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Abstract: Parkinson’s disease (PD) is a complex degenerative brain disease that affects nerve cells in
the brain responsible for body movement. Machine learning is widely used to track the progression
of PD in its early stages by predicting unified Parkinson’s disease rating scale (UPDRS) scores. In this
paper, we aim to develop a new method for PD diagnosis with the aid of supervised and unsupervised
learning techniques. Our method is developed using the Laplacian score, Gaussian process regression
(GPR) and self-organizing maps (SOM). SOM is used to segment the data to handle large PD datasets.
The models are then constructed using GPR for the prediction of the UPDRS scores. To select the
important features in the PD dataset, we use the Laplacian score in the method. We evaluate the
developed approach on a PD dataset including a set of speech signals. The method was evaluated
through root-mean-square error (RMSE) and adjusted R-squared (adjusted R2). Our findings reveal
that the proposed method is efficient in the prediction of UPDRS scores through a set of speech signals
(dysphonia measures). The method evaluation showed that SOM combined with the Laplacian score and
Gaussian process regression with the exponential kernel provides the best results for R-squared (Motor-
UPDRS = 0.9489; Total-UPDRS = 0.9516) and RMSE (Motor-UPDRS = 0.5144; Total-UPDRS = 0.5105) in
predicting UPDRS compared with the other kernels in Gaussian process regression.

Keywords: Parkinson’s disease; UPDRS prediction; Laplacian score; self-organizing maps; Gaussian
process regression

1. Introduction

Parkinson’s disease (PD) is a complex degenerative brain disease with increasing
motor symptoms that can significantly impair patients’ quality of life [1,2]. Aging has been
linked to a number of negative health consequences, including those affecting the nervous
system [3]. The number of people affected by these conditions is expected to increase as
the global population ages. The most significant risk factor for developing PD appears to
be age. The disease is typically diagnosed in people over the age of 60 [4–6], but it can
affect younger people as well; 20% of patients are diagnosed with PD before the age of
50. PD affects 6.3 million people worldwide [7], and the disease’s impact on quality of
life and life expectancy, as well as social and monetary costs, are expected to grow as the
population ages. According to the statistic, there will be 8.7 million PD patients by 2030 [8].
Furthermore, the statistic shows that the number of PD patients in the US is predicted to
increase to around 1.8 million by 2030 [9]. There is no one specific test that can diagnose PD.
Instead, a neurologist will examine a patient’s symptoms and medical history and perform
a neurological examination in order to make a diagnosis.
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Because of the high heterogeneity of PD, each individual may experience a variety
of symptoms. Since the initial symptoms are mild, they can go undetected for long peri-
ods. Furthermore, at the diagnostic level, 60% of PD patients have a clear asymmetry of
symptoms. There are numerous reported PD symptoms, both motor and nonmotor [10,11].
Constipation, sleep disorders, rapid eye movement (REM) sleep behavior disorders, bladder
disorders (urinary incontinence) and anxiety are some examples of nonmotor symptoms.
Note that non-motor symptoms can sometimes precede motor symptoms, and are thought
to represent the disease’s early stage. The secondary symptoms can be freezing of gait,
gait dysfunction, hallucination, smell dysfunction, thinking difficulties, dementia, sex-
ual dysfunction and depression. Although there is no cure for PD, there are treatments
available to help manage its symptoms. The goal of treatment is to either replace the
dopamine that is missing in the brain or to correct the problems that are caused by the lack
of dopamine. Patients may be unaware of this disorder’s most common symptom, which
is reduced vocal loudness. In addition, people with Parkinson’s disease commonly suffer
from dysphonia [12], which is vocal impairment and characterized by a breathy voice and
harshness. As the disease progresses, patients may experience greater difficulty speaking.

The UPDRS, or unified Parkinson’s disease rating scale, which measures the severity
and presence of symptoms of PD, is the most popular tool used by clinicians to measure PD
symptom severity (but does not measure their underlying causes) [3,13,14]. The UPDRS
scale consists of three sections that assess motor symptoms, activities of daily life and
mentation, behavior and mood. Monitoring the progression of PD is essential for better
patient-directed care [3,13,15,16]. A convincing method for accurately and effectively
tracking the progression of PD at more frequent intervals with less expense and resource
waste is remote monitoring. A growing option in general medical care is noninvasive
telemonitoring, which may allow for reliable, affordable PD screening while potentially
reducing the need for frequent clinic visits. As a result, the clinical evaluation of the
subject’s condition is evaluated more accurately and the burden on national healthcare
systems is reduced.

Machine learning has demonstrated to be effective in disease diagnosis [15–27]. There
have been many methods for PD diagnosis; some of them are presented in Table 1. The
findings for the methods presented in this table show that there is no research on the use of
clustering, feature selection and prediction machine learning for the prediction of UPDRS.
As seen from this table, the previous research was mainly developed using prediction
learning techniques. The use of clustering techniques can be effective in developing a robust
learning method for UPDRS prediction. Clustering is effective because it allows the PD
diagnosis methods to identify groups of similar objects or data points in the PD dataset. By
grouping similar data points, the underlying patterns and structures within the data can
be better understood to make more informed decisions. Accordingly, this study aims to
develop a new method using clustering, feature selection and prediction machine learning
to predict UPDRS scores (Total-UPDRS and Motor-UPDRS) and simulate the relationship
between the characteristics of speech signals (dysphonia measures) and UPDRS scores. In
this research, Motor-UPDRS is the motor section of the UPDRS. In addition, Total-UPDRS is
the full range of UPDRS as described in [13]. Our method is developed using the Laplacian
score, Gaussian process regression (GPR), and self-organizing maps (SOM) techniques. The
SOM technique is used to segment the data to handle large PD datasets. The models are
then constructed using the GPR technique for UPDRS prediction. To select the important
features in the PD dataset, we use the Laplacian score in the method. We perform several
experiments on a PD dataset in the UCI machine learning archive, including a set of speech
signals (dysphonia measures), to evaluate the developed method.
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Table 1. Related works on PD diagnosis.

Method References

K-nearest neighbor [28–35]
Neural networks [32,36–51]
ANFIS [16,52–54]
Fuzzy logic [28,30,55–57]
Genetic programming [46,58–61]
Clustering [62–65]
Principal component analysis [66–70]
Deep learning [15,31,51,71–79]

The remainder of this paper is organized as follows. In Section 2, the techniques
incorporated in the proposed method are presented. Data analysis and method evaluations
are performed in Section 3. In Section 4, the discussion section is presented. Finally, this
work is concluded in Section 5.

2. Method

This study developed a hybrid method using unsupervised, feature selection and
supervised learning techniques. The steps of the proposed method are shown in Figure 1.
The data were collected from the UCI machine learning archive. In the first step of our
methodology, data were clustered using the SOM clustering technique. We then used the
Laplacian score for feature selection. To perform UPDRS prediction, GPR was implemented
on the generated clusters. The proposed method was evaluated using root-mean-square
error (RMSE) and correlation coefficients. In this section, the techniques incorporated in
the proposed method are introduced.
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2.1. Gaussian Process Regression

The Gaussian process regression is a stochastic process that can be interpreted as
probability distributions over functions with a number of random variables [80,81]. A joint
Gaussian distribution exists for any finite range of these random variables. The Gaussian
process regression is a machine learning approach that can be employed to deal with
complex problems (e.g., nonlinear problems) [82]. It is developed on the basis of statistical
theory and Bayesian theory [83]. This technique is widely used for regression problems [83,84].
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A training dataset is required to establish a relationship between the input and output
variables of the dataset. Assume that there is a dataset D with d-dimensional input vector
xi ∈ Rd (d ≥ 1) and with yi as the corresponding output. Then, we have:

D = {Di; i = 1, 2, . . . , p} = {(xi, yi); i = 1, 2, . . . , p} (1)

Thus, the output vector y = {yi}i=1:p and matrix X = {xi}i=1:p are organized, respec-
tively, for yi values and xi vector. Gaussian process regression employs a Gaussian prior
which is parameterized through a covariance function k(x, x′) and the mean function m(x)
to model a time series.

y = f (x) ∼ GP
(
m(x), k

(
x, x′

))
(2)

where m(x) is typically taken to be zero without affecting generality, and f (x) is known as
the latent variable in the Gaussian process regression model.

The similarity between input data points, which is a crucial component of the Gaussian
process regression model, is described by the covariance function k

(
x, x f

)
. Different kernel

functions are used in Gaussian process regression. A common kernel function used in
Gaussian process regression is squared exponential (SE), which is represented as:

kSE
(

x, x′
)
= ψ2

1 exp

(
− (x− x′)2

2ψ2
2

)
(3)

where ψ1 and ψ2 indicate two hyperparameters that govern the accuracy of the output
prediction. They need to be optimized in Gaussian process regression.

During the training phase of Gaussian process regression, the log-likelihood function in
the following equation is maximized for the estimation of the kernel matrix’s parameters K:

ψopt = arg maxψ{log p(y|X, ψ)} = arg max
{
−1

2
log

∣∣∣K + Reject2
p I
∣∣∣−1

2
(y−m)T

(
K + σ2

p I
)−1

(y−m)− p
2

log(2π) (4)

where in the above equation, σ2
p indicates the variance of the noise. In this function, p

indicates the number of test data points.
Because the log-likelihood function is convex, the gradient descent algorithm can

solve Equation (4).
After training the model, at test points X∗, the posterior distribution of f∗ = f (X∗)

will be obtained as:

f∗|X, y,X∗ ∼ N
(

f , cov( f∗)
)

f = K(X∗, X)
(
K(X, X) + σ2

n I
)−1

(y−m(X))cov
(

f
)
+ m(X∗) = K(X∗, X∗)− K(X∗, X)

(
K(X, X) + σ2

n I
)−1K(X, X∗)

(5)

In the above formula, cov
(

f
)

indicates the prediction variance and f denotes the
prediction mean.

2.2. SOM

As an unsupervised learning algorithm, SOM [85] is used to cluster and visualize
high-dimensional datasets simultaneously [86–91]. The self-organization process used by
the learning algorithm was biologically inspired by the cortex brain cells. In contrast to
the error-correction learning used in feedforward neural networks, this type of learning is
referred to as competitive learning. A map is a grid-organized neural network made up of
interconnected nodes, also known as cells, neurons or units. For visual purposes, the grid
topology is typically two-dimensional [92,93], but it can have any topology. A prototype
vector from the high-dimensional input space where the data live is assigned to each cell.
The prototypes are updated to fit the training set during an iterative learning process;
when a prototype is updated, the prototypes associated with neighboring cells are also
updated using a specific weight. As the distance between grid cells increases, the weights
decrease and the cells on the map near each other are linked to prototype vectors in the



Brain Sci. 2023, 13, 543 5 of 17

input space near each other. This allows the map to preserve the topology of the space. The
resulting map, after convergence, allows for efficient visualization of the high-dimensional
input space on a low-dimensional map. Because of its ease of use and interpretable results,
SOM is a popular clustering and visualization tool. The SOM procedure for clustering
is presented in Algorithm 1. In this algorithm, input patterns X =

{→
x1 , . . . ,

→
xN

}
are

considered for the data clustering in SOM. Number of iterations t max , learning rate ε(t)
and neighborhood function σ(t) must be initialized in SOM to perform the data clustering.
Note that each neuron wi represents an arbitrary number of input patterns. The output
of SOM is a trained map and clustered input patterns. In Algorithm 1, the learning rate
and radius of the neighborhood must both decrease at a constant rate for the algorithm
to converge.

Algorithm 1: SOM Procedure

Inputs: Input patterns X =
{→

x1 , . . . ,
→
xN

}
, number of iterations tmax, learning rate ε(t),

neighborhood function σ(t)
Output: Trained map and clustered input patterns
Randomly initialize neurons, wi ∈ RD, ∀i
For t = 1 to tmax Do

� An input pattern is randomly drawn,
→
xd

→ p = arg mini

{
‖→xd −

→
wi‖
}

(the neuron closer to the input pattern is selected)

→ →
wi =

→
wi + ε(t) · hip(t) ·

(→
xd −

→
wi

)
, ∀i (the winning neuron p is updated), hip(t) indicates

the neighborhood influence function where hip(t) = exp−
∣∣∣→a i−

→
a p

∣∣∣2
σ2(t) (for two lattice

vectors
→
a i and

→
a p)

→ σ(t) = σ0

(
σf /σ0

)t/t max
(the size of the radius is updated)

→ ε(t) = ε0

(
ε f /ε0

)t/t max
(the learning rate is updated)

→ t← t + 1 (the number of iterations is incremented)

2.3. Laplacian Score for Feature Selection

The Laplacian score is based on Laplacian eigenmaps [94] and is considered a graph-
based feature selection method. The Laplacian score models the data’s local geometrical
structure [95,96] with a k-nearest neighbor (k-NN) graph. Consider a dataset X = x1, . . . , xN ;
to approximate the dataset’s manifold structure, a k-NN graph is constructed, which con-
tains an edge with weight Wij between xi and xj if xi is one of xj’s k-nearest neighbors, or
conversely. There are several similarity-based methods for determining edge weights. The
Euclidean distance is one of the popular similarity metrics to measure the distance between
two vectors [97,98]. Thus, for xi and xj and with τ as a suitable constant, we can define the
weight matrix W as follows:

Wij =

 e−
‖xi−xj‖

2

τ , if xi and xj are neighbors

0, otherwise.
(6)

Two data points can only be considered close to one another on a feature if and only if
there is an edge connecting them. To select a good feature, the following objective function
needs to be minimized:

SCLs =
∑ij
(

fri − frj
)2Wij

Var( fr)
(7)
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where fri indicates the ith sample of the rth feature in the dataset and fr = ( fr1, . . . , frN)
T ,

Var( fr) denotes the estimated variance of fr. In order to maximize representative power,
larger variance features are preferred.

Accordingly, we can obtain the variance of weight using the following equation.

Var( fr) = f̃ T
r D f̃r’ f̃ = fr −

f T
r D1

1T D1
1 where Dii = ∑j Wij (8)

where Dii is a diagonal matrix, and the corresponding degree matrix of W and 1 is a nonzero
constant vector.

Accordingly, the mean of each feature fr by Equation (8) is removed. This is carried out
to avoid assigning a zero Laplacian score to a nonzero constant vector, such as 1, because
such a feature obviously contains no information. For a good feature, we have:

∑
ij

(
fri − frj

)2Wij = 2 f T
r L fr = 2 f̃ T

r L f̃r (9)

where a bigger Wij indicates a smaller
(

fri − frj
)
, L is the Laplacian matrix and L = D−W.

Accordingly, the rth feature’s Laplacian score is reduced to

SCLs =
f̃ T
r L f̃r

f̃ T
r D f̃r

(10)

3. Data Analysis and Method Evaluation

In this research, we used Parkinson’s telemonitoring dataset [13] to evaluate the
proposed method. Table 2 presents the features of this dataset. The dataset was published
online in 2009 at the UCI machine learning archive. This dataset consists of around
200 recordings per patient from 42 people (28 men and 14 women) with early-stage PD,
which makes a total of 5875 voice recordings. Each patient’s phonations of the sustained
vowel/a/are recorded. Parkinson’s telemonitoring dataset includes two outputs Motor-
UPDRS and Total-UPDRS and sixteen biomedical voice measures (F1–F16). They are
presented in Table 2. A full description of these features is presented in [13].

Table 2. The Total- and Motor-UPDRS, and 16 biomedical voice measures in Parkinson’s
telemonitoring dataset.

Feature ID Feature Name Mean Min Max SD

F1 HNR 21.679 1.659 37.875 4.291
F2 Jitter: DDP 0.009 10 × 104 0.173 0.009
F3 RPDE 0.541 0.151 0.966 0.101
F4 MDVP: Jitter (%) 0.006 8 × 104 0.1 0.006
F5 MDVP: Shimmer (dB) 0.311 0.026 2.107 0.230
F6 PPE 0.220 0.022 0.732 0.092
F7 MDVP: Shimmer 0.034 0.003 0.269 0.026
F8 MDVP: Jitter (Abs) 4 × 105 2 × 106 4 × 104 3 × 105

F9 DFA 0.653 0.514 0.866 0.071
F10 Shimmer: APQ3 0.017 0.002 0.163 0.013
F11 MDVP: Jitter:PPQ5 0.003 4 × 104 0.069 0.004
F12 Shimmer: APQ11 0.028 0.003 0.276 0.020
F13 NHR 0.032 3 × 104 0.749 0.060
F14 MDVP: Jitter:RAP 0.003 3 × 104 0.057 0.003
F15 Shimmer: DDA 0.052 0.005 0.488 0.040
F16 Shimmer: APQ5 0.020 0.002 0.167 0.017
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Table 2. Cont.

Feature ID Feature Name Mean Min Max SD

- Total-UPDRS [after-6-months] 29.57 7 54 11.92
- Motor-UPDRS [after-6-months] 29.57 5 41 9.17
- Total-UPDRS [after-3-months] 29.36 7 55 11.82
- Motor-UPDRS [after-3-months] 21.69 6 38 9.18
- Total-UPDRS [baseline] 26.39 8 54 10.8
- Motor-UPDRS [baseline] 19.42 6 36 8.12

The dataset was clustered by SOM for different topology maps. The SOM clustering
quality was assessed by the Silhouette index. To measure the separation between the
resulting clusters, this index can be used. The silhouette index of the object xi is defined as:

SI(xi) =
b(xi)− a(xi)

max (b(xi), a(xi))
(11)

where a(xi) denotes the distance of xi to its own cluster, which is characterized as the
average distance between the object xi and all the other objects in its own cluster h as:

a(xi) =
∑n

j=1 wjhdE
(

xi, xj
)

nh − 1
(12)

where nh denotes the number of data points in the cluster h, dE(i, j) denote the squared
Euclidean distance, wjh indicates the indicator function (wjh = 1, xi is in ch; wjh = 0, xi is
not in ch).

The minimum average distance between the object xi and every other object in a
cluster, excluding the cluster to which the object xi belongs, is defined by b(i). b(i) is
calculated by:

b(xi) = min

(
∑n

j=1 wjldE
(
xi, xj

)
nl

)
(13)

Accordingly, SI (xi) ∈ [−1, 1]. When SI (xi) is close to 1, the element xi is assigned to
the correct cluster. When this value is close to −1, the object xi is in the incorrect cluster
because the neighboring cluster is a better option than the selected cluster. The validity of
the entire clustering can then be evaluated using the silhouette index, which is defined as:

SI =
1
n ∑

i∈X
SI(xi) (14)

Accordingly, we present the results for the silhouette index in Figure 2. As seen from
this figure, nine clusters in SOM provide the best silhouette index, as the highest value
for SI is obtained for nine clusters. Hence, we clustered the PD data in nine clusters, as
presented in Figure 3. The clusters in this figure are visualized using different PCs (principal
components), which are PC 1, PC 9 and PC 16. In addition, in this figure, Total-UPDRS
and Motor-UPDRS are visualized using PC 2 in nine clusters of SOM. We also provide the
cluster centroids in Table 3. In this table, nine clusters are presented along with the centroid
for each feature of the PD dataset.
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Figure 3. Visualizing SOM clusters.

Table 3. Cluster centroids.

Attribute SOM1×1 SOM1×2 SOM1×3 SOM2×1 SOM2×2 SOM2×3 SOM3×1 SOM3×2 SOM3×3

NHR 0.03119 0.01588 0.00847 0.10806 0.02781 0.01514 0.40353 0.08253 0.03142
MDVP: Jitter: PPQ5 0.00314 0.00196 0.00141 0.00518 0.00276 0.00252 0.02569 0.00818 0.00437

DFA 0.66706 0.59746 0.59879 0.65859 0.61549 0.71544 0.62722 0.71986 0.73474
HNR 19.01099 23.71608 27.02710 13.93729 20.86188 22.78826 6.23466 16.39656 19.31760

Jitter: DDP 0.00867 0.00541 0.00391 0.01404 0.00766 0.00692 0.05760 0.02581 0.01210
RPDE 0.57058 0.52033 0.41584 0.66982 0.58463 0.52857 0.71176 0.65195 0.58484

MDVP: Jitter: RAP 0.00289 0.00180 0.00130 0.00468 0.00255 0.00231 0.01920 0.00860 0.00403
MDVP: Shimmer 0.05316 0.02264 0.01515 0.09985 0.03275 0.02199 0.16310 0.05656 0.03526
MDVP: Jitter (%) 0.00593 0.00395 0.00278 0.00941 0.00550 0.00492 0.03655 0.01600 0.00837

MDVP: Jitter (Abs) 0.00004 0.00003 0.00002 0.00007 0.00004 0.00004 0.00019 0.00013 0.00007
Shimmer:APQ5 0.03230 0.01300 0.00856 0.06125 0.01923 0.01271 0.10517 0.03199 0.02065

MDVP: Shimmer (dB) 0.48033 0.20956 0.13987 0.90445 0.30155 0.19930 1.44039 0.53211 0.32392
Shimmer:APQ11 0.04209 0.01880 0.01206 0.08172 0.02676 0.01866 0.11087 0.04382 0.03023
Shimmer:APQ3 0.02844 0.01123 0.00748 0.05062 0.01667 0.01070 0.07838 0.02874 0.01741

PPE 0.24002 0.16772 0.12162 0.31771 0.22379 0.20276 0.47903 0.41251 0.30025
Shimmer:DDA 0.08532 0.03370 0.02243 0.15185 0.05001 0.03210 0.23513 0.08622 0.05222

To perform UPDRS prediction in each cluster of SOM, we first used the Laplacian score
technique for feature selection. The results of the feature selection are presented in Figure 4
and Table A1 in Appendix A. For these results, the features are ranked for unsupervised
learning using Laplacian scores. According to the results, a large score value indicates that
the corresponding PD feature is important.

The selected features of nine clusters of Parkinson’s telemonitoring dataset were used
in Gaussian process regression for UPDRS score (Total-UPDRS and Motor-UPDRS) predic-
tions. In this study, the 10 most important features were selected for UPDRS prediction in
each cluster. As a result, there were nine clusters, each of which included ten important
features for UPDRS prediction.
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Figure 4. The results for Laplacian score.

The method was run on Microsoft Windows 10 Pro and a laptop with Processor Intel(R)
Core(TM) i7-6700HQ CPU @ 2.60GHz, 2592 Mhz, four core(s) and eight logical processor(s).
A 5-fold cross-validation approach in the hyperparameter optimization to avoid overfitting
was used in training the models in Gaussian process regression. For example, to combine
RMSE and five-fold cross-validation, we applied the following steps:

• Dividing the data into five equal parts;
• Training the model on four parts of the data and testing it on the fifth part, calculating

the RMSE for that fold;
• Repeating step 2 for all five folds;
• Calculating the average RMSE across all five folds. This provided an estimate of the

model’s overall performance.

The nine models were assessed using RMSE and correlation coefficients. The highest
value of adjusted R-squared (adjusted R2 or the coefficient of determination) means per-
fection. Lower values of RMSE reflect better performance by the predictor. The RMSE is
presented in Equation (15).

RMSE =

√√√√ N

∑
n=1

1
N
[ ˆUPDRS(n)−UPDRS(n)

]2 (15)
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This metric is defined for a testing vector of length N, actual UPDRS and forecasted
ˆUPDRS. In this study, four kernels were used in Gaussian process regression: rational

quadratic kernel, squared-exponential kernel, exponential kernel and Matérn 5/2 kernel. In
Tables 4 and 5, we present the average results of R-squared and RMSE for Total-UPDRS and
Motor-UPDRS, respectively, in Parkinson’s disease. The results are provided for maximum,
minimum and mean values of R-squared and RMSE. The results presented in Tables 4
and 5 clearly show that SOM + Laplacian score + Gaussian process regression (exponential
kernel) provide the best results for R-squared and RMSE in predicting Total-UPDRS and
Motor-UPDRS compared with the SOM + Laplacian score + Gaussian process regression
(squared-exponential kernel), SOM + Laplacian score + Gaussian process regression (ratio-
nal quadratic kernel) and SOM + Laplacian score + Gaussian process regression (Matérn
5/2 kernel). Furthermore, the findings reveal that SOM + Laplacian score + Gaussian pro-
cess regression (Matérn 5/2 kernel) provided the largest prediction errors for Total-UPDRS
and Motor-UPDRS.

Table 4. Adjusted R2 and RMSE results for Motor-UPDRS 0.9489 and 0.5144; 0.9516, 0.5105.

Performance Index

SOM + Laplacian
Score + Gaussian

Process Regression
(Exponential Kernel)

SOM + Laplacian
Score + Gaussian

Process Regression
(Squared-Exponential

Kernel)

SOM + Laplacian
Score + Gaussian

Process Regression
(Rational Quadratic

Kernel)

SOM + Laplacian
Score + Gaussian

Process Regression
(Matérn 5/2 Kernel)

Train Test Train Test Train Test Train Test

RMSE
Max 0.5184 0.5413 0.5734 0.5788 0.6056 0.6160 0.6439 0.6569
Min 0.5104 0.5231 0.5436 0.5628 0.5769 0.5930 0.6121 0.6324

Mean 0.5144 0.5322 0.5585 0.5708 0.5912 0.6045 0.6280 0.6447

R2
adjusted

Max 0.9532 0.9320 0.9221 0.9180 0.9175 0.9135 0.9074 0.8967
Min 0.9445 0.9234 0.9113 0.8932 0.8795 0.8554 0.8343 0.8103

Mean 0.9489 0.9277 0.9167 0.9056 0.8985 0.8844 0.8708 0.8535

Table 5. Adjusted R2 and RMSE results for Total-UPDRS.

Performance Index

SOM + Laplacian
Score + Gaussian

Process Regression
(Exponential Kernel)

SOM + Laplacian
Score + Gaussian

Process Regression
(Squared-Exponential

Kernel)

SOM + Laplacian
Score + Gaussian

Process Regression
(Rational Quadratic

Kernel)

SOM + Laplacian
Score + Gaussian

Process Regression
(Matérn 5/2 Kernel)

Train Test Train Test Train Test Train Test

RMSE
Max 0.5161 0.5379 0.5675 0.5742 0.6051 0.6139 0.6388 0.6516
Min 0.5050 0.5216 0.5382 0.5564 0.5731 0.5872 0.6110 0.6307

Mean 0.5105 0.5297 0.5529 0.5653 0.5891 0.6006 0.6249 0.6412

R2
adjusted

Max 0.9565 0.9338 0.9287 0.9259 0.9246 0.9204 0.9157 0.8977
Min 0.9468 0.9318 0.9190 0.8967 0.8863 0.8592 0.8406 0.8120

Mean 0.9516 0.9328 0.9239 0.9113 0.9055 0.8898 0.8781 0.8548

4. Discussion

Machine learning has significant implications for PD. Researchers and healthcare
providers can gain deeper insights into the disease by leveraging machine learning al-
gorithms, allowing for earlier diagnosis, personalized treatment plans and improved
symptom management. Early detection of PD is critical because early intervention can
help slow disease progression and improve patient outcomes. By analyzing patient data
and identifying specific patterns associated with the disease, machine learning can aid
in the early detection of PD. Machine learning can also be used to create personalized
treatment plans for patients with PD, taking into account individual patient data such as



Brain Sci. 2023, 13, 543 12 of 17

medical history, genetic information and response to previous treatments. This can assist
healthcare providers in tailoring treatments to each patient’s specific needs, improving
treatment outcomes and quality of life. Furthermore, machine learning can help manage
PD’s symptoms, particularly through remote monitoring. Wearable devices with machine
learning algorithms can monitor changes in motor symptoms and alert healthcare providers
if necessary, enabling more proactive and responsive care. Overall, the implications of
machine learning for PD are promising, opening up new avenues for disease diagnosis,
treatment and management that can improve patient outcomes and quality of life.

5. Conclusions

The use of voice measurements has been an effective way for remote tracking of
UPDRS. It eases the clinical monitoring of patients and increases the chances of early
diagnosis of PD. Machine learning has been widely used in the analysis of speech signals
in the diagnosis of PD. Accordingly, there have been many attempts in improving the
accuracy of machine learning methods in this context. This study relied on feature selection,
clustering and prediction learning techniques in improving the accuracy of PD diagnosis
systems. We used the Laplacian score technique as a feature selection technique, SOM
as a clustering technique based on the neural network approach, and Gaussian process
regression as a prediction learning technique in the development of a new method for
UPDRS prediction. SOM discovered nine clusters from the PD dataset. In each cluster
of SOM, the most important features were selected by the Laplacian score technique for
UPDRS precision by Gaussian process regression. Gaussian process regression was applied
using different kernels, namely the rational quadratic kernel, squared-exponential kernel,
exponential kernel, and Matérn 5/2 kernel. The method was evaluated through RMSE
and adjusted R-squared. The results revealed that SOM + Laplacian score + Gaussian
process regression (exponential kernel) provide the best results for R-squared and RMSE in
predicting Total-UPDRS and Motor-UPDRS compared with the SOM + Laplacian score +
Gaussian process regression (squared-exponential kernel), SOM + Laplacian score + Gaus-
sian process regression (rational quadratic kernel) and SOM + Laplacian score + Gaussian
process regression (Matérn 5/2 kernel). Although the proposed method has accurately
predicted the UPDRS through a set of selected features by Laplacian score, this method can
be further improved by optimizable Gaussian process regression. In addition, the use of
incremental Gaussian process regression is greatly suggested in the development of the
proposed method for online learning of PD data. The incremental use of Gaussian process
regression will significantly improve the efficiency of the proposed method, particularly
when there are big datasets for PD with many features of speech signals.
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Appendix A

Table A1. The results for Laplacian score.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

HNR HNR HNR HNR HNR HNR HNR HNR HNR

RPDE RPDE RPDE NHR RPDE RPDE NHR MDVP:Shimmer
(dB) RPDE

MDVP:Shimmer
(dB)

MDVP:Shimmer
(dB) DFA MDVP:Shimmer

(dB)
MDVP:Shimmer

(dB)
MDVP:Shimmer

(dB)
MDVP:Shimmer

(dB) MDVP:Shimmer MDVP:Shimmer
(dB)

NHR NHR Shimmer:APQ5 MDVP:Shimmer PPE MDVP:Shimmer Shimmer:APQ5 Shimmer:APQ5 MDVP:Shimmer

MDVP:Shimmer MDVP:Shimmer MDVP:Shimmer
(dB) Shimmer:APQ5 MDVP:Shimmer Shimmer:APQ5 MDVP:Shimmer Shimmer:DDA Shimmer:APQ5

PPE PPE MDVP:Shimmer Shimmer:DDA Shimmer:DDA Shimmer:DDA MDVP:Jitter:PPQ5 Shimmer:APQ3 Shimmer:DDA

DFA DFA Shimmer:APQ3 Shimmer:APQ3 Shimmer:APQ3 Shimmer:APQ3 Shimmer:APQ3 Shimmer:APQ11 Shimmer:APQ3

Shimmer:APQ5 Shimmer:APQ5 Shimmer:DDA Shimmer:APQ11 Shimmer:APQ5 Shimmer:APQ11 Shimmer:DDA NHR PPE

Shimmer:APQ3 Shimmer:APQ3 MDVP:Jitter:PPQ5 RPDE DFA PPE MDVP:Jitter (Abs) PPE Shimmer:APQ11

Shimmer:DDA Shimmer:DDA Shimmer:APQ11 DFA Shimmer:APQ11 DFA Shimmer:APQ11 DFA DFA

Shimmer:APQ11 Shimmer:APQ11 PPE PPE MDVP:Jitter:PPQ5 MDVP:Jitter (Abs) MDVP:Jitter (%) RPDE NHR

MDVP:Jitter (Abs) MDVP:Jitter (Abs) Jitter:DDP MDVP:Jitter:PPQ5 NHR NHR Jitter:DDP MDVP:Jitter:PPQ5 MDVP:Jitter (Abs)

MDVP:Jitter:PPQ5 MDVP:Jitter:PPQ5 MDVP:Jitter:RAP MDVP:Jitter (%) MDVP:Jitter (Abs) MDVP:Jitter:PPQ5 MDVP:Jitter:RAP MDVP:Jitter (%) MDVP:Jitter (%)

MDVP:Jitter (%) MDVP:Jitter (%) MDVP:Jitter (%) MDVP:Jitter:RAP MDVP:Jitter (%) MDVP:Jitter (%) DFA MDVP:Jitter (Abs) MDVP:Jitter:PPQ5

MDVP:Jitter:RAP MDVP:Jitter:RAP MDVP:Jitter (Abs) Jitter:DDP Jitter:DDP Jitter:DDP PPE MDVP:Jitter:RAP Jitter:DDP

Jitter:DDP Jitter:DDP NHR MDVP:Jitter (Abs) MDVP:Jitter:RAP MDVP:Jitter:RAP RPDE Jitter:DDP MDVP:Jitter:RAP
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