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ABSTRACT 

 
MAHGOUB, MOHAMED, O., Masters : January : 2017, 

Masters of Science in Electrical Engineering  

Title: Optimal Placement of Phasor Measurement Units for Power Systems Using Genetic 

Algorithm 

Supervisor of Thesis: Adel Gastli. 

Power grids require monitoring to operate with high efficiency while minimizing the 

chances of having a failure. However, current monitoring scheme which consists of 

SCADA (Supervisory Control and Data Acquisition), accompanied with conventional 

meters distributed throughout the grid, is no longer sufficient to maintain an acceptable 

operation of the grid. This is evident from the multiple failures and blackouts that 

happened and are still happening in grids worldwide.  This issue became more severe due 

to systems being operated near their limits (to reduce costs and due to the increase in 

electricity demands), as well as, the addition of renewable energy sources, which usually 

have abrupt changes. Smart grids were introduced as a solution to this issue by the 

inclusion of Wide Area Monitoring System (WAMS), which is mainly based on Phasor 

Measurement Units (PMU), which are measurement devices that provides synchronized 

time stamped measurements with high sending rate which significantly improves the 

monitoring of the grid.  However, PMUs are relatively expensive (considering both direct 

and indirect costs incurred). Thus, it is desired to know the minimum number of PMUs 

required for achieving certain monitoring criteria.  Thus, Optimal PMU Placement (OPP) 

formulates an optimization problem to solve this issue.  In the literature of OPP, multiple 

objectives and constraints are considered, based on desired criteria.  In this thesis, a 
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review of OPP is made, followed by the application of selected algorithms (Integer 

Linear Programming and Genetic Algorithm) on various test systems as a verification and 

then applying it to Qatar Grid, to compare between different considerations as well as 

gain insight about the possible PMU placements for Qatar Grid. The contribution of this 

thesis is introducing a modified fitness function for the Genetic Algorithm that provides 

more diverse results than previous papers, while incorporating for various considerations 

like Zero Injection Buses, Conventional Measurements and current branch limit. It also 

analyzes the results of current branch limit and provides new plots describing their 

effects. 
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Chapter 1 Introduction  

1.1 Background 

Power grids around the world are witnessing remarkable development in recent years due 

to new challenges faced with the integration of renewables. This development is toward 

becoming smarter grids by integrating information and communication (ICT) layers above 

the conventional power layer allowing more accurate and faster control of the grid. Wide 

Area Monitoring System (WAMS) is one of the primary elements contributing to the 

development of smart grids. WAMS means the monitoring of the entire system by the 

control center, in other words, the system becomes observable by direct measurements 

rather than state estimations. WAMS can achieve this real-time monitoring through the 

usage of accurate synchronized time stamped measurement devices with high reporting 

rates, such as the Phasor Measurement Units (PMU). This monitoring, through PMUs, 

enhances the system in many aspects ranging from optimal power dispatch, monitoring tie 

line power, detecting unacceptable voltage profiles to prevent faults or minimize their 

effects. Although these features might appear to be already available in conventional 

power networks through Supervisory Control and Data Acquisition (SCADA), the 

efficiency and correctness of SCADA regarding giving real time data is relatively small 

due to many estimations, since there are many missing variables that SCADA needs to 

estimate. Another lacking in SCADA is the system’s inability to properly react to major 

faults that might result in blackouts [1]. The previous is a common issue with SCADA 
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where by the time the estimations indicate that the grid is collapsing, many of the loads 

and generators throughout the system would already be disconnected, or worst a cascaded 

blackout might occur e.g. the 2003 northeast blackout in the USA [2].  

Optimal power dispatch, active protection, and fault detection require real-time 

measurements or estimations of several system parameters such as the phasors of 

voltages and currents throughout the entire network to function properly and efficiently.  

Measurements could be provided by conventional measurement devices or PMUs (see 

Figure 1.1), while observers provide estimations.  

 

Figure 1.1: PMU and conventional measurements connection with the grid 

However, having measurements instead of estimations is preferred, since it reduces errors 

(excluding the effects of bad data). Therefore, full observability, which means that the 
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phasors of voltages and currents throughout the entire network are known, would benefit 

the above applications and this status of full observability can be achieved using PMUs.  

Thus, using PMUs as measurement devices provides more stability and security to the 

network. Also, PMUs should not necessarily mean the replacement of SCADA (although 

entirely WAMS system can replace SCADA), because PMUs can be utilized as a 

replacement or complement to the existing measurement devices while maintaining 

SCADA as the method for monitoring and controlling of the system. Also, the results 

demonstrated in this thesis would still be valid even if PMUs are considered as a 

complement measurement [3]. In addition, PMUs can generate profit by being able to do 

optimal power dispatch in real time, as well as, having accurate data about transmission 

line current, which give information regarding both the line losses and its power capacity. 

Another hidden profit is reducing the chances of a major blackout.  

On the other hand, although PMUs are superior to conventional measurements in 

numerous aspects, they cannot be placed practically around the entire system at each bus, 

since they are relatively expensive (considering direct and indirect costs incurred) [4]. 

Thus, to fully make use of PMUs while minimizing the total number of needed PMUs to 

achieve full power system observability, Optimal PMU Placement (OPP) is introduced to 

solve this issue using different mathematical and heuristic algorithms.  

Although full system observability was not the primary goal for incorporating PMUs into 

power networks, it soon became critical with the increase in PMU-based applications that 

require full system observability.  Therefore, OPP refers to the problem of placing PMUs 

throughout the power network to provide full observability of the network (or any other 
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requirement) under certain constraints while minimizing the number or costs of the PMUs. 

To enhance the OPP, the formulation of the problem and the criteria required to be 

optimized are very essential. Surveying the literature showed that these criteria include 

different scenarios and considerations. 

1.2 Problem Statement 

To solve optimization problems, Calculus–based and iterative techniques are mostly used 

since they provide reliable answers that are either the global minima (or maxima) in the 

case of calculus-based techniques, or a very likely to be the global minima (or maxima) 

in regard to iterative techniques. However, these techniques are vulnerable to fail in 

producing satisfactory solutions for nonlinear multivariable optimization tasks (due to 

numerous local minima and maxima, discontinuity, …etc.). In addition, when the number 

of variables becomes enormous, the time required for solving the problems becomes 

impossibly large. In these aspects, bio-inspired optimization algorithms have 

outperformed these classical techniques; thus, these algorithms are used widely in 

applications with complicated, highly nonlinear multivariate problems, like the OPP.  

From the literature survey, the complexity of the OPP comes from its nonlinearity, since 

the variables take values of 0 (no PMU) or 1 (with PMU). However, Integer Linear 

Programing (ILP) solves this issue since it deals with integers. Thus, the dominant 

method for solving the OPP is ILP. However, OPP does not refer to one problem only, 

because the various constraints, conditions, and objectives related to the OPP make the 
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problems varies considerably to the extent that some methods might not be able to solve 

some of these OPPs, i.e. it might not be possible to formulate it as an ILP problem. On 

the other hand, probabilistic and bio-inspired optimization techniques solve the issue of 

problem formulation, since these techniques only require an input-output relationship 

between the variables and the parameters to be optimized. Nonetheless, these techniques 

are not perfect and they suffer from a major problem which is the trapping in local 

minima since these algorithms try to look for solutions randomly but within a certain 

region around the current solutions. 

As for the various constraints, conditions and objectives that occur in the OPP some of 

them are the consideration of existing measurement devices, the incorporation of the Zero 

Injection Bus (ZIB) effect, finding the maximum achievable observability given a 

specific number of PMUs, and allowing for multistage placement for PMUs. Hence, the 

problem of OPP is actually two problems: the selection of the suitable constraints, 

conditions and objectives, as well as, finding a solver for the formulated OPP problem. 

1.3 Thesis Objectives 

The objectives of this thesis is to review the OPP techniques used in the literature and to 

apply selected algorithms (e.g. Integer Linear Programming and Genetic Algorithm) to 

various IEEE test systems as a verification and then to Qatar Grid, to compare between 

different considerations as well as to gain an insight about the possible PMU placements 
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for Qatar Grid. In addition it aims to propose a modified Genetic Algorithm to produce 

better results and to study the effects of current channel limit. 

1.4 Thesis Scope 

This thesis considers the application of OPP to Qatar Grid as its primary goal. It also uses 

other benchmark IEEE test systems to verify the correctness of the obtained results.  

However, the following are considered beyond the scope of the thesis along with a brief 

explanation of why these points are out of scope: 

 The consideration of communication infrastructure as a criterion for OPP is 

excluded since it requires data that are not available, which are the Qatar Grid 

physical layout and the costs of communication infrastructures. 

 This thesis focuses on the formulation of the OPP itself and using different 

algorithms, constraints and objectives to solve the OPP. However, the studying 

and modifying of the algorithms themselves (e.g. modifying Genetic Algorithm 

by adding additional steps or modifying the existing steps to increase convergence 

time or enhance the results) is beyond the scope of the thesis.  

1.5 Thesis Organization 

The thesis is organized into five chapters. Chapter 1 is the introduction. Chapter 2 

presents a literature review, which includes the review of the OPP considerations and 



 

7 

algorithms, as well as, providing a detailed explanation of the Genetic Algorithm and its 

uses in solving the OPP. Chapter 3 explains the selected methodologies to solve the OPP 

in this thesis. Chapter 4 presents and discusses all the obtained results for all the 

considered IEEE test systems and Qatar Grid cases. Finally, Chapter 5 concludes the 

thesis and proposes the future work. 
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Chapter 2 Literature Review 

The OPP mainly involves two separate parts. 

1. The formulation of the OPP (the function to be optimized as well as the 

constraints and consideration) 

2. The solving of the OPP 

Section 2.1  shows the literature review of the formulation, while sections 2.2 and 2.3  

represents the main ways to solve the OPP which are mathematical algorithms and 

heuristic algorithms respectively. A detailed literature review of OPP can be found in 

[6][7]. However, the literature review provided here is more extensive and includes more 

recent publications. Section 2.4 contains the typical results for the OPP of benchmark 

systems. Finally, Section 2.5 explains the Genetic Algorithm (GA) and its usage in 

solving the OPP. 

2.1 Problem Formulation 

For a system to be observable, all the states of the system need to be either directly 

measured or can be calculated from the data available by the measurement devices using 

electric circuit equations. These states can be the voltages of each bus in the network 

because knowledge of the voltages (while knowing the admittance matrix) is sufficient to 

calculate the currents at all branches in the network, as well as, the power flow throughout 
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the network. Moreover, since PMUs measure the voltage of a bus and the currents of all 

branches connected to it (assuming that the PMU has enough current channels), then it can 

be shown that with the knowledge of the network’s impedances and admittances it is 

possible to find the voltages of the buses connected to that PMU. A similar concept can be 

applied to Zero Injection Buses (ZIB) (A bus is considered a ZIB if it does not have any 

loads or generators attached to it, i.e. S = 0). Let Z be a ZIB and connected to it are D 

buses, then there is a total of D+1 buses, including the ZIB, for these D+1 buses it is 

sufficient to find D voltages only, and the remaining one can be measured using direct 

application of Kirchhoff’s Current Law (KCL).  The mathematical proofs for the above 

assumptions can be found in [8], and are summarized as follows: 

Assume that a PMU is installed in bus i, measuring both the voltage of the bus and the 

current of its branches including transmission line i-j. Then, for bus j: 

𝑔(𝑉𝑖, 𝑉𝑗) =
𝐷𝑖𝑗

𝐵𝑖𝑗
𝑉𝑖 + (𝐶𝑖𝑗 −

𝐴𝑖𝑗𝐷𝑖𝑗

𝐵𝑖𝑗
) 𝑉𝑗 = 𝐼𝑖𝑗 (2.1) 

where the parameters A, B, C, D are the elements of the transmission matrix modeled as a 

two-port network, considering i as sending terminal. From (2.1) knowledge of Vi and Iij 

(both obtained by the PMU) is sufficient to calculate the voltage at bus j. Thus, bus j 

becomes observable. Also, note that this formulation would work regardless of the type of 

the bus or what is connected to it (load, generator, PV farm, …etc.), since it only requires 

the voltage at the bus and the transmission lines parameters. 

As for ZIB and Injection measurement, using (2.2) 
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𝑔(𝑉1, … , 𝑉𝑁) = ∑ 𝑌𝑘𝑖𝑉𝑖 =
𝑆𝑘

∗

𝑉𝑘
∗

𝑖∈𝐵

 (2.2) 

where bus k is a ZIB or a bus with injection measurement device, Sk is the apparent power 

at bus k and B is the set of all buses in the system and Yki is element k,i in the admittance 

matrix. Then, for ZIB or a bus with injection measurement device, the right-hand side 

would be known (Iinjected or 0 respectively). Thus, it is possible to know one unknown 

voltage if all other voltages are known. 

A formulation for the above description can be done using Integer Linear Programming 

(ILP) model since it is well suited for defining this type of problems.  The ILP 

formulation is carried out as follows [8][9][10]. Assume that n is the 𝑛𝑡ℎ bus in a power 

grid with N buses. Then, we can consider the following rule: 

𝑢𝑛 = {
1 𝑖𝑓 𝑎 𝑃𝑀𝑈 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑡 𝑏𝑢𝑠
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

       𝑓𝑜𝑟 𝑛 = 1,2,3 … 𝑁 (2.3) 

where un indicates whether there is a PMU in the bus or not. Using (2.3), the optimal 

solution for the OPP should minimize the cost function F given in (2.4) and at the same 

time satisfy (2.5), (2.6), and (2.7): 

𝐹 = ∑ 𝑐𝑛𝑢𝑛

𝑁

𝑛=1

 (2.4) 

𝑂𝑛 = ∑ 𝑎𝑛𝑚𝑢𝑛

𝑁

𝑚=1

+ ∑ 𝑎𝑛𝑚𝑦𝑛𝑚

 

𝑚∈𝐼𝑀

≥ 𝐵𝑛      𝑓𝑜𝑟 𝑛 = 1,2,3 … 𝑁  (2.5) 
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𝑎𝑛𝑚 = {
1 𝑖𝑓 𝑛 = 𝑚 𝑜𝑟 𝑏𝑢𝑠 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 (2.6) 

∑ 𝑎𝑛𝑚𝑦𝑛𝑚

𝑁

𝑛=1

= 1         ∀ 𝑚 ∈= 𝐼𝑀 (2.7) 

where 𝑐𝑛 is the cost of the PMU at bus n; On is the actual observability of bus n; IM is the 

set of measured injection buses and ZIBs; 𝑦𝑛𝑚 is a variable that indicates that the bus is 

observable by an injection bus or a ZIB (1 if bus n is observed by the ZIB or IM in bus m, 

and 0 otherwise); Bn is the minimum required observability for bus n; and 𝑎𝑛𝑚 is the 

connectivity matrix elements between two buses n and m. which can be directly found 

from the admittance matrix by assigning 1 to the nonzero elements in the matrix. 

The cost of the PMU 𝑐𝑛 is a general term that can include the price of the PMU itself, its 

network infrastructure costs, the cost of adding current and potential transformers if they 

are not available, the cost difference between installing a PMU at a low or high voltage 

levels and any other relevant cost. It can also be used to indicate the importance of a bus, 

by assigning low values to important buses and high values for other buses, making these 

important buses preferable locations for PMU placement. If it is assumed that all PMUs 

have the same cost and importance, then the cost can be normalized to be a vector of 

ones. As for the observability vector, it is typically a column vector of ones, since we 

need each bus to be observable by at least one PMU.  However, the values of Bn (certain 

bus) or B (the entire network) can be > 1 if a more reliable observability or a certain 

level of redundancy is needed for a specific bus or the entire system (e.g. a value of 2 

allows resilience to N-1 contingencies for the PMUs). On the other hand, the value can be 
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zero when a more relaxed constraint is needed (case of a system partially observable). As 

for the connectivity matrix, it is built based on the assumption that the impedances of 

transmission lines throughout the system are known. It should be noted that this is a basic 

formulation.  However, other advanced formulation techniques exist in the literature. 

Moreover, the OPP is usually formulated using ILP, but solving it is not restricted to 

linear programming solvers.  Nonetheless, this thesis uses ILP solvers, in addition to 

using the GA, since it is the direct approach to solve OPP. 

As for computational complexity, OPP is considered to be NP-complete. Also, according 

to [24], the number of needed PMUs to solve the OPP for full observability is no more 

than 1/3 of the total nodes (for a typical OPP). 

Other considerations can be included by modifying the problem formulation, for example 

the case of modifying the grid (adding extra transmission line, generation bus or 

distribution bus) can be approached by numerous methods, but the most direct is 

modifying the a matrix to reflect the changes (if any) and forcing u vector to have un = 1 

for any bus n that has a PMU. In addition, depending on the applications and their 

requirements, several additional considerations may be used in the problem formulations, 

such as: 

1. Contingencies: failure of PMUs, transmission lines or both (N-1 contingency is the 

most used case but more severe cases can also be considered). [30] [45] [77] 

2. Inclusion or exclusion of zero injection buses (ZIB). [5][47] 

3. Consider PDC (Phasor Data Concentrator) and communication network cost. [77] 
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4. Minimizing current measurement branches in the PMU to reduce the PMU cost.[22] 

5. Including errors due to faulty or imperfect measurement devices. [19] [60] 

6. Aiming for state estimation enhancement rather than full observability.[23] 

7. Ability to detect and eliminate bad data. [24] 

8. Increasing redundancy of measurements in OPP. [5] 

9. Including already placed PMUs in the OPP or reallocating them [46] 

10. Including conventional measurements.[20] 

11. Forcing certain buses into having or not having a PMU. [46] 

12. Considering multistage placement of PMUs.[23] 

13. Accounting for system reconfiguration [39] 

Finally, as previously stated, the methods used to solve OPP are mainly classified into 

mathematical and heuristic algorithms. Figure 2.1 shows the algorithms associated with 

their classification (mathematical or heuristic).  
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Figure 2.1: Algorithms used for solving OPP 

2.2   Mathematical Algorithms 

Different mathematical approaches are used in solving OPP most notably Integer 

Linear Programming and Exhaustive Search. Other used algorithms include Direct 

Search and Weighted Least Squares Algorithm. Mathematical algorithms have the 

advantage of being consistent and well defined.  They provide accurate results, but 

depending on the complexity of the problem (e.g. discontinuity, nonlinearity) sometimes 

it is impractical or impossible to find or apply a mathematical algorithm. 

2.2.1. Integer Linear Programming 

Integer Linear Programming (ILP) refers to the type of problems where variables 

are restricted to integers only [11]. Thus, since the OPP is a discrete problem the 
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paradigm became formulating OPP using ILP. The previous led to the majority of papers 

either using ILP or one of its variants (e.g. Multiple Integer Linear Programming (MILP); 

Binary Integer Linear Programming (BILP)) to solve the OPP or use another algorithm 

while incorporating ILP to formulate the problem. Thus, only a few examples would be 

included in this section. 

In [24]-[30], ILP is used. In [24] conventional measurements were incorporated in 

the solution.  Another addition is that bad data detection was considered and an algorithm 

capable of transforming bad data detection into an ILP for OPP was introduced. From the 

versatility point of view, the algorithm provided in [25] is among the best of ILP based 

solutions to solve the OPP since it considered N-1 contingencies for both PMU and 

transmission lines, inclusion and exclusion of ZIB, and the number of current 

measurement branches in the PMU. In addition, [25] validated its proposed algorithm 

using six different test systems for multiple scenarios, whereas [26] differs from other 

papers by considering N-2 overlapping contingencies, instead of N-1. Also, the fact that it 

is a reliability based and incremental means that the method in [26] is practical regarding 

the addition of PMUs in multiple stages, while maximizing the reliability at each stage. 

In[27], Binary Integer Programming (BIP) is used for solving the observability problem 

as a binary integer minimization problem (BIMP), but the paper proposed its own 

algorithm for determination of critical buses in the system and to allow incremental 

(multistage) PMU placement and then the algorithm would re-call the BIMP. In [28], a 

novel algorithm considering minimizing PMUs and maximizing redundancy as 

conflicting objectives is used. Since practical systems are very large, ILP computational 
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burden becomes huge (>150000 seconds for 1000+ bus systems). Thus [29] introduced a 

novel community-based partitioning approach for solving the OPP by islanding the 

system and then solve for each island, while still maintaining a PMU count almost equal 

to the direct solving for the entire system. On the other hand, [30] introduced new 

approaches to consider the effects of both zero injection buses and conventional 

measurements. It also considers N-1 contingency for both PMU and transmission lines.  

The results in [30] matches and sometimes exceed previous papers. 

2.2.2. Exhaustive Search  

Exhaustive search (also known as brute force search) means searching all possible 

permutations until finding the global optimum (since this method search all possible 

configurations then it guarantees that the global optimum solution is found).  However, it 

is impractical to apply it to large systems. In [12], Exhaustive Search is used to solve the 

OPP while modifying the problem so that it is possible to do Exhaustive Search within a 

reasonable time even for large systems such as the Iranian National Grid. Also, [60] uses 

exhaustive search to validate its results. While [14] uses an algorithm based on 

Exhaustive Search to solve the OPP problem with multiple constraints and objectives 

while guaranteeing that the results are the global optima. As for [13], it proposes its own 

method while incorporating exhaustive search in the algorithm. 
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2.2.3. Others 

Direct Search is an optimization method that does not require derivate search, 

which makes them suitable for discontinuous functions [31]. In [15], Mesh Analysis 

Direct Search (MADS) algorithm, which is a modified version of Direct Search was 

implemented using NOMAD solver to solve the dynamic state estimation problem. 

Another new approach was incorporated in [32]. Since, instead of solving the typical 

OPP model, [32] introduced a new approach by transforming the integer/binary problem 

into a continuous optimization model of Weighted Least Squares Algorithm. In addition, 

[33] uses Revised Analytical Hierarchy Process to solve for OPP while also accounting 

for improving voltage stability, it also introduced the concept of having multistage PMU 

placement where the first stage targets critical buses regarding voltage stability, making 

the algorithm closer to industry demand. 

Although, OPP is usually formulated as an ILP, in [34] a nonlinear programming 

NLP is used, and the OPP is solved using sequential quadratic programming algorithm. 

The paper states that this approach provides the advantage of having multiple solutions 

with the same number of PMUs but different PMU locations. 

2.3 Heuristic and Metaheuristic Algorithms 

The second method is to use heuristic and metaheuristic algorithms. Heuristic 

refers to the type of algorithms that search for the solution among all possible points 

while following a particular pattern for this search, they are suitable for finding quick 
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solutions and can deal with complexities better than mathematical approaches, because 

they require minimal or no prior mathematical knowledge about the problem. However, 

the problem with these algorithms is that there is no guarantee that they provide the 

global optimum. As for the difference between heuristic and metaheuristic algorithms, it 

is that heuristic algorithms take into consideration the nature of the problem itself to solve 

it easily, but this might lead to trapping in local optima. Whereas, metaheuristic methods 

are heuristic methods that are independent of the nature of the problem, which can help in 

reducing the chances of being trapped in local optima since the algorithms do not make 

any specific assumptions regarding the problem. However, since the difference is quite 

subtle, they will both be in the same category [35][36]. 

2.3.1. Ant Colony Optimization 

Ant Colony is an optimization algorithm based on the behavior of ant colonies, 

and it is a part of the population algorithms [35]. In [37], Ant Colony optimization was 

used for the solution of the optimal PMU placement while maximizing redundancy. 

Other papers [38][39] show how to use ant colony accompanied with Greedy Algorithm 

to account for system reconfiguration. It should be noted that very few papers applied this 

optimization technique. 

2.3.2. Decision Tree 

This algorithm constructs a treelike diagram representing the classification of data 

and is based on data prediction. Although no reviewed paper uses Decision Tree for full 
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system observability, there are notable articles that use Decision Tree Algorithm to 

optimally place PMUs for achieving security and stability objectives such as voltage 

security [40][41] and islanding detection [42]. 

2.3.3. Depth First Search  

Depth First Search is a searching algorithm that tries to explore the nodes around 

a root to find the optimal solution. In [43], multiple algorithms are used to satisfy both 

full system observability as well as fault detection.  Among these algorithms is the Depth 

First Search Algorithm.  Also, [44] improved the Depth First Search Algorithm to 

achieve a similar task but with three objectives: full observability; distribution of PMUs 

based on weighted values for each bus; and improving voltage stability. 

2.3.4. Differential Evolution  

The algorithm is part of the population-based metaheuristic algorithm, aiming to 

improve and alter a candidate solution using certain criteria, until an optimal solution is 

reached. Multiple papers use Differential Evolution to achieve OPP among these papers 

the notables are [45]-[47]. In [45], PMU failure is considered, while [46] focuses on 

reallocation of PMUs and having some practical considerations such as specifying if a 

bus must be with or without a PMU. 
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2.3.5. Genetic Algorithm  

Genetic Algorithm (GA) is part of the population-based metaheuristic algorithm 

that mimics the process of reproduction and evolution. In [48] to [59], Genetic Algorithm 

is used to solve the optimal PMU placement problem. [49] introduces probabilistic 

criteria into the OPP, while [51] incorporates bad data detection. [53] and [59] improves 

the GA itself to make it more robust, [48] targets increasing redundancy and allow for N-

1 contingency, [52] merges Fuzzy Weighted Average with the GA to improve the system 

security and account for multistage placement. [57] also accounts for multistage 

placement, but it also considers conventional measurement units, maximizing redundancy 

and introduces a new formulation for the GA population creation and mutation stage that 

is tailored for OPP. As for [58] it takes a step further and uses non-dominating sorting 

genetic algorithm-II to solve the OPP problem while accounting for communication 

infrastructure cost, maximizing redundancy, ZIB effect, actual costs, and channel 

limitations. It also applies its results to 5 systems ranging from IEEE 14-bus to Polish 

2383 system. 

2.3.6. Greedy Algorithm 

Similar to exhaustive search, the greedy algorithm tries to find the optimal 

solution through searching, but the search is limited to neighboring points of the current 

guess, whereas exhaustive search considers all possible cases. In [60],  PMU phase angle 

mismatch is considered (due to imperfectly synchronized PMUs). The method takes into 

consideration the posterior Cramer-Rao bound on state estimation error and then uses it 
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finds the solution of the OPP. Actual OPP solution is obtained using Greedy Algorithm. 

Also, [39] incorporates greedy algorithm as previously stated. 

2.3.7. Spanning Tree 

In [61]-[63], Spanning Tree Algorithm is used to solve or improve the solution for 

the OPP. In [61], a hybrid Genetic Algorithm uses Minimum Spanning Tree to improve 

the feasibility of the algorithm. While [62] study the validity of voltage stability 

assessment using PMUs, and the algorithm used for the OPP is a recursive spanning tree. 

Another novel approach introduced in [63], a new idea of The Depth of Observability 

indicates the percentage of observability in case of partial observability. Another addition 

is that the method also considers the minimization of current measurement branches in 

the PMU. Also, in [72], spanning tree algorithm is used for OPP, while also constructing 

voltage stability curve and limits using the information provided by the placed PMUs. 

2.3.8. Particle Swarm Optimization  

Particle Swarm Optimization (PSO) is an optimization technique based on the 

social behavior of animals such as bird flocks. In [64]-[68], PSO is used to solve the OPP 

issue with emphasis on improving the algorithm itself to increase efficiency and 

convergence rate as well as reduce the trapping in local minima. 
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2.3.9. Simulated annealing 

Simulated Annealing is a probabilistic optimization technique that uses s scheme 

mimicking the heating and cooling of metals in metallurgy. Solving OPP using simulated 

annealing is in [70] and [71]. In [70], a novel multistage OPP algorithm is introduced, 

while [71] proposes a novel decomposition method for solving OPP 

2.3.10. Tabu search 

Tabu Search, is a searching optimization method based on the idea of experience 

and oblivion of human beings.  In [73], Tabu search is used to solve the OPP, while the 

Tabu search is improved in accordance with the nature of the OPP.  Another addition in 

the paper is the inclusion of the redundancy as a criterion, i.e. even if the number of 

PMUs is the same through iterations while the redundancy is increasing, the method will 

continue iterating, thus providing better results even if they appear identical to other 

results. 

2.3.11. Artificial Bee Colony 

Artificial Bee Colony (ABC) is a searching optimization method that is a part of 

the population-based metaheuristics algorithms. ABC is used in [74] -[76]. In [74], two 

algorithms are combined. Spanning Tree is first used to provide a graph-theoretic 

approach.  The second phase is an ABC algorithm to search for the optimal solution.  

In[75], the Binary ABC is used to solve the OPP directly, the used method also 

incorporates Flow Measurements devices and takes contingencies into consideration. 
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While [75] uses a fuzzified ABC approach to solve the OPP while maximizing voltage 

stability level. 

2.3.12. Others 

Multiple heuristic algorithms are applied in [43] which includes: Depth First 

Search; Graph Theoretic Procedure; Spanning Tree; And Simulated Annealing. It also 

tests these algorithms in seven different models. In [77], two optimization techniques are 

used simultaneously to find an optimal solution for both the PMU locations and their 

PDCs along with the communication infrastructure. For the first, Binary Imperialistic 

Competition Algorithm is used while Dijkstra’s single source short path is utilized for the 

second task.  The methods are also accompanied with practical considerations such as 

previously installed PMUs, communication infrastructures, and the actual cost of PMUs. 

Also, [53] uses a hybrid combination between minimum spanning tree and genetic 

algorithm. [78] uses a hybrid algorithm between Particle Swarm Optimization and 

Gravitational Search Algorithm to solve the OPP, to have a fast converging algorithm.  

2.4 Results for Commonly Used Systems 

Throughout the literature, multiple test systems or actual power networks are used for 

OPP.  Table 2.1 lists the best available results for these systems, as well as the references 

where these results are found. Another list of results single branch outage, single PMU 

outage, and single branch/PMU outage are given in Table 2.2. 
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 It should be noted that these approaches do not necessary mean that this placement is the 

cheapest. For instance, in [77], an actual cost consideration of the PMUs, PMUs 

channels, PDC and communication infrastructure was made.  In that paper, it was 

demonstrated that it is possible to have a cheaper solution with more PMUs. 

Table 2.1 Number of PMUs required for full observability (base case) 

System No. of 

Buses 

No. of 

Branches 

No. of 

PMUs 

Locations of PMUs Reference 

IEEE 14-bus 14 20 3 2,6,9 [100] 

IEEE 24-bus 24  6 2, 8, 10, 15, 22, 23 [100] 

IEEE 30-bus 30 41 7 2, 3, 10, 12, 15, 18, 27 [30] 

IEEE 39-bus 39 46 8 8, 11, 16, 18, 20, 23, 25, 29 [30][100] 

IEEE 57-bus 57 80 11 1, 5, 13, 19, 25, 29, 32, 38, 

42, 51, 54 

[30] 

IEEE  

118-bus 

118 186 28 1, 8, 11, 12, 17, 21, 25, 28, 

33, 34, 40, 45, 49, 53, 56, 

62, 72, 75, 77, 80, 85, 86, 

91, 94, 102, 105, 110, 114 

[30] 

IEEE  

300-bus 

300  19 [100] [100] 

Danish 

Power 

System 

470  53 [100] [100] 

RTS  96 96 - 19 309, 116, 209, 109, 321, 

123, 210, 110, 220, 320, 

310, 218, 213, 313, 203, 

207, 307, 118, 301 

[26] 
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Table 2.2 Number of PMUs required for full observability (with contingencies) 

 N-1 branches N-1 PMUs N-1 PMUs or 

branches 

System No. of 

PMUs 

reference No. of 

PMUs 

reference No. of 

PMUs 

reference 

IEEE 14-bus 7 [25][30][100] 7 [25][30] 8 [25][30] 

IEEE 24-bus 12 [100] 12 [100] - - 

IEEE 30-bus 13 [30] 14 [30] 16 [30] 

IEEE 39-bus 16 [30][100] 17 [30] 18 [30] 

IEEE 57-bus 19 [30] 22 [30] 22 [30] 

IEEE 118-bus 53 [30] 61 [30] 61 [30] 

2.5 Solving OPP using Genetic Algorithm 

Many bio-inspired optimization techniques have emerged to solve difficult optimization 

problems. One example of these bio-inspired optimization techniques is the Genetic 

Algorithm (GA), which is based on the Natural Selection concept that comes from the 

“survival of the fittest” idea. In this idea, generations having better traits for survival will 

continue to live while those who are less fortunate will eventually die and disappear. 

Also, survival traits are passed from the parents to the new generations through their 

genes.  This same idea is the building block for the GA. The formulation for GA is as 

follows (flowchart in Figure 2.2): 

1. An initial dataset “population” is generated randomly, and their “fitness” are 

tested 
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2. The reproduction stage is initialized, where the “population” (which is currently 

the “parents”) “reproduce” to create the “offspring”. where the “genes” of the new 

“offspring” will be a combination of the parents’ genes 

3. The crossover stage is initialized. The individuals with the best “fitness” survive 

and the others die (this happens to both the “parents” and the “offspring”)  

4. In the mutation stage, some random “offspring” will then be subjected to random 

“mutations” that would slightly change their “genes”  

5. Termination criteria are checked, these criteria include the generation count (how 

many generations have passed), generation stall (the generations are producing 

the same best fitness), or time limit (the simulation time exceeds the maximum 

allowed time). 

6. If one of the termination criteria is reached, the algorithm terminates, and the 

“individual” with the best “fitness” in the last generation is the result of the 

optimization. Otherwise, set the current “offspring” as “parents” and go to step 2 

To briefly explain the reason for each stage, and what makes the GA a robust algorithm: 

1. “reproduction” is for quickly searching for minima/maxima if there are many 

variables 

2. “Crossover” is intended to bring data closer to local minima/maxima 

3. “Mutation” aims to diverge some offspring from these local points to look for 

global minima/maxima (or to avoid being trapped in local minima/maxima) 
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Figure 2.2 Flowchart of the Genetic Algorithm 

As for the usage of GA in solving OPP, it can be classified as follows:  

• Explanation of the typical formulation for OPP using GA 

• Types of OPP used and the included constraints when using GA 

• Modifying the GA algorithm to better suit the OPP 

• Using GA as supplemental algorithm 
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2.5.1. Formulating OPP using Genetic Algorithm 

Since the goal of OPP (in it is basic definition/constraints) is to minimize the number of 

PMUs to achieve full observability, a typical formulation is to use Binary Genetic 

Algorithm. In Binary Genetic Algorithm, each “individual” has a “gene” made of n bits 

(or “chromosomes”), and each of these bits can have a value of either 0 or 1. Thus, for 

the OPP, each “individual” in the “population” is set to be a possible PMU configuration 

for the given network. This mapping from PMU placement to Genetic Algorithm is 

achieved by setting the number of bits in the gene equal to the number of buses in the 

system and then let “0” means no PMU and “1” means that there is PMU. For example, 

an individual with the configuration 01011 would mean that we have a system of 5 buses 

(since the number of bits is 5) and this configuration would place PMUs in buses 2,4, and 

5 (since they are the bits with a value of 1). [79] 

The second step is the formulation of the fitness function and the constraints. The fitness 

function is defined as a relation between the inputs and the desired characteristics. Since 

the goal of the OPP is to minimize the number of PMUs, the fitness function can be  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝐵𝑖𝑡𝑛

𝑛

1

 (2.8) 

As for the constraints function, it is used to make sure that individuals are conforming to 

certain rules. Since the only constraint for OPP (in the typical formulation) is to make the 

entire network observable, then the constraint is defined as (2.9). Finally, GA is applied 

as shown in the beginning of this section to obtain the final result. 
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𝐴𝑥 > 𝐵 

Where x is the transpose of the PMU configuration of the individual 

(2.9) 

2.5.2. Types of OPP used and the included constraints 

Throughout the literature, multiple algorithms and techniques are used to solve the OPP. 

For the case of using GA, all papers containing the terms “Genetic Algorithm” and 

“Optimal PMU Placement” were reviewed, including both IEEE and Science Direct 

databases. In total 61 papers were found, but among them only 18 are using Genetic 

Algorithm as their main algorithm for solving the OPP. Regarding the used constraints 

and objectives, the reviewed papers included the following features: 

1. Typical full observability is considered [79][93] [98] 

2. Considers ZIB [80][95] 

3. Considers Flow measurement devices (FM) [80] 

4. PMU outages (N-1) [81][95] 

5. Paper accounts for redundancies, and economic analysis [81] 

6. Reliability (percentage that full OBS would be intact after contingencies) [82] 

7. Partial observability [84] 

8. limited current branches [84][89] 

9. OPP for full observability and OPP given x PMUs [87] 

10. OPP given x PMUs with one current channel and y PMUs with two current 

channels. [94] 

11. Multistage placements [95] 
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2.5.3. Modifying the GA algorithm to better suit the OPP 

Multiple resources use different approaches to solve the OPP. Regarding using modified 

GA to solve the OPP better, the references listed here indicates how these modifications 

are done throughout the literature. In [80] the crossover, mutation and constraints in the 

GA were modified since the OPP is an Integer only problem. In [81][88] GA was 

changed to be tailored for OPP by using problem-related facts, such as the typical 

configurations in power systems. [83] introduces a simple yet new fitness function. In 

[85] a new step is added before reproduction to enhance results and convergence time. 

On the other hand, [87] presents Stepwise Mutation GA (SMGA) which forces the 

“randomness” to increase until the end of GA, once a threshold for PMU locations is 

reached, to enhance the ability of avoid local minima without affecting the convergence 

time significantly. While in [92] the mutation stage is adjusted by putting PMUs to 

maintain full observability when they are removed; also, the reproduction stage is also 

changed, by repairing the infeasible children. Finally, [96] puts new rules for the search 

space of the GA, to reduce the time and enhance convergence. 

2.5.4. Using GA as supplemental algorithm 

In the literature, various papers use GA as a supplement algorithm. Since the main aim of 

this thesis is to have a mainly GA based OPP, only two resources that use this technique 

are mentioned here. In [86] Particle Swarm Optimization was used, but GA was 

incorporated within it to enhance the results and the simulation time. Whereas, [91] 

Introduces a new algorithm (Memetic algorithm) which is a combination of hill climbing 
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algorithm (which only has one initial solution, and keeps improving it, thus it is more 

prone to local trapping) and the GA (which has the issue of having too many redundant 

runs in case of using it to solve the OPP). 
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Chapter 3 Selected Methodology 

3.1 Selected Solvers and Test Systems 

The selected solvers (algorithms), which are used in this thesis to solve the OPP, are the 

Integer Linear Programming (ILP) and the Genetic Algorithm (GA).  The ILP solvers 

solve for linear optimization problems where the variables are restricted to integers. It is 

used since it provides results that depend on non-probabilistic methods. Thus, the ILP 

will always provide the same answer for the same problem. Also, it provides the global 

minima, unless the problem is ill-conditioned. Hence it is well suited to solve integer 

based problems like the OPP (the OPP is, in fact, a binary based problem, which is a 

subset of the integer based problems, where the values are limited to be between 0 to 1 

inclusive). However, as the problem complexity increases, it becomes difficult or 

impossible to formulate it as a Linear Programming problem. Equation (3.1) shows a 

typical formulation for an ILP, and the OPP needs to be tailored to fit this function, 

otherwise ILP cannot be used (only the first two conditions are compulsory, the other two 

are optional). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑇𝑥 𝑓𝑜𝑟 {

𝑥 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑔𝑒𝑟 
𝐴. 𝑥 ≤ 𝑏

𝐴𝑒𝑞 . 𝑥 = 𝐵𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

  (3.1) 

where x is the variable to be optimized, A matrix with b vector represents the linear 

inequality constraints, Aeq matrix and Beq vector represents the equality constrains and 
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lb and ub vectors are for the lower and upper boundary constraints, and f is the cost 

function vector while f T x is the function to be minimized. 

On the other hand, the reason for selecting GA as the main algorithm of the thesis is 

because it is preferable since the problem formulation is a straightforward relationship 

between the input and the output to be minimized. Thus, there is no requirement to put 

the problem in a particular structure, and there are no limitations regarding nonlinearities 

or discontinuities. In addition, the GA in comparison with other metaheuristic algorithms 

performs the same or better, and is both robust and adaptable [97]. Nonetheless, GA is 

not without disadvantages, and the main disadvantage of GA is that it has a probabilistic 

part which means that running the algorithm multiple times may generate multiple 

results. Another disadvantage is that there is no precise method for choosing the values 

for the variables in the GA (e.g. the mutation function, the mutation probability, the 

crossover percentage, the population count…etc). Also, the simulation time is large 

compared to other mathematical and metaheuristic algorithms [97]. Finally, GA does not 

provide any information regarding whether the solution is a global or a local minimum.  

As for the tested systems, these include the IEEE-14, New England 345KV (39 buses), 

IEEE-57, IEEE-118, IEEE-300 and finally Qatar Grid 2016 version, which is the main 

testing system in this thesis. The single line diagram for each system is presented in 

Appendix A, while Table 3.1 provides a simple description for each system. 
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Table 3.1 Test systems overview 

System 
Number 

of buses 

Number 

of lines 

Number 

of ZIBs 

Number 

of IMs 

Number 

of FMs 

IEEE-14 14 20 1 3 2 

NE-39 39 46 10 6 3 

IEEE-57 57 80 15 7 5 

IEEE-118 118 186 10 10 7 

IEEE-300 300 411 65 25 9 

Regarding the network for Qatar, the network provided represents the full 2016 Qatar 

grid with both distribution and transmission level (6.6KV to 400KV).  Information of the 

grid is provided in Table 3.2 (the grid data is obtained from Kahramaa). The importance 

of the application of OPP to Qatar Grid comes from its huge size (compared with the 

other test systems), which greatly increases simulation time. Also, the system has 

numerous ZIB which also increases the simulation time and can hugely affect the results 

of OPP. 

Table 3.2 Qatar Grid data 

Number of buses Number of lines Number of ZIBs Number of IMs Number of FMs 

1572 2479 1112 0-414 - 

Although OPP typically ignores distribution level and only focuses on transmission level, 

this selection is still valid for the following reasons. Firstly, Distributed Generation (DG) 
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which means that there can be generators in each house or town as a PV panel, wind 

turbine, or an electric car discharging to the grid, means that observing these buses will 

become necessary, which is the case in Qatar 2022. It should be noted that although the 

inclusion or exclusion of DG will not affect the modelling of PMU placement or how 

PMUs work, but it is the fact that these DGs will have a significant impact on the grid 

that makes observing them necesasry. Moreover, the main reason for neglecting 

distribution in OPP is because it becomes economically infeasible solution, but since 

PMU prices are dropping, and communication infrastructures are now more widespread, 

it might become feasible in the near future. In addition, for Qatar 2022 the extra security 

provided by the full PMU observability, even if it means additional cost, will not be 

rejected, due to the importance of the World Cup event. 

3.2 Description of Methodology 

The first part of the proposed methodology is solving the OPP using the ILP algorithm. 

Although solving OPP using ILP with the considerations applied here is already done in 

the literature, it was included here for three main reasons: to start this thesis from where 

the other have stopped; to verify the correctness of the later algorithm; and to verify that 

the results obtained for Qatar Grid are indeed correct, since there are no previous works 

for using OPP with Qatar Grid. As for the selected OPP cases, four cases are considered 

in this thesis. 
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Case 1: The basic case (minimum number of PMUs for full observability) while 

ignoring the ZIB effect 

Case 2:  The effect of including Zero Injection Buses (ZIB) effect 

Case 3: Inclusion of Injection Measurement devices (IM). IM is a conventional 

measurement device that measures the active and reactive power at a bus. 

Case 4: Inclusion of Flow Measurement devices (FM). FM is a conventional 

measurement device that measures the current flow at a transmission line. 

The second proposed methodology in this thesis is the Genetic Algorithm, which is 

divided into two parts. The first part is the solving of the OPP using GA algorithm with a 

novel fitness function that has no constraints but still provides full observability. In 

addition, the same function is used to solve the following cases 

Case 1. The basic case (minimum number of PMUs for full observability) 

Case 2. The effect of including Zero Injection Buses (ZIB) effect 

Case 3. Inclusion of Injection Measurement devices (IM) 

Case 4. Number of PMUs to reach a certain level of partial observability 

Case 5. Cost analysis (only the costs of PMUs is considered) 

The second part solves the problem of “maximum observability given a certain number 

of PMUs”. The GA used here incorporates: 

Case 1. The basic case (maximum observability with specific number of PMUs) 

Case 2. The effect of including Zero Injection Buses (ZIB) effect 
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Case 3. Inclusion of Injection Measurement devices (IM) 

Case 4. Limited number of current channels 

3.2.1. Integer Linear Programming (ILP) 

For the ILP, Figure 3.1 illustrates the flowchart for the typical case for solving the OPP. 

The simulation was carried out using MATLAB® software along with the MATPOWER 

package [103] while the solver for the ILP was from YALMIP package[104]. 

The equations describing this method are (2.3) to (2.6) which are listed in section 2.1. 

These equations describe case 2 for ILP. However, case 3 also uses the same equation, 

since IM has the same effect on observability as the ZIB. Case 1 is obtained by removing 

(2.7) as well as the ymn from (2.5). Finally, Case 4 is obtained using (3.2) instead of (2.5) 

and adding (3.3) to the constraints. 

𝑂𝑛 = ∑ 𝑎𝑛𝑚𝑢𝑛 

𝑁

𝑚=1

+ ∑ 𝑎𝑛𝑚𝑦𝑛𝑚

 

𝑚∈𝐼𝑀

 + ∑ 𝑎𝑛𝑚𝑟𝑛𝑚

 

𝑚∈𝐹𝑀

≥ 𝐵𝑛       

𝑓𝑜𝑟 𝑛 = 1,2,3 … 𝑁  

(3.2) 

𝑟𝑚𝑛 +  𝑟𝑛𝑚 = 1         ∀ 𝑚 ∈ 𝐹𝑀 (3.3) 
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Figure 3.1: Flowchart for ILP to solving OPP 

Start 

Load grid data 

ILP solver calculates 
new values for  𝑢𝑛 

End 

Print number of PMUs and their locations 
for the optimal solution 

Calculate anm using Eq(2.6) 

Set Observability B = 1 

Set PMU cost C =1 

Calculate actual observability O of all 
buses using Eq(2.5) 

Calculate the cost function F using Eq(2.4) 

Set initial guesses for 𝑢𝑛 using ILP solver 

i=0 

 

𝑢𝑛 values with minimum cost function F Eq(2.4) that satisfies full 
observability Eq(2.5) are selected as the optimal solution 

i=i+1 

Yes 

No 
i > max iteration 



 

39 

3.2.2. Genetic Algorithm (GA) - Method 1 

The GA for both methods is applied using the optimization toolbox provided by 

MATLAB®. For method 1, the GA was restricted to binary values, and the number of 

variables was set to be the same as the number of buses in the system. The population 

was set arbitrary to 1000 to have a diverse population to avoid local minima, but this 

means also that, as a result, the simulation time substantially increases. The other tuning 

variables for GA were set to their default values (provided by the MATLAB toolbox). 

The main contribution of the work is that the GA has a novel fitness function and does 

not contain any constraint criteria. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐹) = 𝑁𝑃𝑀𝑈 + 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑟 ∗ 𝑁𝑈𝑂𝐵       (3.4) 

The fitness function consists of two parts, the NPMU (number of PMUs) and the 

multiplication between the modifier and NUOB (number of unobservable buses). The 

modifier has a value between 0 and 1 and it is calculated using (3.5). 

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑟 = 1 − 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 (3.5) 

By setting the modifier to 1, we find the solution for OPP for full observability (case 1). 

However, as the value of the modifier approaches zero, the algorithm only aims to satisfy 

partial observability, consequently minimizing the number of PMUs (case 4). Since, 

cases 2 and 3 are mathematically the same, they are both implemented by adding a simple 

algorithm that is similar to exhaustive search and greedy algorithm to decide which buses 

are to be observed by the ZIB effect or IM. The flowchart in Figure 3.2 indicates how 

this algorithm allocates the buses, where W is an array of vectors (P.S. W is not a matrix 
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since the number of columns for each row is different). Each row in W corresponds to the 

ith ZIB/IM in the network (i = 1, 2…imax. imax = total # of ZIB/IM buses) and it has j 

columns (j = 1, 2…jmax. jmax = total # of buses that can be observed by the ith ZIB/IM).  

Finally, case 5 is achieved by modifying (3.5) to (3.6). 

𝐹 =
∑ 𝑐𝑜𝑠𝑡𝑃𝑀𝑈𝑖

𝑛
𝑖=1

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑀𝑈𝑐𝑜𝑠𝑡
+ 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑟 ∗ 𝑁𝑈𝑂𝐵       𝑛 = 1,2 … 𝑁 (3.6) 

3.2.3. Genetic Algorithm (GA) - Method 2 

The second method for the OPP using GA aims to find the best locations to place x 

PMUs in the network to achieve maximum possible observability. Unlike method 1, the 

variables here indicate the locations of the x PMUs; thus the GA is set to be integer 

restricted (instead of binary restricted), where the number of variables is the number of 

PMUs and each variable can take values from 1 to N inclusive. Cases 1,2 and 3 are 

applied the same way as the GA method 1, but the only difference is the fitness function. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐹) = 𝑁𝑈𝑂𝐵 (3.7) 

As for case 4, it is satisfied using an approach similar to the greedy-like algorithm used 

for cases 2 and 3 in method 1. 



 

41 

 

Figure 3.2: Flowchart for ZIB and IM observability allocation 
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Chapter 4 Case Studies and Results 

4.1 Application to Test Systems 

The three methods presented in the previous chapter, which are ILP, GA method 1, GA 

method 2, were first applied to five test systems IEEE-14, New England 345KV (will be 

referred to as NE-39 in the remainder of the thesis), IEEE-57, IEEE-118, and IEEE-300. 

Since some cases require IM and FM, Table 4.1 describes the locations used. These 

locations for the FM and IM were selected arbitrary, but they remain the same throughout 

the thesis to be able to compare the results of the different methods easily. In addition, the 

table also includes the locations of the ZIB. 

Table 4.1 Locations of the ZIB, IM and FM used in this paper 

System ZIB IM FM 

IEEE-14 7 2, 6, 14 2-3, 4-9 

NE-39 2, 5, 6, 10, 11, 13, 14, 17, 19, 22 4, 15, 17, 21, 25, 32 16-24, 4-14, 8-9 

IEEE-57 4, 7, 11, 21, 22, 24, 26, 34, 36, 37, 39, 

40, 45, 46, 48 

18, 23, 43, 45, 46, 50, 

57 

37-39, 28-29, 4-18, 50-

51, 42,56 

IEEE-118 5, 9, 30, 37, 38, 63, 64, 68, 71, 81 12, 15, 33, 65, 75, 97, 

107, 108, 113, 114 

6-7, 27-28 114-115, 

74-75, 77-80, 55-59, 

103-105 

IEEE-300 4, 7, 12, 16, 18, 23, 28, 29, 30, 33, 36, 

39, 40, 52, 54, 56, 57, 62, 65, 68, 70, 

71, 72, 73, 82, 94, 95, 96, 107, 108, 

109, 110, 111, 112, 113, 123, 129, 130, 

137, 139, 143, 144, 145, 147, 148, 153, 

172, 173, 174, 189, 191, 198, 205, 216, 

219, 223, 245, 246, 266, 270, 271, 272, 

273, 276, 291 

10, 11, 14, 30, 43, 48, 

52, 84, 118, 127, 146, 

197, 197, 204, 212, 

223, 228, 238, 241, 

255, 275, 281, 288, 

288, 292 

270-294, 276-279, 

269-288, 22-253, 23-

254, 222-224, 44-45, 

49-50, 97-100 
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4.1.1. ILP 

Applying ILP to solve the OPP we obtain the results in Table 4.2. The results show that 

with the inclusion of IM and FM the number of needed PMUs decreases slightly. The 

same effect is also observed with the inclusion of the ZIB effect. 

Table 4.2 Results for OPP using ILP for the test systems 

System 

Number of needed PMUs 

Case 1  

(no ZIB) 

Case 2 

(with ZIB) 

Case 3 

(with ZIB and IM) 

Case 4 

(with ZIB and FM) 

IEEE-14 4 3 3 3 

NE-39 13 9 7 8 

IEEE-57 17 11 10 10 

IEEE-118 32 28 26 27 

IEEE-300 87 68 62 66 

4.1.2. Genetic Algorithm (GA) - Method 1 

As for the GA, the same parameters from the ILP are used, and the best results for the 

cases (out of 50 trials) are shown in Table 4.3. The results show that the GA can achieve 

the same results as the ILP, but it is not guaranteed due to the probablistic nature of the 

GA. In addition, since the GA produces different results with each run, which is a major 

disadvantage in this proposed algorithm and GA in general since the obtained results 

could be worse than the ILP results,  Figure 4.1 shows the distribution of the results for 

50 runs for the IEEE-300 case 1, indicating that the obtained results were in the worst 

case 106 PMUs which is worse than the ILP by 19 PMUs and worse than the best results 

of GA by 11 PMUs. Due to this variation, it is always recommended to run the GA 
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multiple times before assuming that the obtained results are the best ones. From the 

results, it is shown that the GA results are starting to slightly deviate from the optimal 

solution provided by the ILP as the system becomes larger (e.g. IEEE-118 case 1 requires 

33 PMUs using GA, but according to ILP only 32 PMUs are required), Table 4.4 shows 

how the GA first gives similar results and then starts to deviate as the systems become 

larger. For the partial observability, the modifier was set to 0.7 and the results indicate 

that the partial observability becomes more significant as the system becomes larger. 

Finally, for the cost, the target was to minimize the cost of PMUs rather than their 

number. Nonetheless, the results show the same number of PMUs for these systems as 

the original Case 2. Which means that it is possible to have cheaper cost while 

maintaining the same number of PMUs. 

Table 4.3 Results for OPP using GA method 1 for the test systems 

System Number of needed PMUs 

Case 1 

(no ZIB) 

Case 2 

(with ZIB) 

Case 3 

(with IM and ZIB) 

Case 4* 

(partial OBS) 

Case 5** 

(cost; with ZIB) 

IEEE-14 4 3 3 3 3 

NE-39 13 9 7 7 9 

IEEE-57 17 11 10 10 11 

IEEE-118 33 30 27 20 30 

IEEE-300 95 77 73 52 77 

* For modifier = 0.7 

** assumption: placing PMUs in odd numbered locations is 50% more expensive 
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Figure 4.1: Distribution of the results of 50 runs of GA – method1 for IEEE-300 

Table 4.4 Comparison between ILP and GA method 1 results 

System 

Number of needed PMUs 

Case 1 (no ZIB) Case 2 (with ZIB) Case 3 (with ZIB and IM) 

ILP GA ILP GA ILP GA 

IEEE-14 4 4 3 3 3 3 

NE-39 13 13 9 9 7 7 

IEEE-57 17 17 11 11 10 10 

IEEE-118 32 33 28 30 26 27 

IEEE-300 87 95 68 77 62 73 

 

4.1.3. Genetic Algorithm (GA) - Method 2 

The last algorithm deals with the observability given a certain number of PMUs, i.e. it 

answers the question of “what is the maximum observability achievable (4.1) given x 

PMUs and how can it be reached.” Each test system has a graph describing its results for 

cases 1 to 3 (Figure 4.2 to 4.6). As for case 4, they are shown in Figure 4.7 to 4.11. 



 

46 

%𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 𝑏𝑢𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑠𝑒𝑠
∗ 100 (4.1) 

The following observations can be realized from the figures. The probabilistic nature of 

the GA becomes more evident as the system becomes larger (this can be remedied by 

running the GA multiple times, as previously mentioned). For the ZIB and IM cases, the 

observability starts at a nonzero value, even at 0 PMU, since the ZIB and IM are already 

observing some buses, but as the number of PMUs increases, the difference between no 

ZIB and ZIB decreases. Also, as the number of channels increase the number of needed 

PMUs decreases, but the slope becomes gradual. Another observation regarding the 

number of channels is that the curve starts as a linear relation, but then it saturates. This 

happens because the PMUs with more current channels are only better while there are 

buses that do require the additional current branches, but after these buses are observed, 

then the additional buses will not benefit from the additional current branches. Finally, 

the graphs show that the 4 channels and 5 channels cases are almost similar and they are 

very close to the 3 channels results, thus it might not be needed to use PMUs with 3 

channels or more in practical applications. 
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Figure 4.2: Results for OPP using GA method 2 for the IEEE-14 

 

 

Figure 4.3: Results for OPP using GA method 2 for the NE-39 
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Figure 4.4: Results for OPP using GA method 2 for the IEEE-57 

 

 

Figure 4.5: Results for OPP using GA method 2 for the IEEE-118 
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Figure 4.6: Results for OPP using GA method 2 for the IEEE-300 

 

Figure 4.7: Results for GA method 2 case 4 for the IEEE-14 
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Figure 4.8: Results for GA method 2 case 4for the NE-39 

 

Figure 4.9: Results for GA method 2 case 4 for the IEEE-57 
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Figure 4.10: Results for OPP using GA method 2 for the IEEE-118 

 

Figure 4.11: Results for OPP using GA method 2 for the IEEE-300 
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4.2 Application to Qatar Grid 

4.2.1. ILP 

For Qatar Grid cases 1-3 were applied, but instead of applying case 4, case 3 was applied 

with multiple scenarios. The reason for this selection is because it was more practical and 

the results would be easier to analyze. The study applied here would include the cases 

shown in Table 4.5. 

Table 4.5 Results for OPP using ILP for Qatar Grid 

Case 
Number of 

IM 

% of none ZIB 

observed by IM 
PMU needed 

Case 1 (no ZIB) 0 0% 615 

Case 2 (with ZIB) 0 0% 144 

Case 3.1 (with ZIB and IM) 46 10% 131 

Case 3.2 (with ZIB and IM) 115 25% 108 

Case 3.3 (with ZIB and IM) 230 50% 77 

Case 3.4 (with ZIB and IM) 345 75% 44 

Case 3.5 (with ZIB and IM) 414 90% 17 

Case A.1 (N-1, with ZIB) 0 0% 603 

Case A.2 (N-1, with ZIB and IM) 414 90% 401 

 

Cases 1 and 2, using ZIB effect and without using it respectively, indicates the number of 

PMUs required if the Qatar grid is to be observed by PMUs alone. Cases 3.1 to 3.5 show 

how many PMUs are required in case injection measurements (IM) are included in the 

OPP, alongside the number of IM in each case. Finally, Case A.1 and A.2 demonstrates 

the results of the OPP in case N-1 contingency is considered. 
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Analyzing the results, it is clear that the required PMUs for full observability 

significantly decrease when including IMs; however, this assumption comes with a very 

critical disadvantage. Buses that are being observed using these conventional 

measurements will send data at a much lower rate and with less accuracy when 

comparing them to the ones observable by PMUs. To look at it from a different 

perspective, buses observed by PMUs would send data with a high rate but the network 

as a whole would be fully observable only when all measurements are received from both 

conventional measurements and PMUs [101]. Hence, practically it would be preferable 

not to consider conventional measurement with very low data sending rate even if they 

are available in the system. Another important notice is that the case when all the buses in 

the system have measurement devices is excluded since it brings a redundant result, 

which is that 0 PMUs are needed.  

The results of the OPP algorithm indicate that, for full system observability, the number 

of needed PMUs is 144, which is 9.1% of the total number of buses (31.3% of the non-

ZIB buses).  Thus, it is clear that for monitoring Qatar Grid a far lower value than the 

assumption of “each bus requires a PMU”, in fact, it is shown that for practical systems 

the needed ratio is 1/3 of the total buses at maximum [24].  As for the cases 3.1 to 3.5, it 

is concluded that with the addition of IMs the number of PMUs keeps on decreasing with 

a rate of around 0.26-0.39 PMU/IM.  The result of Case 3.5 also shows how the number 

of PMUs is almost one-eighth of the number of needed PMUs in Case 2 which proves 

that, in case more IMs are considered, the full observability can be obtained with a 

significantly lower number of PMUs. 
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Finally, cases A.1 and A.2 indicate how many PMUs are needed in case N-1 

contingencies are considered (N-1 contingency includes the failure of a single PMU or 

IM, or the tripping of a single line). This is carried out by setting the Bn in (2.5) to be a 

vector of twos (instead of a vector of ones) which effectively makes each bus observable 

by at least two PMUs [102]. Thus, a single contingency will not affect its observability.  

However, the number of required PMUs becomes almost three times the needed PMUs in 

the typical case, which shows that maybe the accommodation for N-1 contingency might 

not be a feasible solution for practical systems. 

Moving from the theoretical results, practically each non-ZIB has its own IM to monitor 

the consumed/injected power, and to make sure that the power factor is within acceptable 

operation region.  Thus, another approach towards solving the OPP is to assume that all 

buses are observable, but some critical buses are important enough to have the high 

monitoring rate of PMUs, in this case, the OPP would only need to find the optimal 

placement to make these selected buses observable by PMUs.  Such approach can even 

make the PMUs only limited to monitoring large scale industrial loads and similar critical 

buses that are more probable to cause various problems in the network. Another approach 

is to generate a Bn vector that matches the importance of the bus. Thus, the Bn would be 

either 2 or 1 depending on whether a bus is critical or not (values >2 can be considering if 

needed). Thus, the system would benefit from both withstanding some N-1 contingency 

while maintaining a small PMU count. 
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4.2.2. Genetic Algorithm (GA) - method 1 

The same parameters from the ILP are used, and the best results for the cases (out of 50 

trials) are shown in Table 4.6. The results show that the results are worst than the ILP 

results, for the cases that are applied by both methods, this can be improved by running 

the GA multiple times or increasing the population count. However, since the system is 

large, the algorithm already takes a long time, and by increasing the population count, the 

needed time drastically increases. 

Table 4.6 Results for OPP using GA method 1 for Qatar Grid 

Case 1 

(no ZIB) 

Case 2 

(with ZIB) 

Case 3 

(with IM and ZIB) 

Case 4* 

(partial OBS) 

Case 5** 

(cost) 

656 210 74 181 326 

* for modifier = 0.7 

** assumption: placing PMUs in odd numbered locations is 50% more expensive 

4.2.3. Genetic Algorithm (GA) - method 2 

Cases 1 and 2 are shown in Figure 4.12, and case 4 is shown in Figure 4.13. For case 1 

and 2 the number of PMUs only slightly increase the observability, since the system is 

large. As for case 4, it shows that even with 100 PMUs, the relationship between current 

branches and observability is still in the linear region due to the size of the system. 
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Figure 4.12: OPP using GA method 2 for Qatar Grid case 1 and 2 (% of OBS) 

 

Figure 4.13: OPP using GA method 2 for Qatar Grid case 4 (% of OBS vs. NPMU) 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

PMUs greatly improves power systems’ observability. However, they are relatively 

expensive, thus it is needed to use OPP to find the least number of PMUs needed to 

achieve full observability. The literature review shows that several techniques and 

algorithms were used for OPP with different degrees of complexity depending on adopted 

constraints and considerations and that the latest published articles show a clear shift 

towards more realistic considerations. As for the contribution of this thesis to the OPP, 

using the proposed GA with modified fitness function, new results are obtained for partial 

observability and other considerations. The results of the GA are the same as the results 

obtained by the ILP for small systems. However, one major disadvantage of the method 

is that the difference between ILP and GA results become larger as the studied system 

becomes larger, but this can be remedied by increasing the population count. Another 

disadvantage is that, due to its probabilistic nature, the proposed method requires multiple 

trials to get better results. Also, the GA requires much longer simulation time than GA 

for the included cases. However, the inferiority of the GA in terms of providing answers 

similar to ILP is balanced by the two main advantages of the GA. Firstly, since the 

formulation is simple, modifying the proposed algorithm to accommodate to newer 

constrains and objectives is much easier than ILP. Secondly, some objectives and 

constraints cannot be modeled as ILP. Thus, GA becomes superior to ILP in that aspect. 



 

58 

Another important contribution of the thesis, is that the number of required PMUs greatly 

changes when the current branch limits are considered, which is very important 

observation since actual PMUs only have limited number of current branch. In addition, 

the results showed that once the number of branches is 3 or more the results become 

equal or very close, hence the usage of PMUs with more than 3 current channels might 

not be needed. Finally, applying the OPP (full observability with ZIB) to Qatar Grid 

shows very promising results that can be feasible practically, since the number of needed 

PMUs to observe the grid is only 9.1% of the total number of buses. 

5.2 Future Work 

As a future work, the study can be extended to cover transient observability, as well as, 

observability with device failures and faulty measurements. Another approach is to have 

more financial data regarding the prices of the PMUs (total installation cost and not the 

unit itself) and compare it with the possible gains from having full system observability, 

to come to a financial conclusion regarding the validity of having full observability.  As 

for the GA, it can be extended by adding more cases and considerations. It can also be 

improved by analyzing the effects of modifying the population size and the mutation 

percentage to enhance the results and the convergence time for the GA to reduce the 

effects of its inherent disadvantages.  
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APPENDIX A: USED IEEE SYSTEMS’ DATA 

This appendix includes the single line diagrams for the IEEE-14, New England 345KV 

(39 buses), IEEE-57, IEEE-118, and IEEE-300 bus systems’ single line diagram.  These 

single line diagrams are available from Power Systems Test Case Archive (retrieved 

online: http://www2.ee.washington.edu/research/pstca/), except the New England 345KV 

which is described in [105]. The provided diagrams are either the original files of the 

authors or a clearer reprint (or a redraw) of these documents in case the original files 

were not clear. The actual data files used in this thesis are from [103]. 

  

Figure A.1 IEEE-14 bus system single line diagram [106] 
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Figure A.2 New England 345KV bus system single line diagram [106] 
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Figure A.3 IEEE-57 bus system single line diagram [106] 
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Figure A.4 IEEE-118 bus system single line diagram [106] 
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Figure A.5 IEEE-300 bus system single line diagram – part 1 [106] 
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Figure A.6 IEEE-300 bus system single line diagram – part 2 [106] 
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Figure A.7 Qatar Grid single line diagram (obtained from Kahramaa) 
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APPENDIX B: PMU LOCATIONS 

ILP: 

 

IEEE-14: 

No ZIB With ZIB With IM With FM 

2, 8, 10, 13 2, 6, 9 11, 14 1, 6, 9 

 

 

NE-39: 

No ZIB With ZIB With IM With FM 

2, 6, 9, 12, 14, 17, 22, 

23, 29, 32, 33, 34, 37 

3, 7, 23, 29, 34, 37 2,6, 17, 20, 23 3, 6, 16, 23, 29, 34, 37, 

39 

 

 

IEEE-57: 

No ZIB With ZIB With IM With FM 

1, 4, 9, 20, 23, 27, 29, 30, 32, 

36, 38, 41, 45, 46, 50, 54, 57 

1, 13, 19, 25, 29, 

32, 38, 42, 54 

1, 13, 25, 29, 32, 42, 

51, 54 

1, 6, 15, 20, 25, 32, 42, 53 

 

 

IEEE-118: 

No ZIB With ZIB With IM With FM 

2, 5, 10, 12, 15, 17, 21, 25, 

29, 34, 37, 41, 45, 49, 53, 

56, 62, 64, 72, 73, 75, 77, 

80, 85, 87, 91, 94, 101, 

105, 110, 114, 116 

, 2, 10, 15, 17, 21, 25, 

29, 34, 40, 45, 49, 53, 

56, 62, 75, 77, 85, 87, 

91, 94, 101, 105, 110, 

114 

, 1, 10, 11, 17, 21, 

27, 29, 34, 40, 45, 

49, 53, 56, 62, 80, 

85, 87, 91, 94, 101, 

105, 110, 117 

, 2, 8, 12, 15, 18, 21, 26, 29, 

32, 34, 40, 45, 49, 53, 56, 

62, 72, 75, 77, 85, 87, 91, 

94, 101, 105, 110 
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IEEE-300: 

No ZIB With ZIB With IM With FM 

1, 2, 3, 11, 15, 21, 23, 25, 27, 

30, 33, 37, 38, 41, 43, 48, 49, 

53, 54, 64, 68, 69, 71, 79, 83, 

86, 88, 93, 96, 98, 99, 101, 

109, 111, 112, 113, 116, 119, 

128, 132, 135, 139, 141, 152, 

157, 160, 164, 170, 183, 187, 

188, 189, 190, 193, 196, 202, 

209, 210, 212, 215, 216, 217, 

222, 224, 228, 230, 233, 236, 

237, 238, 240, 242, 251, 252, 

253, 262, 264, 265, 268, 269, 

270, 272, 275, 276, 277, 299, 

300 

1, 2, 3, 11, 15, 21, 23, 

25, 34, 37, 38, 41, 43, 

48, 49, 53, 64, 79, 86, 

88, 93, 98, 102, 118, 

119, 124, 132, 135, 145, 

160, 163, 170, 177, 180, 

184, 189, 192, 195, 202, 

209, 210, 212, 215, 216, 

217, 224, 228, 230, 233, 

236, 237, 238, 244, 252, 

253, 262, 268, 269, 270, 

275, 277, 278, 297, 300 

 

1, 3, 11, 19, 25, 31, 

37, 38, 41, 45, 49, 53, 

64, 79, 86, 88, 93, 98, 

102, 116, 119, 122, 

132, 135, 155, 159, 

160, 163, 170, 192, 

195, 202, 209, 210, 

215, 217, 220, 224, 

227, 230, 231, 233, 

236, 237, 244, 248, 

252, 253, 262, 265, 

267, 268, 269, 270, 

278, 297, 300 

1, 2, 3, 11, 19, 25, 

34, 37, 41, 43, 53, 

79, 86, 88, 99, 104, 

118, 132, 135, 160, 

163, 170, 177, 184, 

189, 192, 195, 202, 

209, 210, 212, 215, 

216, 217, 224, 228, 

230, 231, 233, 236, 

237, 238, 243, 252, 

258, 262, 265, 268, 

269, 270, 274, 277, 

297, 300 

 

 

GA 

IEEE-14: 

No ZIB With ZIB With IM Partial OBS cost 

2, 6, 9 2, 6, 9 1, 6, 9 2, 6, 9 2, 6, 9 

 

 

NE-39: 

No ZIB With ZIB With IM Partial OBS cost 

2, 4, 6, 9, 10, 13, 16, 17, 

20, 22, 29, 33, 36, 37 

1, 3, 8, 10, 20, 

23, 25, 27, 29 

2, 6, 9, 16, 20, 

26, 36, 38 

2, 8, 11, 17, 20, 23, 29 3, 8, 10, 16, 20, 

23, 25, 29, 39 

 

 

 

IEEE-57: 

No ZIB With ZIB With IM Partial OBS cost 

2, 6, 12, 19, 21, 

24, 28, 32, 35, 

37, 43, 45, 46, 

49, 53, 55, 56 

, 3, 9, 12, 15, 19, 

28, 29, 30, 33, 38, 

50, 54, 56 

, 1, 6, 12, 15, 25, 

29, 32, 38, 42, 50, 

54 

1, 4, 9, 27, 29, 30, 32, 

38, 41 

, 50, 54 

, 1, 9, 15, 18, 

24, 29, 32, 38, 

41, 50, 54 

 



 

85 

IEEE-118: 

No ZIB With ZIB With IM Partial OBS cost 

5, 9, 12, 15, 17, 20, 

23, 25, 28, 36, 40, 

44, 49, 52, 56, 61, 

65, 71, 75, 77, 80, 

85, 91, 96, 101, 107, 

109, 110, 114, 116 

2, 11, 12, 19, 21, 

26, 29, 30, 32, 33, 

35, 42, 43, 48, 49, 

52, 56, 62, 69, 70, 

80, 83, 87, 89, 92, 

105, 110, 118 

1, 9, 11, 17, 20, 23, 

27, 34, 40, 44, 46, 

49, 52, 56, 60, 66, 

71, 75, 77, 80, 84, 

86, 88, 91, 93, 95, 

102, 103, 110 

5, 12, 17, 20, 

23, 27, 37, 

44, 49, 53, 

56, 60, 70, 

76, 79, 85, 

92, 96, 100, 

105, 110 

2, 9, 11, 12, 17, 21, 

24, 27, 28, 34, 40, 

45, 49, 53, 56, 62, 

68, 70, 77, 80, 85, 

91, 92, 94, 100, 

108, 111, 112, 115 

 

 

 

 

IEEE-300: 

No ZIB With ZIB With IM Partial OBS cost 

2, 3, 5, 8, 10, 13, 16, 

17, 23, 25, 28, 31, 38, 

41, 43, 48, 50, 53, 54, 

55, 57, 58, 60, 62, 64, 

65, 68, 71, 73, 77, 79, 

81, 87, 93, 96, 98, 99, 

101, 109, 112, 113, 

116, 117, 119, 121, 

124, 127, 132, 135, 

137, 143, 145, 149, 

153, 156, 161, 166, 

172, 173, 175, 179, 

184, 188, 190, 193, 

196, 200, 204, 207, 

210, 215, 216, 218, 

219, 221, 223, 229, 

233, 250, 251, 253, 

255, 259, 262, 268, 

269, 270, 273, 274, 

278, 279, 297, 298, 

300 

2, 3, 11, 15, 17, 20, 

22, 25, 35, 37, 48, 

49, 53, 55, 58, 59, 

61, 64, 79, 86, 88, 

89, 90, 99, 101, 

105, 109, 116, 118, 

119, 124, 127, 132, 

133, 134, 144, 155, 

163, 166, 168, 175, 

178, 186, 190, 193, 

196, 199, 203, 204, 

206, 208, 212, 213, 

216, 219, 225, 228, 

233, 234, 247, 257, 

261, 268, 269, 270, 

272, 274, 276, 300 

5, 11, 15, 22, 23, 

26, 37, 38, 42, 45, 

49, 53, 54, 59, 64, 

68, 72, 79, 86, 88, 

92, 98, 99, 101, 

105, 116, 118, 121, 

126, 128, 132, 133, 

134, 145, 150, 152, 

155, 159, 160, 163, 

168, 173, 184, 186, 

190, 193, 194, 200, 

201, 204, 209, 210, 

213, 218, 222, 227, 

230, 232, 233, 236, 

248, 249, 257, 263, 

267, 268, 269, 270, 

279 

1, 2, 3, 11, 15, 

19, 22, 27, 38, 

44, 49, 53, 55, 

57, 64, 79, 81, 

85, 86, 93, 99, 

101, 105, 109, 

114, 116, 118, 

122, 126, 132, 

135, 144, 154, 

156, 167, 171, 

177, 187, 192, 

195, 199, 202, 

208, 212, 213, 

216, 226, 227, 

232, 237, 246, 

262, 268, 269, 

270, 274 

3, 8, 9, 11, 17, 20, 

22, 25, 31, 38, 42, 

43, 46, 48, 49, 50, 

55, 59, 61, 64, 78, 

83, 84, 88, 91, 92, 

98, 99, 104, 112, 

115, 116, 118, 119, 

130, 133, 138, 140, 

144, 152, 157, 160, 

164, 170, 175, 178, 

185, 190, 196, 202, 

208, 210, 215, 217, 

219, 220, 221, 225, 

228, 233, 237, 247, 

255, 260, 261, 267, 

268, 269, 270, 275, 

278, 294 


