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Abstract— In this paper, we consider the problem of
robust stabilization of linear time-invariant systems with
respect to unmodeled dynamics and structure uncertainties.
To that end, we first present a methodology to find the
nearest negative imaginary system for a given non-negative
imaginary system. Then, we employ this result to construct a
near optimal linear quadratic Gaussian controller achieving
desired performance measures. The problem is formulated
using port-Hamiltonian method and the required conditions
are defined in terms of linear matrix inequalities. The
technique is presented using fast gradient method to
solve the problem systematically. The designed controller
satisfies a negative imaginary property and guarantees a
robust feedback loop. The effectiveness of the approach is
demonstrated by simulation on a numerical example.

Keywords. Negative imaginary systems, port-
Hamiltonian system, fast gradient method.

I. INTRODUCTION

Robustness is a crucial aspect in feedback control
systems to cope with model uncertainties such as distur-
bances, unmodeled dynamics and plant parameter varia-
tions. As well established in the literature, these issues
can severely affect the performance and jeopardize the
stability of the closed-loop system. For instance, the
existence of highly resonant modes in flexible systems
such as aerospace systems [18], robot manipulators [23],
atomic force microscopes [1], [13], and other nano-
positioning systems [3]) can affect robustness and stability
characteristics [16], [15].

We consider a class of multi-input multi-output
(MIMO), linear time-invariant (LTI) systems that satisfy
the NI property, and we aim to design robust and optimal
output feedback controllers against unmodeled dynamics
and parameters uncertainties. The proposed methodology
consists of two steps. First, we synthesize an optimal
linear quadratic Gaussian (LQG) controller for the given
NI model. Then, we use a developed algorithm to find the
nearest NI model for the synthesized LQG controller.

The idea of finding the nearest NI model was inspired
by a similar technique of finding the nearest positive
real system (passive system) presented in [6], [4], [17],
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[22], [21]. In [17], some assumptions are imposed on
the dimensions of the control input and the output mea-
surement to prevent singularities. Also, [17] restricts the
perturbation on the output matrix only. The methods
in [22] and [21] allow perturbations on both the matrices
of the control input and the output measurement while
in [2], perturbations are allowed for all system matrices.
Similar results for NI system were developed in [11]
where an algorithm was developed for enforcing negative
imaginary property in case of any violation during system
identifications. This assumes that the underlying dynamics
ought to belong to negative imaginary system class. The
method is based on the spectral properties of Hamiltonian
matrices. In this paper, we use the result developed in [6]
to develop similar results of finding the nearest negative
imaginary system. One of the main advantages of this
method over the other perturbation methods is that no
assumptions are imposed on the given system. Also, in
the positive real case, it allows for perturbations of all
system matrices. The NI control synthesis problem has
been addressed from different aspects in several papers,
such as [10], [12], [8].

The contribution of this paper is twofold:
1) We propose a methodology for finding the nearest

NI system for a non-NI system based on Port-
Hamiltonian formulation.

2) The nearest NI result is employed to find a near
optimal linear quadratic Gaussian controller (LQG)
for a given negative imaginary plant.

Sufficient conditions are provided in terms of the fea-
sibility of an LMI condition to ensure the closed-loop
stability. Moreover, we present an algorithm based on
fast gradient method to solve the problem systematically.
The effectiveness of the approach is demonstrated by
simulation on a numerical example.

II. PRELIMINARIES

The notation is standard throughout. The sets of all
real and complex numbers are denoted by R and C,
respectively. We denote the minimum and maximum
eigenvalues of the real matrix A as λmin(A) and λmax(A),
respectively. The transpose of the matrix A is denoted by
AT while A∗ refers to the complex conjugate transpose
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of a complex matrix A. We write (x, y) ∈ Rnx+ny to
represent the vector [xT , yT ]T for x ∈ Rnx and y ∈ Rny .
We denote the real part of a complex variable s as Re[s].
The Frobenius Norm of matrix A is written as ∥A∥2F .

For the sake of convenience, we present the definitions
and fundamental results of NI systems and we refer the
reader to [9] for more details. Consider the following LTI
system

ẋ(t) =Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where x ∈ Rn is the plant state, u ∈ Rm is the control
input, y ∈ Rp is the measured output and A,B,C,D
are constant matrices with appropriate dimensions. The
transfer function matrix G(s) = C(sI − A)−1B + D of
system (1) is said to be strictly proper if G(∞) = D = 0.
The notation (A,B,C,D) will be used to denote the state
space realization (1).

The following definitions establish required conditions
for NI and SNI properties of LTI system (1).

Definition 1: [9] A square transfer function matrix
G(s) is NI if the following conditions are satisfied:

1) G(s) has no pole in Re[s] > 0.
2) For all ω > 0 such that s = jω is not a pole of G(s),

j (G(jω)−G(jω)∗) ≥ 0. (2)

3) If s = jω0 with ω0 > 0 is a pole of G(s), then it is a
simple pole and the residue matrix K = lim

s−→jω0

(s−
jω0)jG(s) is Hermitian and positive semidefinite.

4) If s = 0 is a pole of G(s), then lim
s−→0

skG(s) = 0 for

all k ≥ 3 and lim
s−→0

s2G(s) is Hermitian and positive
semidefinite.

Definition 2: [24] A square transfer function matrix
G(s) is SNI if the following conditions are satisfied:

1) G(s) has no pole in Re[s] ≥ 0.
2) For all ω > 0, j (G(jω)−G(jω)∗) > 0.
The following results provide state-space characteriza-

tion of NI systems in terms of linear matrix inequalities
(LMIs) [7], [24].

Lemma 1: (See [24]) Let (A,B,C,D) be a minimal
state space realization of a transfer function matrix G(s).
Then G(s) is NI if and only if det(A) ̸= 0, D = DT and
there exists a real matrix Y > 0 such that

AY + Y A∗ ≤ 0 and B = −AY C∗. (3)
Lemma 2: Let(A,B,C,D) be a minimal realization of

the transfer function matrix G(s) for the system in (1).
Then, G(s) is NI if and only if D = DT and there exists
a matrix P = PT ≥ 0 such that the following LMI is
satisfied:[

PA+ATP PB −ATCT

BTP − CA −(CB +BTCT )

]
≤ 0. (4)

Furthermore, if G(s) is SNI, then det(A) ̸= 0 and there
exists a matrix P > 0 such that (4) holds.

The following theorem from [15], [7] states this results.
Theorem 1: Consider an NI transfer function matrix

G(s) with no poles at the origin and an SNI transfer
function matrix Ḡ(s), and suppose that G(∞)Ḡ(∞) = 0
and Ḡ(∞) ≥ 0. Then, the positive-feedback interconnec-
tion of G(s) and Ḡ(s) is internally stable if and only if
λmax(G(0)Ḡ(0)) < 1.

Theorem 1 characterizes the conditions of the stabil-
ity of the feedback interconnection of two NI and SNI
systems through the phase stabilization. In the case of
phase stabilization, it is allowed to have arbitrarily large
gains, however, the phase must to be such that the Nyquist
critical point is not encircled by the Nyquist plot. In other
words, in the case of NI interconnected systems, the NI
system has a phase lag in [−π, 0] where the SNI system
has a phase lag in (−π, 0). Thus, the two systems in
cascade have a phase lag in the interval (−2π, 0). That
is, the Nyquist plot excludes the positive-real axis.

To establish the results in this paper, we use the
following lemma to formulate the NI system in terms of
Port-Hamiltonian formulation, see [19], [20].

Lemma 3: The system given in (1) has negative imag-
inary transfer function if and only if it can be written as

ẋ(t) = (J −R)Q(x(t)− CTu(t)),

y(t) = Cx(t) +Du(t),
(5)

for some matrices Q, J,R, where,

Q = QT > 0, J = −JT , R = RT ≥ 0. (6)

III. PROBLEM FORMULATION

The problem of robust stabilization of linear time-
invariant systems with respect to unmodeled dynamics and
structure uncertainties can be formulated as follows:

Given a strictly negative imaginary plant with the state-
space model given in (1). Suppose that our objective
is to design an output feedback controller that satisfies
the negative imaginary property, where the following
quadratic cost function;

J = E

[
xT
NFxN +

N−1∑
i=0

(
xT
i Qixi + uT

i Riui

)]
, (7)

for, F ≥ 0, Qi ≥ 0, Ri > 0,

is minimized. In other words, the objective is to design
an LQG controller, which satisfy the negative imaginary
property in the same time.

However, the regular LQG algorithm does not guarantee
the negative imaginary property to be satisfied and there-
fore, the above problem can be reformulated as follows:
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Given a strictly negative imaginary plant G(s) and a
synthesized LQG controller K(s) that satisfy the quadratic
cost function given in (7); find the nearest negative
imaginary transfer function ¯K(s) to the designed LQG
controller that satisfies the negative imaginary property.
This can be formally stated as follows:

Problem 1: Given an LTI MIMO strictly negative
imaginary plant and a designed regular LQG controller

with the following state-space representation
[

A B
C D

]
,

which satisfy the quadratic cost function (7); find the
nearest (the closest) transfer function with the state-space

representation
[

Ã B̃

C̃ D̃

]
, that satisfy the NI property

such that,
inf

(Ã,B̃,C̃,D̃)
F(Ã, B̃, C̃, D̃),

where

F(Ã, B̃, C̃, D̃) =∥A− Ã∥2F + ∥B − B̃∥2F
+ ∥C − C̃∥2F + ∥D − D̃∥2F . (8)

The above formulation have reduced the main problem
to the problem of finding the nearest negative imaginary
system for a given system, which in our case a designed
LGQ controller.

IV. MAIN RESULTS

As indicated in the problem formulation section, the
objective obtaining an LQG output feedback controller
that satisfies the negative imaginary property is reduced to
finding the nearest negative imaginary system for a given
system, which in our case a designed LGQ controller. This
section starts with presenting a systematic methodology
for finding the nearest negative imaginary system for a
given generic system. The problem of finding the nearest
negative imaginary system is similar to the problem of
finding the nearest positive real system (passive system)
presented in [6], where the port-Hamiltonian formulation
is used.

First, we introduce the following definition, which is
based on Lemma 3 and compares the system described in
(5) with the LTI system given in (1).

Definition 3: A system (A,B,C,D) is said to admit a
port-Hamiltonian form if there exists a system as defined
in (5) such that

A = (J −R)Q, and, B = −(J −R)CT

Based on the above definition, the problem given in (1)
can be reduced to the following problem:

Problem 2: Suppose an LTI system with the following

state space representation
[

A B
C D

]
, find the nearest (the

closest) system
[

Ã B̃

C̃ D̃

]
, such that,

inf
(Ã,B̃,C̃,D̃)

F(Ã, B̃, C̃, D̃),

where,

F(Ã, B̃) = ∥A− (J −R)Q∥2F + ∥B − (R− J)CT ∥2F ,
(9)

where, Ã = (J −R)Q, B̃ = −(J −R)CT .
Next, we present an algorithm for finding the nearest

negative imaginary system, which will be used later to
design an LQG controller that satisfies the negative imag-
inary property.

A. Algorithm for finding the nearest negative imaginary
system problem

This section proposes an algorithm to solve the problem
dissuaded in the above section.

The problem (2) can be written as follows

inf
J,R,Q

∥A− (J −R)Q∥2F + ∥B − (R− J)Q∥2F ,

such that

JT = −J,Q = QT > 0, and RT = R ≥ 0. (10)

The projected gradient method (FGM) presented in [5]
and [6] is used to solve the problem in (10).

As indicated in [6], the projected gradient method is
much faster and hence better to use compared to the
standard projected gradient method [14].

The steps can be summarized as follows:
• Compute the gradient as follows:

∥A − (J − R)Q∥2F ⇒ ∇J1
= −2Q∥A − (J − R)Q∥,

∥A − (J − R)Q∥2F ⇒ ∇R1
= 2Q∥A − (J − R)Q∥,

∥A − (J − R)Q∥2F ⇒ ∇Q = −2(J − R)∥A − (J − R)Q∥,

∥A − (R − J)C
T ∥

2
F ⇒ ∇J2

= 2C
T ∥A − (R − J)C

T ∥,

∥A − (R − J)C
T ∥

2
F ⇒ ∇R2

= −2C
T ∥A − (R − J)C

T ∥,

or simply, for a given term in the objective function, f(X) = ∥AX − B∥2F the gradient is

∇Y f(Y ) = 2AT (AY − B).
• Project onto the feasible set of matrices Q,R that satisfy both conditions, Q = QT >

0, and RT = R ≥ 0.

The FGM Algorithm, which presented in [6], is used to
compute the matrices Q,R.

Similar to the implementation in [6], positive weights
wi were added to the objective function terms in order to
give opportunity for a different importance of each term
if needed. Therefore, the objective function can be written
as follows:

F(Ã, B̃) = w1∥A− (J −R)Q∥2F+w2∥B − (R− J)CT ∥2F .

Parameter settings in our implementation are similar to
the parameter settings that was used in [6]. For instance,
the step length is calculated as γ = 1/L where L =

3
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∥Q∥22. Furthermore, in the initialization step, two different
initializations were used.

• The first initialization,

Q = In, J =
(
A−AT

)
/2, R = P>0

(
(−A−AT )/2

)
,

where the notation P>0(X) stands for the projection
of a matrix X on the cone of positive semi-definite
matrices.

• The second initialization is an LMI-based: Since the
given system is not an NI system, the LMI given
in (4) has no solution. However, a solution P to
the nearby LMIs should be a good initialization for
the matrix Q. We propose the following to relax
LMIs (4):

min
δ,P

δ2

such that[
−PA−ATP −PB +ATCT

−BTP + CA (CB +BTCT )

]
+ δIn+m ≥ 0,

(11)

B. Optimal control design

In this section, the nearest NI problem, which was
presented in the previous subsection, will be used in order
to design a near-optimal controller for a given NI plant.

Suppose that we want to design a controller for a given
NI plant, G(s), with the state space representation given
in (1). Suppose also that we decided to use any standard
control synthesis methodology such as LQG or H∞ to
design a controller that satisfy a particular performance
measure. It is unlikely that the designed controller will
satisfy the NI property and therefore, a robustness property
will not be guaranteed. Hence, we can use the nearest NI
problem, which was presented in the previous subsection,
to find the nearest NI controller to the designed one.
The following steps summarize the NI-control design,
assuming that an LGQ is used in the design.

• Given an LTI NI plant in the form (1), with the
transfer function matrix G(s) = C(sI−A)−1B+D.

• Design a linear quadratic Gaussian (LQG) controller
K(s) = Cc(sI − Ac)

−1Bc + Dc, which minimizes
the following cost function:

J(u) =

∫ ∞

0

{
xTQcx+ 2xTNcu+ uTRcu

}
dt.

(12)
• Use the methodology presented in this paper to find

the nearest NI controller Ḡ(s) = C̄(sI−Ā)−1B̄+D̄,
to the designed LQG controller K(s).

The new modified controller Ḡ(s) is a near-optimal con-
troller that satisfy the NI property.

Remark 1: The DC gain condition λmax(G(0)Ḡ(0)) <
1, can be included in the optimization process of finding
the nearest NI controller. The DC gain of the NI controller
can be calculated as follows:

Ḡ(0) =− C̄(Ā)−1B̄ + D̄,

= C̄((J −R)Q)−1(J −R)C̄T + D̄,

= C̄Q−1C̄T + D̄.

In the iterations of finding the matrix Q, particularly, in
the projection iteration, the matrix Q is scaled to satisfy
the DC gain condition. The scaling factor that preserve
the DC gain condition is:

Qnew = αQold

where in the single-input single-output case,

α = (CQ−1
oldC

T +D)G(0) + ϵ,

with a small ϵ > 0.

V. EXAMPLE

In this section, we present an example to illustrate the
design approach presented in this paper.

It is well known that mechanical structures with colo-
cated force actuators and position sensors yield negative
imaginary systems [15]. Naturally, these systems are infi-
nite dimension systems, whereas their models are not. This
make the control design for such systems challenging.
Particularly, in the case where the synthesis methodology
do not take into account the robustness issue. Therefore,
our method shows a big advantage over optimal control
methodologies.

To illustrate this fact, consider the following lightly
damped flexible structure LTI second-order system with a
colocated force actuation and position measurement with
the following structure:

G(s) =

N∑
n=1

1

s2 + 2ζnωns+ ω2
n

, (13)
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Fig. 1. Bode plot of NI system given in (13), where N=2
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where ωn is the natural frequency and ζn the damping
factor. Suppose that we want to design an LQG controller
for the system given in (13). Since this model represents
an infinite dimension system, a finite model is chosen to
design the controller. We chose N = 2 with ω1 = 2, ω2 =
4 and ζ1 = ζ2 = 0.02 for the model parameters. This
implies that the model gives the transfer function given in
Fig. 1.

With an appropriate LQG parameters, the controller is
given as follows:

LQG(s) =
−1.593s3 + 9.84s2 − 12.58s+ 93.76

s4 + 3.847s3 + 26.66s2 + 46.86s+ 125.1
.

(14)

The bode plot of the designed LGQ controller as given in
2 shows that it is not an NI controller, since the phase is
not in the (0,−π).
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Fig. 2. Bode plot of designed LQG controller given in (14).

Now, applying our method of finding the nearest NI
controller to the LQG controller given in (14), we get the
following transfer function,

NILQG(s) =
13.75s2 + 6.77s+ 132.5

s4 + 3.847s3 + 26.66s2 + 46.86s+ 125.1
(15)

The bode plot in Fig. 3 of the controller given in (15)
shows that it satisfy the NI property.

Applying FGM with the standard initialization,
This gives a nearby standard NI system with error

∥A− Â∥
2

F + ∥B − B̂∥
2

F + ∥C − Ĉ∥
2

F

+ ∥D − D̂∥
2

F = 0.6430.

In terms of relative error for each matrix, we have

∥A− Â∥F
∥A∥F

= 5.5917e−18%,
∥B − B̂∥F

∥B∥F
= 0.0631%,

∥C − Ĉ∥F
∥C∥F

= 0%,
∥D − D̂∥F

∥D∥F
= 0%.
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Fig. 3. Bode plot of designed LQG controller given in (14).

The step response of the closed feedback interconnec-
tion of the plant given in (13) and both the designed LQG
(14) controller and the nearest NI controller (15) are given
in Fig. 4. It is clear that the response is very similar.

Fig. 4. Bode plot of NI system given in (13), where N=2.

The more interesting part of this example is when we
add more non-modeled modes to the plant, i.e., N = 5 as
shown in Fig. 5. This means that we include un-modulated
dynamics in the plant, which was regarded as uncertainty.

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

The model of the plant with N=5

The model of the plant with N=2

10
-1

10
0

10
1

10
2

-180

-135

-90

-45

0

P
h

a
s

e
 (

d
e

g
)

Bode Diagram

Frequency  (rad/s)

Fig. 5. Bode plot of the plant model given in (13), with different
numbers modes

As shown in Fig. 6, the designed LGQ (14) will become
unstable if we considered the five-mode plant. However,
the nearest NI controller still stabilize the system with
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an acceptable performance. This is due to the negative
imaginary property of both, the controller and the plant.

Fig. 6. The step response of the designed LGQ (14) and the nearest
NI controller plant model given in (13), with N=5.

VI. CONCLUSION AND FURTHER RESEARCH

In this paper, we have investigated the robust stabiliza-
tion of negative imaginary systems by finding the near-
optimal negative imaginary controller. The approach is
based on port-Hamiltonian formulation and can be sys-
tematically applied by solving LMI conditions. The effec-
tiveness of the technique has been verified by simulation.
It has been shown in simulation that the nearest negative
imaginary controller produces very similar response to the
nominal LQG controller while ensuring robustness w.r.t.
unmodeled dynamics.

Future research directions include more control design
approaches such as H∞ control. Also, a deeper analysis of
the convergence of the optimization algorithm is needed
in order to make the results more attractive. Furthermore,
the results in this paper can be extended to the class of
positive real systems as well.
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