
based on a one-way Wilcoxon rank sum test followed by the FDR multiple testing correction
method. These subpathways were previously defined by Metabolon through the utilization
of Creative Proteomics’ technology, sophisticated bioinformatics tools, and databases to
map identified metabolites onto metabolic pathways. Subpathways with less than three
top hits were dropped.

3. Results
3.1. General Characteristics of Participants

One hundred and nineteen patients with T2D (55.0 ± 8.2 years) were dichotomized
into ‘poor responders’ (n = 70) and ‘good responders’ (n = 49) based on their HbA1C levels.
Table 1 reveals significantly higher levels of fasting blood glucose, insulin, homeostatic
model assessment of insulin resistance (HOMA-IR), gamma-glutamyl transferase (GGT),
and triglycerides in the poor response group when compared to the good response one.

Table 1. General Characteristics of Participants.

Test Variable Total
(N = 119)

Poor Responders
(N = 70)

Good Responders
(N = 49) p Value

Vital signs

Gender (M/F) 58/61 34/36 24/25 0.56
Age 55.0 (8.2) 55.3 (8.2) 54.6 (8.3) 0.67

BMI (kg/m2) 31.2 (27.2–35.2) 31.0 (26.8–36.7) 31.5 (27.9–33.9) 0.93
Systolic blood pressure (mmHg) 126.6 (14.4) 127.9 (14.7) 124.9 (14.1) 0.27
Diastolic blood pressure (mmHg) 74.0 (10.8) 73.1 (11.0) 75.4 (10.4) 0.25

Pulse rate 73.2 (11.9) 76.9 (11.4) 67.9 (10.5) <0.001

Blood
sugar

Fasting blood glucose (mmol/L) 8.6 (6.6–11.2) 10.8 (9.1–15.0) 6.4 (5.7–7.8) <0.001
HbA1C (%) 7.5 (6.7–9.0) 8.5 (8.0–9.3) 6.5 (6.1–6.8) <0.001

Insulin (uU/mL) 15.0 (10–26.4) 18.7 (12.0–35.6) 12.0 (8.7–16.5) <0.001
HOMA-IR 6.5 (3.3–12.9) 8.6 (5.7–17.2) 3.3 (2.4–5.80) <0.001

C-peptide (ng/mL) 3.0 (2.0–3.9) 3.2 (2.0–4.0) 2.5 (2.0–3.7) 0.21
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Table 1. Cont.

Test Variable Total
(N = 119)

Poor Responders
(N = 70)

Good Responders
(N = 49) p Value

Lipid
profile

Total cholesterol (mmol/L) 4.50 (3.9–5.0) 4.63 (3.80–5.30) 4.40 (3.89–4.98) 0.45
HDL-cholesterol (mmol/L) 1.12 (1.00–1.33) 1.12 (0.98–1.30) 1.14 (1.03–1.34) 0.34
LDL-cholesterol (mmol/L) 2.56 (2.00–3.00) 2.56 (2.00–3.20) 2.65 (2.00–3.00) 0.85

Triglyceride (mmol/L) 1.60 (1.20–2.20) 1.60 (1.36–2.36) 1.24 (1.09–1.80) 0.002

Kidney
function

Creatinine (µmol/L) 66.0 (55.0–77.0) 67.0 (53.0–77.0) 65.0 (54.0–79.5) 0.85
Urea (mmol/L) 4.5 (3.9–5.5) 4.6 (4.0–5.6) 4.4 (3.6–5.1) 0.12

Lactate (mmol/L) 0.9 (0.7–1.3) 0.9 (0.7–1.2) 0.9 (0.7–1.3) 0.84
Bicarbonate (mmol/L) 26.6 (2.3) 26.2 (2.2) 27.1 (2.4) 0.029

Total protein (g/L) 72.3 (3.5) 72.8 (3.7) 71.6 (3.1) 0.056
Uric acid (µmol/L) 285 (239–336) 282 (239–309) 296 (238–392) 0.084

Liver
function

Albumin (g/L) 44 (43–46) 44 (43–46) 45 (42–45) 0.78
ALT (U/L) 20 (15–30) 21 (16–30) 19 (14–29.5) 0.19
AST (U/L) 17 (14–21) 17 (14–22) 16 (13.5–21) 0.37
GGT (U/L) 23 (15–33) 29 (21–34) 17 (12–27) 0.023

Hormones
TSH (mIU/L) 1.43 (0.97–2.13) 1.52 (0.95–2.20) 1.41 (1.02–2.02) 0.80

Free thyroxine (pmol/L) 13.2 (12.3–14.2) 13.2 (12.2–14.1) 12.9 (12.3–14.4) 0.90
Free triiodothyronine (pmol/L) 4.22 (0.59) 4.22 (0.56) 4.21 (0.63) 0.89

Data are presented as mean (SD), median (IQR), and number for parametric, non-parametric, and nominal vari-
ables, respectively. The difference between the mean/median was evaluated using an independent t-test/Mann–
Whitney U test as appropriate. The chi-square test was used for the nominal variable. Abbreviations: BMI,
body mass index; HbA1C, glycated hemoglobin; HOMA-IR, homeostatic model assessment of insulin resis-
tance; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine transaminase; AST, aspartate
aminotransferase; GGT, gamma-glutamyl transferase; TSH, Thyroid stimulating hormone.

3.2. Multivariate Analysis of Metabolites Differentiating Poor and Good Metformin Responders

Non-targeted metabolomics analysis was performed to investigate the metabolic
signatures of 119 patients with Type 2 Diabetes (T2D) taking metformin. OPLS-DA was
used to identify the best distinguishing components between poor and good responders,
as shown in Figure 2. OPLS-DA showed one predictive and two orthogonal components,
with the discriminatory component accounting for 82.3% of the variance between poor and
good responders. Figure 2C shows the list of metabolites with VIP > 1.5.

3.3. Univariate Analysis of Metabolites Differentiating Poor and Good Metformin Responders

Linear model analysis revealed a number of FDR (≤0.05) significant changes between
the two studied groups (Table 2). This includes 1,5-anhydroglucitol, glucose, mannose,
and pyruvate. Changes were also seen in microbiota-related metabolites, including 1-
carboxyethylphenylalanine, mannonate, and methyl glucopyranoside (α+β). Other metabo-
lites differentiating the two groups also included glutamine, gamma-
glutamylglutamine, glutamate, and pyroglutamine. In addition, many sphingomyelins
and acylcholines were also found to differentiate between the two groups.

3.4. Functional Enrichment Analysis

The results of functional enrichment analyses (Figure 3) indicated significant differ-
ences in sphingomyelins, fatty acid metabolism (Acyl Choline), glycolysis, gluconeogenesis,
and pyruvate metabolism. A heatmap showing the top metabolites is shown in Figure 3.
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Table 2. Metabolites differentiating metformin from good vs. poor responders, correcting for age, gender, BMI, and principal components 1 and 2.

Metabolite Super-Pathway Subpathway Estimate SE p-Value FDR

1,5-anhydroglucitol (1,5-AG) Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 1.164 0.160 5.89 × 10−11 5.16 × 10−8

Mannose Carbohydrate Fructose, Mannose, and Galactose Metabolism −0.942 0.159 3.73 × 10−8 1.63 × 10−5

Pyroglutamine * Amino Acid Glutamate Metabolism 0.898 0.154 6.92 × 10−8 2.02 × 10−5

Glucose Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism −0.758 0.145 8.87 × 10−7 0.000194
Linoleoylcholine * Lipid Fatty Acid Metabolism (Acyl Choline) 0.862 0.169 1.42 × 10−6 0.00025

Gamma-glutamylglutamine Peptide Gamma-glutamyl Amino Acid 0.871 0.183 5.67 × 10−6 0.000827
1-carboxyethylphenylalanine Amino Acid Phenylalanine Metabolism −0.579 0.123 6.99 × 10−6 0.000875

Mannonate * Xenobiotics Food Component/Plant −0.660 0.142 9.41 × 10−6 0.00103
Sphingomyelin (d18:2/24:2) * Lipid Sphingomyelins 0.699 0.157 2.08 × 10−5 0.002027

1-(1-enyl-palmitoyl)-GPC (P-16:0) * Lipid Lysoplasmalogen 0.748 0.173 3.38 × 10−5 0.002963
Hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) ** Lipid Sphingomyelins 0.670 0.161 6.52 × 10−5 0.004444

Arachidonoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) 0.734 0.177 6.85 × 10−5 0.004444
Pyruvate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism −0.704 0.171 7.10 × 10−5 0.004444

3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and Valine Metabolism −0.743 0.181 7.90 × 10−5 0.004612
Palmitoyl sphingomyelin (d18:1/16:0) Lipid Sphingomyelins 0.543 0.136 0.00012 0.006159

Sphingomyelin (d18:2/24:1, d18:1/24:2) * Lipid Sphingomyelins 0.559 0.140 0.000124 0.006159
Pseudouridine Nucleotide Pyrimidine Metabolism, Uracil containing 0.689 0.174 0.000128 0.006159

Glutamate Amino Acid Glutamate Metabolism −0.574 0.145 0.000134 0.006159
Sphingomyelin (d18:1/20:1, d18:2/20:0) * Lipid Sphingomyelins 0.592 0.151 0.000153 0.006721

Sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2) * Lipid Sphingomyelins 0.551 0.143 0.000189 0.007892
2-aminooctanoate Lipid Fatty Acid, Amino 0.631 0.164 0.0002 0.007967

Alpha-ketobutyrate Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism −0.709 0.184 0.000209 0.007967
Palmitoylcholine Lipid Fatty Acid Metabolism (Acyl Choline) 0.661 0.174 0.000246 0.008988

Glutamine Amino Acid Glutamate Metabolism 0.673 0.181 0.000326 0.011422
Gamma-glutamylcitrulline * Peptide Gamma-glutamyl Amino Acid 0.679 0.184 0.000347 0.011683

N-acetylthreonine Amino Acid Glycine, Serine, and Threonine Metabolism 0.572 0.155 0.000361 0.011699
Fructose Carbohydrate Fructose, Mannose, and Galactose Metabolism −0.577 0.157 0.000384 0.01202

Cysteine-glutathione disulfide Amino Acid Glutathione Metabolism 0.584 0.161 0.000434 0.013119
Pro-hydroxy-pro Amino Acid Urea cycle; Arginine and Proline Metabolism 0.640 0.185 0.000774 0.021566

Sphingomyelin (d18:1/20:2, d18:2/20:1, d16:1/22:2) * Lipid Sphingomyelins 0.495 0.143 0.000776 0.021566
N, N, N-trimethyl-alanylproline betaine (TMAP) Amino Acid Urea cycle; Arginine and Proline Metabolism 0.516 0.149 0.000788 0.021566

Methyl glucopyranoside (alpha + beta) Xenobiotics Food Component/Plant 0.721 0.213 0.001034 0.026924
Glycerol 3-phosphate Lipid Glycerolipid Metabolism 0.670 0.199 0.001045 0.026924

Perfluorooctanoate (PFOA) Xenobiotics Chemical 0.555 0.166 0.001141 0.028559
Glycine Amino Acid Glycine, Serine and Threonine Metabolism 0.661 0.200 0.001269 0.030868

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) * Lipid Plasmalogen 0.470 0.144 0.001466 0.034713
Sphingomyelin (d18:2/14:0, d18:1/14:1) * Lipid Sphingomyelins 0.377 0.117 0.001664 0.038324
Sphingomyelin (d18:2/16:0, d18:1/16:1) * Lipid Sphingomyelins 0.377 0.117 0.001719 0.038324

3-methyl-2-oxovalerate Amino Acid Leucine, Isoleucine and Valine Metabolism −0.582 0.181 0.00175 0.038324
5-oxoproline Amino Acid Glutathione Metabolism 0.575 0.180 0.001873 0.039081

Maltose Carbohydrate Glycogen Metabolism −0.483 0.152 0.001874 0.039081
Orotidine Nucleotide Pyrimidine Metabolism, Orotate containing 0.522 0.165 0.002111 0.042617

1-ribosyl-imidazoleacetate * Amino Acid Histidine Metabolism 0.438 0.139 0.002141 0.042617
Gamma-glutamylglycine Peptide Gamma-glutamyl Amino Acid 0.625 0.200 0.002242 0.043638

Sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1) * Lipid Sphingomyelins 0.390 0.126 0.002427 0.046226
Sphingomyelin (d18:1/18:1, d18:2/18:0) Lipid Sphingomyelins 0.462 0.150 0.002696 0.049799

Ribitol Carbohydrate Pentose Metabolism −0.516 0.168 0.002729 0.049799

Estimate represents beta value. Abbreviations: SE, standard error; FDR, false discovery rate. (*) indicates a compound that has not been officially confirmed based on a standard but that
Metabolon is confident in its identity.
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4. Discussion

Metformin is used on a daily basis by more than 200 million patients with T2D
worldwide. Despite its multiple beneficial effects and widespread use, there is considerable
inter-individual variability in response to metformin. Genetic variation may be one of the
important determinants explaining the variation in individual responses to metformin.
However, it is now estimated that genetic background accounts for only 20–40% of the
inter-individual variability in response to drugs [12]. Pharmacometabolomics is a powerful
tool to explain the differences in drug response among individuals since it is sensitive
to both genetic and environmental factors such as diet and the patient’s microbiome.
In this retrospective study, we identified metabolic signatures associated with poor and
good responses to metformin in a set of 119 samples from the Qatar Biobank. These
interpretations of these differences and the potential impact on metformin response are
summarized below.

4.1. Glycolysis, Gluconeogenesis, and Pyruvate Metabolism

Univariate and pathway enrichment analyses showed, expectedly, that the blood
sugars and metabolites related to glycolysis, gluconeogenesis, and pyruvate metabolism
(glucose, fructose, mannose, and pyruvate) were significantly higher in the poor response
group, reflecting a greater level of hyperglycemia, the impaired action of metformin to
inhibit gluconeogenesis, and dysregulated glucose metabolism. This is consistent with the
previous literature [21], in particular, the recent QBB findings [22]. Our emerging results
showed that 1,5-anhydroglucitol (1,5-AG) was significantly higher in good responders.
Gormsen et al. [23] reported that 1,5-AG was associated with the glucose-lowering effect
of metformin. Similarly, Villena Chávez et al. recently reported, in a study involving one
hundred outpatients with T2D, that patients with HbA1c < 7% had significantly higher
1,5-AG than those with HbA1c ≥ 7% [24].

4.2. Gut Microbiome Metabolites

Our emerging data showed that gut microbiome-derived metabolites, namely, man-
nonate, 1-carboxyethylphenylalanine, and methyl glucopyranoside (α+β), were associated
with metformin response. Additionally, more gut metabolites were associated with the
response to metformin, including 1-carboxyethyltyrosine, 1-carboxyethylvaline, phenylac-
etate, and phenyllactate, although they did not reach the FDR level of significance. Indeed,
the gut microbiome is a vital component that needs to be given more attention since it
plays a substantial role in drug response and effectiveness by altering the activity, toxicity,
and bioavailability of therapeutic drugs [25,26]. The crosstalk between gut microbiota
metabolism and metformin is now well established, and it is now clear that the gut micro-
biota participates in the glucose-lowering effects of metformin. In a clinical study involving
healthy individuals, the hypoglycemic effect of metformin was correlated with the micro-
biome through specific changes in metabolites [27]. These metabolites can derive directly
from bacteria or the transformation of dietary or host-derived substrates [28]. Examples
include 1-carboxyethyltyrosine, 1-carboxyethylvaline, and 1-carboxyethylphenylalanine,
which are organic compounds that belong to the class of amino acid derivatives. Methyl
glucopyranoside is a monosaccharide derived from glucose that can exist in two forms:
alpha and beta.

An increase in the production of short-chain fatty acids (SCFAs), regulation of bile acid
metabolism, and improvement of glucose homeostasis are among the proposed mechanisms
by which metformin exerts part of its hypoglycemic effects through the gut microbiota [8].
However, the relationship between metformin and the microbiome is bidirectional, and the
metabolites produced by the gut microbiota could also influence the efficacy of metformin
and contribute to the inter-individual difference in response to the drug [29]. The gut
microbiota can produce hundreds of metabolites [30], yet studies addressing the influ-
ence of these metabolites on metformin response remain very scarce. Koh et al. showed
that imidazole propionate, a microbial metabolite, is higher in T2D patients treated with
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metformin [31]; the same study also showed that imidazole propionate impairs the glucose-
lowering effect of metformin in mice. On the other hand, Sun et al. [32] showed that the
bile acid glycoursodeoxycholic acid (GUDCA) mediates the glucose-lowering effect of
metformin by binding to the nuclear receptors FXR.

Shannon diversity is one of the most common alpha diversity metrics reported in the
gut microbiome literature. It summarizes taxonomic richness and evenness, and it has
been suggested as a marker for microbiome health [33]. Wilmanski et al. [34] classified
1-carboxyethylphenylalanine and methyl glucopyranoside (α+β) among the 11 strongest pre-
dictors of the gut microbiome Shannonα-diversity. Interestingly, 1-carboxyethylphenylalanine
associated in our study with the poor responder group was identified by Wilmanski to be
associated with less microbiome diversity, while methyl glucopyranoside (α+β) associated
in our study with the good responders, was identified to be associated with more micro-
biome diversity and a healthier status. Additionally, our previous studies on QBB data
from non-diabetic individuals showed that 1-carboxyethylphenylalanine was identified
as the most discriminating metabolite of insulin resistance [35,36]. Our results suggest
that dysbiosis in gut microbiota is associated with a reduced response to metformin, and
improving gut health could improve the effectiveness of metformin. Relatedly, Şahin
et al. showed that patients treated with metformin combined with probiotics had a greater
reduction in HbA1C from baseline compared to patients treated with metformin only [37].
However, the extent to which a certain microbiome profile is necessary for the metformin
impact remains unknown, and more validation studies are needed.

Our results showed that mannonate, an E. coli K-12 metabolite [38], was associated
with poor response to metformin. Previous data on mannonate is very scarce. E. coli K-12 is
considered an opportunistic commensal gut microbe and was recently discovered to distort
the barrier integrity in human intestinal cells [39]. Knowing that metformin exerts part of
its hypoglycemic effects by altering the gut microbiota in ways that maintain the integrity
of the intestinal barrier [40], mannonate may exert an opposite role of metformin action by
hindering the function of the intestinal barrier. The diet and potential metabolites produced
during different types of diet may play a role in this context [41]. Further studies are needed
to study the effect of metformin on intestinal barriers in relation to Shannon diversity.

4.3. Sphingomyelins

Our emerging results showed an increase in all sphingomyelins in the responsive
group, and the enrichment analysis showed an FDR-significant pathway of sphingomyelins.
Sphingomyelin is one of the main phospholipids that make up the cell plasma membranes,
where it forms—with cholesterol—lipid rafts. The latter serve as platforms for protein
assemblies involved in signal transduction. Additionally, sphingomyelin is the most abun-
dant sphingolipid in plasma lipoproteins, and it plays a role as an active center for lipid and
glucose metabolism [42,43]. Aligned with our data, a study that compared metabolic signa-
tures associated with T2D and impaired fasting glucose showed that sphingomyelins were
significantly reduced in the disease group [44]. Additionally, data from the QBB analyzed
by Zaghlool et al. [22] and Yousri et al. [45] reported low levels of two sphingomyelins in
T2D and severe insulin-deficient diabetes. Two other studies analyzed the serum metabolite
profile associated with the incidence of T2D using a targeted metabolomic approach and
identified many sphingomyelins related to a low incidence of T2D [46,47]. Moreover, a
study showed that downregulated metabolism of sphingomyelins can affect insulin sen-
sitivity and lead to β cell dysfunction [48]. A study on sphingomyelin synthase 1-null
mice showed that reduced sphingomyelin synthesis is associated with increased reactive
oxygen species and reduced insulin secretion [49]; another study compared the lipidomic
profiles in monkeys with and without diabetes and showed reduced sphingomyelins in the
presence of biochemical profiles suggestive of reduced insulin sensitivity [50]. Moreover,
Sharma et al. [51] reported low levels of ceramides associated with a beneficial metabolic
response to metformin. Of note, a study testing the role of metformin in ovarian cancer
suggested that the sphingolipid rheostat may be a novel metabolic target of metformin [52],
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and metformin alleviated inflammation by targeting sphingolipid metabolism through
inhibiting sphingosine kinase 1 (SPHK1), an enzyme which converts sphingosine, a product
of sphingomyelin, to sphingosine 1-phostpate [52,53]; the latter has been shown to act via
stimulation of the sphingosine-1-phosphate receptor-2 to impair insulin signaling and
reduce hepatic insulin resistance [54]. However, our results did not show any significant
difference in sphingosine 1-phosphate levels between the two groups. A recent review arti-
cle showed that the role of SPHK1 in insulin resistance is controversial [55]. Although our
results highlight the potential use of sphingomyelins to assess the response to metformin, a
more precise and comprehensive measurement of sphingomyelin composition in different
metformin treatment contexts should be performed.

4.4. Glutamine Metabolism

In this study, glutamate and glutamine were associated with poor and good responses
to metformin, receptively, consistent with a Japanese study that showed a positive cor-
relation between homeostasis model assessment of insulin resistance (HOMA-IR) and
glutamate but a negative correlation between glutamine and glycine [56]. The findings
were also consistent with another study that suggested glutamate to be among the baseline
metabolites associated with HOMA-IR [57]. Moreover, Greenfield et al. showed that glu-
tamine supplementation was associated with improved glucose tolerance [58], Cheng et al.
showed that a high glutamine/glutamate ratio was associated with a lower risk of T2D
incidence [59], whereas Liu et al. showed that lower levels of glutamine and higher levels
of glutamate were associated with increased risk of T2D [60]. However, d’Almeida et al.
showed that glutamate was lower in patients with worse glycemic control [61]. Interestingly,
many studies demonstrated that metformin modifies glutamine metabolism and reduces
glutamate accumulation by inhibiting glutaminase, the enzyme which converts glutamine
to glutamate [62,63]. Noteworthy, glutaminase is overexpressed in cancer cells [64], and this
explains why metformin is beneficial for some patients with cancer. Many studies target
glutamine metabolism as a potential therapeutic strategy for cancer [65]. Though further
validation is required, the glutamine-to-glutamate ratio could be clinically important as a
potential metabolic marker of a patient’s sensitivity to metformin.

4.5. Choline Metabolism

Our data showed an association between linoleoylcholine and arachidonoylcholine
with good response to metformin, and enrichment analysis showed an FDR significant
association of metformin response to the acylcholine pathway. Indeed, normal human
plasma contains, among choline derivatives, those that are acylated with unsaturated fatty
acid residues (e.g., arachidonic and linoleic), which are a recently discovered family of
endogenous lipids [66]. Little is known about the biological activity of acylcholines, but
a recent study demonstrated that arachidonoylcholine inhibits the human erythrocyte
acetylcholinesterase and could act as an endogenous modulator of the acetylcholine sig-
naling system. [67]. A study showed that metformin was found to moderately inhibit the
activity of acetylcholinesterase [68]. Markowicz-Piasecka et al. [69] concluded that met-
formin has an influence on the cholinergic system in the brain and may play an important
role in the treatment of neurodegenerative diseases. This could also explain metformin’s
appetite-suppressing effects through cholinergic pathways identified in the brain [70].

4.6. Other Metabolites

Five metabolites involved in the glutathione metabolism (gamma-glutamylglutamine,
gamma-glutamylglycine, cysteine-glutathione disulfide, pyroglutamine, and 5-oxoproline)
were higher in the good responder group indicating adequate glutathione metabolism and
emphasizing anti-oxidative properties of metformin.

This also could justify the high levels of glutamate in the poor response group. In fact,
glutamate is metabolized to glutathione via two steps [71]. Variants in the genes coding
for the enzyme glutamate cysteine ligase, which catalyzes the first step of glutathione
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synthesis, have been shown to confer protection against T2D through increased secretion
of glutathione [72]. However, glutathione was not among the measured metabolites in
this study, and further studies are needed to elucidate the possible relationship between
glutathione and metformin response.

Our data showed that only 41% of patients achieved acceptable glycemic control
upon metformin treatment. Many studies reported a low percentage of patients who
achieved glycemic control, and poor response to metformin could be one of the possible
reasons [73,74]. Our clinical data showed that HOMA-IR was significantly higher in the
poor responder group. This is confirmed by the many metabolites discussed above that
are related to insulin resistance. Results from Qatari patients with severe insulin resistance
showed that these patients did not respond adequately to insulin sensitizers such as
metformin [75]. This may explain the low efficacy of metformin in the case of severe insulin
resistance. It also highlights the importance of clustering T2D patients, before treatment
initiation, according to the sub-stratification of Ahlqvist et al. [76], who used six variables
to stratify patients into four clusters representing T2D subtypes.

5. Conclusions

This study provides the research community with a wealth of novel metabolic signa-
tures associated with response to metformin, which has the potential to identify pathways
involved in the action of the drug and predict therapeutic outcomes. One limitation of
this study is the cross-sectional nature of the cohort of metformin-treated subjects with
T2D. It is unclear whether those with higher HbA1C values actually responded poorly to
metformin or had more severe diabetes before treatment with the drug; accordingly, some
metabolites could be associated with the stage or complications of diabetes rather than a
poor or good response to metformin. Moreover, the treatment time with metformin was
not available. A longitudinal cohort study will thus be required to validate our identified
biomarkers. Another limitation is the small sample size; confirming our findings in a larger
cohort is thus warranted. We believe these results can be translated into clinically appli-
cable metabolic biomarkers, which may enable further studies investigating personalized
therapy approaches.
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