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Abstract  
This study suggests a wearable sensor technology to estimate 
center of mass (CoM) trajectory during a golf swing. Groups of 
3, 4, and 18 participants were recruited, respectively, for the 
purpose of three validation studies. Study 1 examined the accu-
racy of the system to estimate a 3D body segment angle com-
pared to a camera-based motion analyzer (Vicon®). Study 2 
assessed the accuracy of three simplified CoM trajectory mod-
els. Finally, Study 3 assessed the accuracy of the proposed CoM 
model during multiple golf swings. A relatively high agreement 
was observed between wearable sensors and the reference (Vi-
con®) for angle measurement (r > 0.99, random error <1.2° 
(1.5%) for anterior-posterior; <0.9° (2%) for medial-lateral; and 
<3.6° (2.5%) for internal-external direction). The two-link mod-
el yielded a better agreement with the reference system com-
pared to one-link model (r > 0.93 v. r = 0.52, respectively). On 
the same note, the proposed two-link model estimated CoM 
trajectory during golf swing with relatively good accuracy (r > 
0.9, A-P random error <1cm (7.7%) and <2cm (10.4%) for M-
L). The proposed system appears to accurately quantify the 
kinematics of CoM trajectory as a surrogate of dynamic postural 
control during an athlete’s movement and its portability, makes 
it feasible to fit the competitive environment without restricting 
surface type.  
 
Key words: Wearable technology; golf swing; center of mass; 
dynamic postural control, balance; simplified biomechanical 
model of human body. 
 

 

 
Introduction 
 
Postural control and functional balance play a key role in 
athletic performance as well as prevention of sport related 
injuries (Hale et al., 2007; Hume et al., 2005; Tropp et al., 
1985). Many times, athletic trainers attempt to improve 
the balance or handle a weight shift during performance 
(Sell et al., 2007) of their athletes in order to enhance 
performance, prevent injury, or recover after injury (e.g., 
ankle sprain) (Wikstrom et al., 2010). It is known that low 
handicap golfers have better balance abilities (Sell et al., 
2007). Therefore, an accurate quantification of an ath-
lete’s dynamic balance control in the field may play an 
important role in many sport applications. 

Due to measurement ease, postural control is often 
assessed by measuring center of pressure (CoP) sway or 
its trajectory using a force platform (Najafi et al., 2012). 
However, standing on an instrumented platform makes it 
difficult to examine postural control on different surface 

types which better replicate an athlete’s natural competi-
tive environment. Recently, several wearable technologies 
have been developed to evaluate body motion (e.g. body 
segment sway) based on microelectro-mechanical sensors 
(MEMS) (Adlerton et al., 2003; Allum et al., 2001a; 
2001b; Allum et al., 2002, Mayagoitia et al., 2002, Najafi 
et al., 2002,). Key advantages of body-wearable sensors 
are their low cost and portable usage in many environ-
ments (Aminian et al., 2002; Najafi et al., 2003; 2009; 
2010a; 2010b; Russmann et al. 2004). Body-wearable 
sensors often consist of one or a combination of accel-
erometers, angular velocity sensors, and magnetometers 
providing valuable data in research (Russmann et al., 
2004). By attaching these sensors to a body segment, they 
allow measurement of segment motion or body sway 
while balance tasks are performed (Najafi et al., 2010a; 
2012; Mancini et al. 2012). Several studies have demon-
strated that sensor derived parameters from wearable 
technologies are useful as an objective metric for as-
sessing postural control deterioration due to a disorder 
(e.g. Parkinson’s, diabetes) or aging (Mancini et al., 2011; 
Mancini et al., 2012; Najafi et al., 2012; Toosizadeh et al., 
2014b). Wearable technologies are also sensitive enough 
to track changes in post–intervention postural control 
(Grewal et al., 2013, Toosizadeh et al., 2014a) or predict-
ing prospective falls (Schwenk et al., 2014).  

Key challenges of using wearable sensors include 
their inability to extract useful clinical data when there is 
too much noise, restriction on the number of sensors that 
can be attached, and their ease of management. Therefore, 
a simplified biomechanical human body model with the 
minimum number of sensor attachments required should 
be implemented with such technology to make them suit-
able for clinical applications. On the other hand, model 
simplification may alter system accuracy, thus, an opti-
mum tradeoff between accuracy and minimum number of 
sensor attachments should be provided. 

Previous studies addressing wearable technology 
for assessing postural control often focus on sacral region 
motion (e.g., one link) and deem to be sufficient in esti-
mating the center of mass (CoM) sway assuming hip joint 
movement is limited (Allum et al., 2001a, Aramaki et al., 
2001; Adlerton et al., 2003). This approach may produce 
accurate results during quiet standing or walking a 
straight line but may be inappropriate for measuring CoM 
trajectory during athletic movements with significant 
body segment motions. 

This  study aims to explore the accuracy of  weara- 

Research article 



Najafi et al. 

 
 

 
 

355 

ble sensors together with simplified biomechanical mod-
els for estimating CoM trajectory during significant body 
segment movements. To achieve this goal, three studies 
were designed to explore the accuracy of main inputs of 
the proposed model. First, sensor accuracy for estimating 
3D body segment angle was assessed. For this purpose, 
accuracy of the system to estimate trunk 3D angle was 
estimated. We assumed similar accuracy would be ob-
tained if sensor was attached to other body segments. 
Second, accuracy of three simplified models to estimate 
CoM trajectory were evaluated and compared to the refer-
ence system. These models estimate CoM trajectory using 
either 1) a single sensor model attached to subject’s lower 
back (Model 1); 2) two sensor modules, respectively 
attached to subject’s lower back and shank (Model 2); or 
3) three sensor modules, respectively attached to subject’s 
lower back, thigh, and shank (Model 3). Through this 
study, the optimum model, which includes minimum 
number of sensor module attachments and an acceptable 
accuracy, was selected. Finally, the accuracy of the opti-
mum model for estimation of CoM trajectory in medial-
lateral (M-L) and anterior-posterior (A-P) planes with 
respect to foot position were examined during a series of 
movements including golf swings. 

 
Methods 
 
Experimental protocol 
Three studies were performed to examine different inputs 
of the final model.  Study 1 explored the accuracy of the 
proposed sensors for estimating 3D body segment angle. 
In this study, a camera-based motion analyzer (Vicon®, 
Oxford, UK) was determined as the reference standard.  

Study 2 measured accuracy of three simplified 
models for estimating CoM compared to a full-body CoM 
estimation model using Vicon during a series of voluntary 
movements. Study 3 compared the output of the selected 
model for estimation of CoM trajectory during golf 
swings. 
 
Participant recruitment 
A total of 25 participants including groups of 3, 4, and 18 
were recruited from the Rosalind Franklin University 
campus for each respective study. All studies were ap-
proved by the local Institutional Review Board at 
Rosalind Franklin University, North Chicago, IL, USA 
and participants signed an approved informed consent 
form prior to participation. Three healthy male partici-
pants participated in Study 1 (age: 23.3 ± 0.6 years; 
height: 1.80 ± 0.07 m; body mass: 70.3 ± 8.1 kg), four 
healthy males in Study 2 (age: 38.4 ± 17.5 years; height: 
1.84 ± 0.03 cm; body mass: 84.1 ± 12.3 kg), and 18 golf 
players (12 males and 6 females) with an established 
handicap level (9-19; average handicap: 14.9 ± 3.1) were 
recruited (age: 38.4±12.3 years; height: 1.78 ± 0.09 cm; 
body mass: 80.4 ± 14.2 kg). 
 
Equipment and reference system 
Depending on the study, up to three inertial sensors, each 
including a triaxial accelerometer, triaxial gyroscope, and 
a triaxial magnometer (LEGSysTM, BioSensics LLC, 

Boston, MA), were attached respectively, to subject’s 
shin, thigh, and lower back  using comfortable Velcro 
bands as shown in Figure 3. The sensors provided real-
time kinematic data (sample frequency 60Hz) including 
acceleration and speed of rotation as well as quaternion 
(qw, qx, qy, qz) components (Dumas et al., 2004; Hart et al., 
1994; Kingston and Beard, 2004) that were subsequently 
converted to Euler angles (Najafi et al., 2010a). These 
angles were used to describe a sequence of three rotations 
determining the orientation of a rigid body in three di-
mensions, in their order of application are: i) Yaw (φ, M–
L), ii) Pitch (θ, A–P) and iii) Roll (ϕ, I–E). The resulting 
three-dimensional angles were used to estimate the trajec-
tory of a participant’s segments such as shank, thigh or 
upper back depending on the simplified human body 
model. We assumed each body segment to be rigid, thus 
considering that the wearable sensors directly provide 
segment angle, our models were not sensitive to the exact 
location of sensor attachment.  

A five-camera based motion analyzer system (Vi-
con®) was used as the reference standard. The sample 
frequency of Vicon system was set to 60Hz to facilitate 
synchronization between inertial sensors and output of 
Vicon system. To synchronize between two systems, at 
the beginning of each measurement, subjects were asked 
to bend their trunk forward and back. The time of maxi-
mum trunk tilt measured by two systems via the markers 
and sensors attached to the lower back was used to syn-
chronize between two systems as illustrated in Figure 5. 
For all experiments, the anterior-posterior (A-P) direction 
was defined as the rotation in the sagittal plane, rotation 
in the frontal plane characterized as medial-lateral (M-L) 
direction, and the internal-external (I-E) was assumed as 
rotation in the transversal plane, all in respect to the sub-
ject’s upright position. 

To explore the degree of agreement between range 
of CoM sway estimated by each model and the range of 
center of pressure (CoP) sway, measured by a standard 
pressure platform, subjects in Study 2, were asked to per-
form golf swing trials while standing on a pressure plat-
form (Emed® System, Novel, Germany, Figure 2). This 
may limit the base of support favored by golfers. Thus, 
after selection of the optimum model, further evaluation 
was performed without a pressure platform (Study 3, 
Figure 3), and participants were allowed to self-select 
their base of support prior to each swing.  
 
Protocol of measurement 
Study 1: Estimation of a typical 3D body segment an-
gle (lower back angle) 
To reduce the impact of potential artifact due to move-
ment of skin for the reference system, all Vicon markers 
and inertial sensor were placed on a rigid plate attached to 
the participant’s lower back between the 10th thoracic 
vertebra (t10) and 5th lumbar vertebra (Figure 1). The 
reference trunk tilt was calculated from the 3-D compo-
nents of the markers in each direction as described in our 
previous publication (Najafi et al., 2002). 

Before each test, the A-P direction of the partici-
pant was visually aligned to the Vicon’s y-axis origin. 
Using the coordinates extracted from the markers, the 
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projection of lower back angles along each axis were 
estimated. 

 
 

 
 

 
 

Figure 1. Experimental setup for assessing the accuracy of 
the sensor in estimating 3D segment angle. Four markers were 
positioned on a fixed platform and attached to the participant’s lower 
back to estimate lower back motion in 3D dimension and compare the 
results with those obtained from the sensor. 
 

Participants executed a series of voluntary move-
ments while standing, including bending forward and 
backward (A-P), bending side-to-side (M-L) and rotating 
right to left (I-E). Participants were asked to repeat each 
test at a self-selected pace including slow, normal, and as 
fast as he/she could. Data from the sensors and Vicon 
were synchronized by matching the identified positive 
peak (i.e. maximum tilt angle) of the measured angle by 
each system. 
 
 

 

 
 

 
 

Figure 2. Estimation of CoM using camera based system 
(Vicon). (a) A set of 36 reflective markers were positioned on 
the participant to estimate CoM as suggested by Vicon’s 
"Plug-in Gait full body modeling" with a single sacral 
marker. (b) Trajectory of CoM was estimated using "Plug-in 
Gait full body modeling". 
 
Study 2: Estimation of center of mass using simplified 
models 
A set of 36 reflective markers were positioned on the 
participant to estimate CoM as suggested by Vicon’s 
"Plug-in Gait full body modeling" along with a single 
sacral marker (Najafi et al., 2012). The model measures 
the CoM of 47 segments including each hand, femur, 

tibia, foot, humerus, radius, thorax, pelvis, and head. For 
estimation of anthropometry data, the toolbox uses height, 
weight, leg length, knee width, ankle width, shoulder 
offset, elbow width, wrist width, and hand thickness. This 
model provides an automatic generation of the CoM 3D 
position after reconstruction for all body segments (Figure 
2). Each participant performed three golf swings as well 
as a series of voluntary movements as described in Study 
1. The CoM during each swing was estimated using dif-
ferent simplified models explained below. The estimated 
values were then compared with the estimated value using 
the full body model discussed above. 
 
 

 

 
 

 
 

Figure 3. Sensor attachment for estimation of CoM. Three 
sensors were attached on the shank (a), thigh (b), and lower 
back (c), respectively. This configuration allows comparing 
the accuracy of one-link, two-link, and three-link model of 
human body for estimating CoM trajectory during athletic 
movements while standing (e.g., golf swing). 
 
Study 3: Estimation of center of mass using wearable 
sensors 
A set of 5 reflective markers were positioned on specific 
anatomical landmarks of the participant: 7th cervical 
vertebra (c7), 10th thoracic vertebra (t10), flexion-
extension axis of the knee, lower lateral surface of the 
thigh, and shank (Figure 3). Along with the reflective 
markers, three wearable sensors were attached to the 
participant. One sensor was attached on the upper back 
between c7 and t10 using a body strap, one to the shank 
using a shin brace and one to the thigh using an elastic 
strap (Figure 3). Subjects were asked to hit a reflective 
ball with a common driver club. Initially, the subject was 
instructed to stay in a neutral upright position to synchro-
nize the position of the markers and the sensors as the 
zero spot and then to bend (A-P direction) and return to 
the initial position. The peak of this movement was de-
tected to synchronize the two systems before each swing. 
After three swings were performed, data collected was 
reconstructed using Vicon Nexus software for comparison 
between Vicon and the sensors (ver 1.4). To estimate 
CoM, we used the optimum model identified in Study 2. 

The output of the data using the Vicon model was 
then set as the reference standard to evaluate the accuracy 
of the sensor data model. 
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Figure 4. Simplified biomechanical human body model for estimating CoM trajectory. (a) one-link model: in this 
model we assumed that CoM is equivalent to lower back motion. (b) two-link model: In this model we assumed human 
body as two rigid segments, one rotating around ankle and the other one rotating around hip joint. (c) three-link 
model: in this model we modelled human body as three rigid segments rotating around ankle, knee, and hip joints. 

 
Models: Estimation of center of mass using body worn 
sensors 
To estimate the CoM position, we assumed the body, 
during standing, can be modeled by a one, two or three-
link model. 

One-link model: The one-link model simulated a 
single inverted pendulum model with motion around the 
ankle joint (Figure 4a), assuming hip and knee motion is 
limited compared to ankle motion. As suggested by pre-
vious literature, CoM can be estimated from the motion of 
the lower back (i.e. sacrum) (Adlerton et al., 2003, Moe-
Nilssen and Helbostad, 2004). The motion of the sacrum 
during upright position measured with the Vicon system 
was used to evaluate the validity of this assumption. As-
suming this model, projection of the sacrum motion al-
lows estimation of the ankle’s angle in respect to natural 
position in A-P (θa) and M-L (φa) directions. The CoM 
position can then be estimated using the following formu-
la: 

1 ( )A P aCOM L Cos θ− =


                                             
(1) 

1 ( )M L aCOM L Cos φ− =


                                            
 
(2) 

Where L1 represents the distance between sacrum and foot estimated 
using Vicon data. 

 
Two-link model: Figure 4b illustrates a two-link 

model to estimate the CoM trajectory using the infor-
mation from joint angles and the participant’s anthropo-
metric data. In this model, knee joint motion was assumed 
to be negligible compared to ankle and hip motions. Alt-
hough, the model allows estimating 3D CoM motion, in 
this study, we only estimated the CoM trajectory in M-L 
and A-P directions. For all estimations, the joint angles 
and CoM value were assumed to be zero at neutral posi-
tion, when participant was at rest in an upright standing 
posture. The sensors attached to participant’s trunk and 
shank provided respective angles during neutral position. 
It was assumed that subtracting trunk and shank angles 
would provide the hip joint angle (θh, Figure 4b). On the 
same note, ankle joint angle in respect to neutral position 
(θa) was assumed to be equivalent as the estimated shank 

angle. Having the anthropometric data of each participant 
(e.g., body mass m and height H), the position of each 
link’s CoM in the sagittal plane was described as: 

 
1 1( sin cos )a ai T Tθ θ= ⋅ + ⋅



                                            (3) 

1 2 1 2( sin sin , cos cos )a h a hj L T L Tθ θ θ θ= ⋅ + ⋅ ⋅ + ⋅


     
 

(4) 

1 21 2

1 2 1 2

( , )y yyx xx m i m jm i m jCOM
m m m m

⋅ + ⋅⋅ + ⋅
=

+ +

  


                
 (5) 

Here, θa, and θh represent, respectively, the angular 
displacement of the ankle and hip in neutral position 
(Figure 4b). The first component of the CoM (x values) 
corresponds to the movement in A-P direction, expressed 
as: 

( )

( )

1 1 2 1 2
1 2

1 1 2 1 2 2
1 2

1 sin ( sin sin )

1 ( ) sin sin

A P a a h

a h

COM m T m L T
m m

m T m L m T
m m

θ θ θ

θ θ

− = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅
+

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
+



 

(6)  

 
The equations can be rewritten with two constants: 

1 2sin sinA P a hCOM K Kθ θ− = ⋅ + ⋅


 (7)  

Where  

1 1 2 1
1

1 2

m T m LK
m m
⋅ + ⋅

=
+  and 

2 2
2

1 2

m TK
m m

⋅
=

+
 

  

The equation of the CoM in the M-L direction was 
derived in an analogous fashion using the estimated an-
gles in M-L plan (φ angle). The values of m1 and m2 (dis-
tal and proximal mass segments), T1 and T2 (distal and 
proximal CoM segments), and L1 and L2 (distal and prox-
imal length segments) were estimated using the partici-
pant’s body mass and height as explained by Winter et 
al.(Winter 1990). To reduce noise and artifact such as  
skin movement, the angle data was filtered using wavelet 
transform band pass filter with mother wavelet of ‘Coiflet 
5’ and cut off frequency 0.06-30Hz as suggested in our 
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previous studies (Aminian et al., 2002, Najafi et al., 2002; 
2003).  

Three-link model: For the three-link model (Figure 
4c), the proximal segment was divided in two sections 
(shank and thigh) which accounts for the bending of the 
knees (θk). Similar to the approach explained in the two-
link model, the CoM equation based on a three-link model 
can be rewritten as follows: 

1 2 3sin sin sina h kCOM K K Kθ θ θ= ⋅ + ⋅ + ⋅  (8)  

Where 

321

131211
1 mmm

LmLmTmK
++

⋅+⋅+⋅
=

 ; 

 

K2 =
m2 ⋅ T2 + m3 ⋅ L2

m1 + m2 + m3 ;  

 

K3 =
m3 ⋅ T3

m1 + m2 + m3

 
  

 

Statistical analysis 
Agreement between estimated body segment angle (i.e. 
lower back angle) by inertial sensors and reference system 
was evaluated using Pearson correlation coefficient (r-
value). Where point-to-point agreement between two 
systems was estimated per subject for each measured 
CoM trajectory as a function of time, the average and 
standard deviation of all estimated r-values were reported. 
Additionally, the systematic (SE), random (RE) and root 
mean square error (RMSE) of the angles between the two 
systems were calculated for each trial. Systematic and 
random errors were estimated, respectively, by calculating 
mean and standard deviation of errors.  

The accuracy of each model for estimating CoM 
was assessed by examining the degree of agreement be-
tween each model and the reference standard (Vicon).  
The degree of agreement was estimated using Pearson 
correlation coefficient. The SE, RE, and RMSE were also 
calculated for the CoM range of motion. 

To evaluate the discrepancy of measurement be-
tween sensor-derived and Vicon-derived parameters, 
Bland-Altman plot was used. 

To explore whether the proposed model and algo-
rithms allow real-time estimation of body segment angle 
and CoM trajectory, using the Matlab timer (Tic-Toc 
function), we controlled the execution of each trial for 
estimating and recording 3D angles of two segments 
calculating CoM trajectory. We assumed that the algo-
rithm could be implemented in real-time if the time re-
quired for estimation of each time sample is less than 
0.0167sec corresponding to sample frequency of 60Hz 
used in our study.  

All calculations and statistical analysis were made  
using MATLAB® version 7.4 (R2007z) (MathWorks, 
Inc., Natick, MA).  
 
Results 
 
Accuracy of body worn sensors for estimation of joint 
angles 
A relatively high agreement was observed between the 
sensor’s output and the reference system for both sponta-
neous angles and range of motion values (r > 0.99, p < 
0.001). Figure 5 illustrates the estimated angles using 

Vicon (dash line) and inertial sensors (solid line) for a 
typical participant during sagittal plane movements. Table 
1 represents the averaged values for point-to-point esti-
mated angles including SE, RE, and RMSE errors extract-
ed for the fast, medium, and slow speed movements. 
Random errors in the A-P direction were less than other 
directions and reached to less than 2.2% (<1.72°), 1.47% 
(<1.20°), and 0.99% (<0.78°) for the fast, medium and 
slow speed movements, respectively. The random errors 
in other directions were also relatively low and reached to 
maximum value of 3.43% (5.48°) in I-E direction during 
fast movements. 
 

 
 

 
 
 

Figure 5. Estimated lower back angle by Vicon (dash line) 
and inertial sensors (solid line) for a typical participant and 
during movements in sagittal plane. 
 

On the same note, the errors for range of motion 
were relatively low (Table 2). For example, the random 
errors in A-P direction was on average 4.8% (3.7°), 3.8% 
(3.1°), and 2.6% (2.1°) respectively for the fast, medium, 
and slow speed movement trials. Similar errors were 
observed in other directions. 
 
Accuracy of CoM estimation using single link or mul-
tiple-link models 
A moderate agreement was observed between the CoM 
estimation using the one-link model compared to the 
reference system. The correlation coefficient between 
estimated CoM using one-link model and reference sys-
tem was r = 0.52 ± 0.41 for A-P and r = 0.52 ± 0.49 for 
M-L direction. 

However, the correlation between the CoM estima-
tion using a two-link model and the reference system was 
high (intra-subject point-to-point correlation: r = 0.93 ± 
0.05 for A-P and  r = 0.95 ± 0.03 for  M-L directions). On 
the same note, the errors of CoM estimation using two-
link model were relatively low (Table 3). Specifically, the 
average random error was 2.46cm (11.18%) and 3.88cm 
(14.64%) respectively for the CoM range of motion in A-
P and M-L directions. 

The three-link model also produced high agree-
ment with the reference system. The observed intra-
subject point-to-point correlation coefficient was r = 0.94 
± 0.05 for A-P and r = 0.91 ± 0.03 for M-L directions. In 
A-P direction, the random errors average was 2.05cm 
(9.3%) and 1.1cm (5%) for systematic errors (Table 3). 
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Table 1. Point-to-point accuracy of body worn sensors for estimation of 3D angles during fast, medium, and 
slow movements in all directions. 

Motion Anterior-Posterior Medial-Lateral Internal-External 
 Abs*, [°]  Re** [%] Abs*, [°]  Re** [%] Abs*, [°]  Re** [%] 

Fast Speed Movements 
Systematic -.37 -.50 -.26 -.53 .95 .57 
Random 1.72 2.23 1.55 3.15 5.48 3.43 
RMSE† 1.78 2.32 1.58 3.20 5.63 3.52 

Medium Speed Movement 
Systematic -.30 -.38 -.03 -.08 -.22 -.15 
Random 1.20 1.47 .89 2.09 3.59 2.49 
RMSE 1.24 1.52 .91 2.14 3.61 2.50 

Slow Speed Movement 
Systematic -.31 -.40 -.28 -.69 .19 .06 
Random .78 .99 .91 2.19 3.08 1.99 
RMSE .89 1.13 1.00 2.42 3.23 2.09 

                                * Absolute error value; † Relative error value; ‡ Root mean square error 
 

Surprisingly, the error was slightly higher than two-link 
model for M-L direction (5.3cm (19.96%) three-link 
model vs. 3.88cm (14.64%) two-link model). On the same 
note, a relatively high agreement was observed while 
comparing the CoM range estimated using 2- and 3-link 
models as well as COP range estimated using pressure 
platform when CoM range was estimated using Vicon  

system in both AP and ML directions (Figure 6).  
Accuracy of CoM estimation for athletic movements 
(i.e. Golf Swing) 
In Study 3, we examined the accuracy of the two-link 
model for estimation of CoM which relatively offered the 
best combination of the required minimum number of 
sensors with maximum accuracy.  

 
Table 2. Body worn sensor errors for estimating 3D body segment angles (peak and range of motion) during fast, medium, 
and slow speed movements. 

Motion Anterior-Posterior Medial-lateral Internal-external 
Type of 
Error 

Peak Range Peak Range Peak Range 
Abs* [°]  Re** [%] Abs [°]  Re [%] Abs [°]  Re [%] Abs  [°]  Re [%] Abs  [°]  Re [%] Abs  [°]  Re [%] 

Fast Movement 
Systematic -1.37 -1.80 .51 .66 -.27 -.33 .07 .10 4.76 2.97 -2.07 -1.29 
Random 1.90 2.47 3.70 4.80 .92 1.82 1.65 3.27 5.32 3.35 9.12 5.76 
RMSE† 2.21 2.88 3.35 4.35 1.42 2.84 1.50 2.98 6.81 4.26 8.43 5.32 

Normal Movement 
Systematic -2.16 -2.55 .60 .71 -1.15 -2.46 .33 .70 2.56 1.83 -.83 -.59 
Random 1.46 1.80 3.09 3.79 .76 1.73 1.48 3.32 2.09 1.47 3.85 2.72 
RMSE† 2.57 3.07 2.83 3.47 1.45 3.23 1.37 3.08 3.20 2.27 3.55 2.50 

Slow Movement 
Systematic -.93 -1.16 .28 .36 -1.25 -2.77 .30 .67 -.99 -.66 .27 .20 
Random 1.04 1.32 2.07 2.62 .71 1.67 1.52 3.54 1.34 .93 2.26 1.59 
RMSE† 1.41 1.78 1.88 2.37 1.45 3.27 1.40 3.25 1.58 1.07 2.05 1.43 

  * Absolute error value; † Relative error value; ‡ Root mean square error 
 

 
 

 
 

 
 

Figure 6. Comparison between estimated values using 2- and 3-segment models as well as COP values measured using pres-
sure platform. CoM values estimated by full body model using Vicon for (A) anterior-posterior and (B) medial-lateral direc-
tion. 
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Table 3. Body worn sensor errors for estimating CoM distance in respect to unset of movement (peak and range of motion) 
during fast, medium, and slow speed movements. 

 Anterior-posterior Medial-lateral 
Type of Error Absolute value, [cm]  Relative Value, [%] Absolute value, [cm] Relative Value, [%] 

Two-links model 
Systematic .27 1.22 -1.60 -6.04 
Random 2.46 11.18 3.88 14.64 
RMSE† 2.42 11.01 4.13 15.55 

Three-links model 
Systematic 1.12 5.11 -3.24 -12.21 
Random 2.05 9.30 5.30 19.96 
RMSE† 2.30 10.44 6.11 23.04 

               ‡ Root mean square error 
 
Table 4. Point-to-point error of CoM estimation using two-
link model during golf swing. 

 Anterior-Posterior Medial-Lateral 
Type of 
Error 

Absolute 
value,[cm] 

Relative 
Value, [%] 

Absolute 
value, [cm] 

Relative 
Value, [%] 

Systematic  1.01 7.78 2.92 15.07 
Random  1.00 7.73 2.00 10.35 
RMSE† 1.54 11.91 3.00 15.52 

‡ Root mean square error 
 

Results suggest a relatively high agreement be-
tween the estimated CoM and reference system for golf 
swing trials particularly in the A-P direction. The correla-
tion coefficient for estimated CoM range of motion was r 
= 0.91 ± 0.05 and r = 0.71 ± 0.20 respectively for A-P and 
M-L directions. During golf swing trials, the average 
CoM range of motion was 12.96cm (A-P) and 19.35cm 
(M-L). CoM range of motion was calibrated using data 
gathered from Study 2. After calibration, the point-to-
point errors for estimation of CoM were relatively low 
considering the small CoM range of motion (Table 4). 
Specifically the average random error was less than 1cm 
(7.7%) for A-P and less than 2cm (10.35%) in the M-L 
direction. 

After calibration, a relatively high agreement (r = 
0.86) was also observed between sensor- and Vicon-
derived estimation for maximum distance of CoM range 
during each swing (Figure 7A). On the same note, Bland-

Altman plot suggests low discrepancy between two 
measures (Figure 7B). 
 
Discussion 
 
In this study, we suggest an innovative, portable, and 
cost-effective wearable sensor technology to measure 
CoM trajectory while standing performing simple tasks 
(e.g., leaning forward, backward, and side-to-side) and 
carrying out athletic movements (i.e. golf swing). The 
proposed system allows estimation of 3D body segment 
angles in real-time with relatively low errors in the A-P 
and M-L directions. The random error of approximately 2 
degrees compares favorably with other reported values 
using MEMS technology on the knee (Favre et al., 2006; 
2008) or arm motions (Luinge and Veltink, 2005; Luinge 
et al., 2007) where precision of less than 4° was reported. 
Part of our estimation errors could be due to the fact that 
we manually synchronized both systems. Additionally, 
the A-P direction of the participant was visually aligned 
to the Y-axis of the Vicon origin to compare the move-
ments in all directions, which in turn may increase the 
error of estimation. Furthermore, discrepancies can also 
be accounted for the experimental protocol, the marker 
setup, and skin movement. Despite these limitations, the 
estimated accuracy was relatively high and appeared to be 
enough for estimation of CoM trajectory. 

 
 

 

 
 

 
 

Figure 7. (A) Maximum distance of CoM estimation during swing per subject using sensor-derived values versus Vicon de-
rived values. (B) Bland-Altman plot for two methods of CoM estimation. 
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This study also explored the accuracy of different 
simplified models for estimating the trajectory of CoM 
(point-to-point CoM displacement as a function of time). 
We demonstrated that using estimation of lower back 
motion does not precisely represent CoM motion particu-
larly during athletic and fast movements. On the other 
hand, increasing the number of segments (e.g., after in-
cluding thigh segment) in human body modeling does not 
necessarily increase the accuracy of CoM estimation 
especially in the M-L direction. The reduction of accuracy 
by including thigh segment could be explained by known 
noise/artifacts generated by skin movement. Movements 
of shank and lower back are less influenced by skin 
movement because of less body fat in these segments. 

One of the key advantages of the proposed ap-
proach is its capability of real-time execution. Using the 
Matlab timer (Tic-Toc function), we controlled the execu-
tion of each trial for estimating and recording 3D angles 
of two segments, calculating CoM trajectory, and display-
ing the results all within the duration of 0.0167±0.0008 
seconds which is equivalent to 60Hz sampling rate. Real 
time estimation of CoM is of key importance for virtual 
reality applications as well as motor learning paradigms in 
which the position of CoM or joint angle should be dis-
played in real-time for examining or training motor skills 
(Najafi et al., 2012). 

The suggested technology allows measuring CoM 
trajectory as an indicator of dynamic balance control. 
There are many potential advantages to using this ap-
proach. Measuring CoM over CoP may increase respon-
siveness. Previous authors have described a high correla-
tion (r = 0.92) between CoP and CoM with the CoM hav-
ing up to 10-12 fold increased movement during balance 
tasks (Najafi et al., 2010). The CoP trajectory is limited to 
the base of support (e.g., area between the feet), whereas 
the CoM boundary is only constrained by the participant’s 
range of motion while maintaining stability. Measuring 
the CoP often requires a gait laboratory with dedicated 
platform making it difficult for infield measurement. In a 
subsequent study, we have demonstrated that CoM meas-
urement is also sensitive (p < 0.05) to separate postural 
control strategy during golf swing between advanced 
(CoM area of sway: 2.25 ± 1.96 cm2), intermediate (CoM 
area of sway: 5.27 ± 3.81 cm2) and novice (CoM area of 
sway: 8.34 ± 5.77cm2) golf players (Wrobel et al., 2012). 

The measureable surface area of the force platform 
could also be a serious limitation for many athletic 
movements. Standing on an instrumented platform makes 
it difficult to examine postural control on different surface 
types and does not appropriately replicate an athlete’s 
natural competitive environment. On the other hand, cam-
era motion analysis systems permit accurate assessment 
of postural control by measuring CoM sway independent 
of the surface type. However, wearing numerous body 
markers for kinematic analysis has a negative impact on 
swing performance (Kenny and Anderson, 2010). Fur-
thermore, the spatial and time constraints of using a dedi-
cated gait lab often preclude motion analysis system us-
age in the athletic environment or clinical setting. A fu-
ture validity study, comparing athlete’s performance with 

and without wearing the applied sensors have to prove the 
assumed minimized effect on the movement pattern of the 
athlete. 

Test designs executed in a gait laboratory are gen-
erally well-controlled and often have a high reliability 
(Riley et al., 2008). However, unlike laboratory settings 
with a force platform or camera motion analysis system, 
wearable sensors allow field studies mirroring real-live 
situations in the training and competition environment. 
The live measurement of balance by measuring CoM 
during standardized situations in team sports, such as free 
shots in basketball then becomes possible. In addition, the 
used method allows the trainer to provide real-time visual 
feedback to the athletes concerning their CoM sway. Past 
research has shown that this method has improved gait 
stability (Bechly et al., 2013).  

A key challenge for using wearable sensors is that, 
unlike camera motion analysis system or force platform 
that use a fixed landmark reference (i.e. room reference 
axis), the axis of the sensor is highly dependent on how it 
is attached to the body. Therefore, for an accurate estima-
tion of CoM in respect to body or room axis, a calibration 
process is required for sensor alignment. In this study, we 
visually aligned the sensor axis with Vicon axis and then 
used quaternion approach to calibrate the orientation of 
sensors attached to the body (Najafi et al., 2010). Inaccu-
racy of this method may contribute to errors observed in 
this study. Other factors contributing to the error of sen-
sor-derived parameters and the proposed models include 
artifacts due to sensor/marker attachment and skin/strap 
movement and using simplified human body model in-
stead of full human body model for CoM estimation. 

Limitations to this study include sample size and 
marker setup. The sample size for Study 1 and Study 2 
may not be large enough to characterize the errors due to 
the sensors and the model. Furthermore, the marker setup 
and full body model used for estimation of CoM motion 
may not meet the threshold for accuracy. For Study 1, in 
order to reduce the inaccuracy of the reference system for 
estimating a rigid body segment, where angle was esti-
mated via marker displacements, Vicon’s reflective mark-
ers and inertial sensor were placed on a rigid platform 
attached to the subject’s lower back. Although this setup 
allows fair comparison between two systems for estimat-
ing a rigid segment angle, it may not represent the natural 
movement of a body segment. Additionally, the setup 
used in the Study 1 may mask potential artifacts from skin 
movement which may impact the accuracy of the meas-
urements in Study 2 and 3, where the sensors and markers 
were directly attached to the body using elastic bands. 
Furthermore, in Study 1, comparison between two sys-
tems for measuring body segment angles was done only 
for the lower back angle. Thus, the estimated errors may 
not be representative of the errors for other body seg-
ments used in this study including shank and thigh. Natu-
rally, if the wearable sensor poses any hindrance to the 
participant’s movements due to the complexity of sensor 
attachments (e.g. multiple sensor units, location of sensor 
attachment, etc) or device management (e.g. limited bat-
tery life), its application for outdoor monitoring and rou-
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tine clinical assessment becomes limited (Russmann et 
al., 2004). Additionally, future studies should address 
whether the estimated CoM trajectory is clinically mean-
ingful to evaluate balance in patients and athletes.  

 
Conclusion 
 
This study proposed a simple system based on two wear-
able sensor modules attached to subject’s shank and lower 
back and a simplified biomechanical human body model 
for estimating the center of mass trajectory with high 
agreement to the optical reference system (r>0.9). The 
proposed system overcomes the shortcomings of laborato-
ry based measuring systems by using relatively inexpen-
sive miniaturized MEMS technology for balance assess-
ment in free condition independent of surface type or 
testing environment. This finding may open new avenues 
for assessing and improving postural control in patients as 
well as in athletes by designing novel paradigms which 
were not feasible in the past due to the limitation of pre-
vious technologies. 
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Key points 
 
• This study demonstrates that wearable technology 

based on inertial sensors are accurate to estimate 
center of mass trajectory in complex athletic task 
(e.g., golf swing) 

•  This study suggests that two-link model of human 
body provides optimum tradeoff between accuracy 
and minimum number of sensor module for estima-
tion of center of mass trajectory in particular during 
fast movements. 

• Wearable technologies based on inertial sensors are 
viable option for assessing dynamic postural control 
in complex task outside of gait laboratory and con-
straints of cameras, surface, and base of support. 
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