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Date palm cultivation has thrived in the Gulf Cooperation Council region since 
ancient times, where it represents a vital sector in agricultural and socio-economic 
development. However, climate change conditions prevailing for decades in this 
area, next to rarefication of rain, hot temperatures, intense evapotranspiration, 
rise of sea level, salinization of groundwater, and intensification of cultivation, 
contributed to increase salinity in the soil as well as in irrigation water and to 
seriously threaten date palm cultivation sustainability. There are also growing 
concerns about soil erosion and its repercussions on date palm oases. While 
several reviews have reported on solutions to sustain date productivity, 
including genetic selection of suitable cultivars for the local harsh environmental 
conditions and the implementation of efficient management practices, no 
systematic review of the desertic plants’ below-ground microbial communities 
and their potential contributions to date palm adaptation to climate change 
has been reported yet. Indeed, desert microorganisms are expected to address 
critical agricultural challenges and economic issues. Therefore, the primary 
objectives of the present critical review are to (1) analyze and synthesize current 
knowledge and scientific advances on desert plant-associated microorganisms, 
(2) review and summarize the impacts of their application on date palm, 
and (3) identify possible gaps and suggest relevant guidance for desert plant 
microbes’ inoculation approach to sustain date palm cultivation within the Gulf 
Cooperation Council in general and in Qatar in particular.
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1 Introduction

Among the arid zones of the globe, which occupy a third of the 
Earth’s surface (Neilson et al., 2017), the Gulf Cooperation Council 
(GCC) region, known for its large sandy deserts (Alsharif et al., 2020), 
has experienced the most intense climate changes over the last two 
decades, inducing profound disruptions that seriously threaten the 
sustainability of existing agrosystems (Fernández-López et al., 2022).

Within this area, the cultivation of date palm (Phoenix dactylifera 
L.), or phœniciculture, is the flagship activity, the symbol of life, and 
the cornerstone of oasis agrosystems. It is considered as a “holy tree” 
due to its vital nutritional (fruits and by-products) and socio-
economic importance (Almadini et al., 2021; Naqvi et al., 2021). In 
addition to its agronomic and economic importance, date palm is 
known to tolerate harsh environmental conditions such as extreme 
temperature, drought, and high salinity of soil (Abumaali et  al., 
2023b). Since the Middle East has sandy soils and a dry climate, this 
tree contributes efficiently to mitigating desertification and erosion 
and preserving the oasis microclimate (Jain et al., 2011). Nevertheless, 
and despite this robustness, date palm encounters diverse constraints 
that, if no intelligent strategies are urgently implemented, would 
progressively compromise its sustainability and, in the long term, its 
extinction from this geographical area (El-juhany, 2014; Almadini 
et al., 2021). Among these structural and climatic constraints are: low 
organic soil matter content (Darwish and Fadel, 2017), limited and 
reduced groundwater levels (Sherif et al., 2023), growing salinity (Al 
Kharusi et al., 2019), resurgence and spread of pests and diseases 
(Alotaibi et al., 2023), and a very limited survival rate of newly planted 
plantlets due to their low potential to adapt to the harsh conditions of 
the environment (Saadaoui et  al., 2019). Indeed, date palms are 
adapted to arid and semi-arid regions. They withstand moderately 
alkaline soils, with a pH ranging from 7 to 8.5, but extremely high 
alkalinity can be detrimental to their growth (Alotaibi et al., 2023; 
Sanka Loganathachetti and Mundra, 2023). They are adapted to soils 
with low organic matter levels, ranging from 0.1 to 1 (Mlih et al., 2016, 
2019), while proper fertilization is essential to ensure their optimal 
growth. Furthermore, date palms exhibit a notable tolerance to salinity 
levels, commonly ranging from 4 to 8 dS/m or even higher under 
specific conditions (Muller et  al., 2017; Alotaibi et  al., 2023). 
Nevertheless, the irrigation of date palm with saline groundwater, due 
to water scarcity, is a common practice in the MENA regions, which 
threatens the sustainability of date palm cultivation (Shamim et al., 
2022; Sanka Loganathachetti and Mundra, 2023).

To overcome these constraints, several useful solutions have been 
developed (Cai and Liu, 2015), among them, biotechnological 
approaches involve innovative breeding programs (Hazzouri et al., 
2020). However, the efficiency of these conventional approaches in 
combating various stresses in plants was limited on one hand, and the 
non-conventional approaches, such as tissue in vitro technology, 
require more labor and may produce less resilient plants, particularly 
in woody trees (Al-Khateeb et  al., 2020). Moreover, the excess of 
chemical fertilizer amendments and agricultural practices (e.g., 
tillage) has dramatically affected the diversity of the beneficial soil 
microbiota. This situation is worsened by intense climate changes, 
which impart severe impacts on plant–soil–microorganism 
interactions by altering the structure, abundance, composition, and 
functional activity of the rhizosphere microbiome (Sabir et al., 2021). 
Indeed, plants’ endosphere, rhizosphere, leaves, and other tissues are 

home to a multitude of microorganisms, known as the microbiome 
(Bonatelli et al., 2021). The rhizosphere microbiome interacts with and 
affects, often positively, the adaptation of its host plants to their 
environment (Bais et al., 2006; Kumar and Dubey, 2020). Indeed, the 
influence of plant roots on microbes is governed by the root exudates 
(Williams and de Vries, 2020), which include low-molecular-weight 
primary metabolites, like organic acids, amino acids, and sugars, and 
secondary metabolites, such as phenols, flavonoids, and terpenoids 
(De Vries et al., 2019). A plant’s exudate may be affected by climate 
change as a result of alterations in the plant’s photosynthetic apparatus, 
which will indirectly affect the root microbes by changing the carbon 
sources available to them and leading to their cell lysis (Chen et al., 
2022). In their study, Naylor et  al. (2017) compared the root 
rhizosphere of 18 species of monocot plants under drought stress and 
found that Actinobacteria are more abundant during a water deficit. 
Rice root-associated microbiota were also found to be enriched in 
Actinobacteria and Chloroflexi under drought stress, while several 
Acidobacteria and Deltaproteobacteria were depleted (Andreo-Jimenez 
et al., 2019).

Several ecosystem processes are directly or indirectly influenced 
by soil microorganisms, which play a vital role in enhancing ecosystem 
resilience and complexity (Robinson et  al., 2023). These 
microorganisms are known to have beneficial attributes promoting 
nutrient cycling (e.g., solubilizing or decomposing soil’s below-ground 
complexed phosphorus, Ben Zineb et al., 2019b), plant health (e.g., 
systemic tolerance can be  induced by plant growth-promoting 
microorganisms through biochemical mechanisms) (De Zelicourt 
et  al., 2013), and climate regulation (e.g., CO2, CH4, and N2O 
producing or consuming). Therefore, their use in the restoration, 
conservation, and maintenance of the date palm ecology and 
production is becoming more challenging. There is an urgent need for 
more integrated research to improve simultaneously the productivity 
of the low-cost date palm system and its sustainability and to develop 
technologies favoring/restoring its microbial diversity.

Microbes play crucial roles in the rhizosphere of date palm, 
contributing to its overall health and nutrient availability. Indeed, 
several investigations have uncovered a wide spectrum of interactions 
between plant growth-promoting (PGP) microbes and date palm, 
including the promotion of shoot and root growth (Cherif et  al., 
2015), inducing systemic tolerance against abiotic stresses (Harkousse 
et al., 2021), as well as the inhibition of some pathogenic fungi (Siala 
et  al., 2016). In light of this, date palm sustainability can be  met 
through the intelligent use of native plant microbiomes, which boost 
plant potential to adapt and survive under intense abiotic stresses 
(Koziol et al., 2018; Qiu et al., 2019; Alsharif et al., 2020). Among 
these, desert indigenous microorganisms are increasingly recognized 
as a long-term environmental and ecological potential solution to 
sustain agriculture in the oasis ecosystem (Almutawa, 2022). Their 
application benefits have been documented to: (i) promote date palm 
growth and survival rate of seedlings in the nursery (Shabbir et al., 
2011); (ii) improve nutrient uptake by maintaining metabolic 
processes (Van Oosten et al., 2017; Alsharif et al., 2020); (iii) improve 
resistance to harmful pathogens (Mefteh et al., 2018); and (iv) induce 
better tolerance to complex abiotic stresses, drought, and salinity at a 
priority level (Benhiba et  al., 2015; Akensous et  al., 2022b). 
Consequently, focusing on beneficial microorganisms from arid and 
desertic lands would represent potential and innovating 
biotechnological tools to restore and promote agricultural activity in 
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desertic areas in general and of date palm in oases in particular 
(Symanczik et al., 2014; Ferjani et al., 2015).

Alotaibi et  al. (2023) reported on date palm biotechnology, 
including overviews of soil and environmental conditions of date 
palm cultivation, and Jain et al. (2011) reported on research progress 
and applications in this domain. Nevertheless, no holistic and 
comprehensive review has yet been conducted on the arid land’s 
microbiome, including prokaryotic and fungal communities, and its 
contribution to phœniciculture sustainability. Therefore, a deep study 
of the diversity and role of the date palm microbiome, including 
bacteria, fungi, archaea, viruses, and other microbes, is particularly 
relevant. Decades of research have demonstrated the importance of 
gathering information from the genetic repertoires of microbial 
communities from various hosts (Lucaciu et al., 2019). The recent 
advent of high-throughput sequencing technologies coupled with a 
variety of “omics” techniques has marked the beginning of a new 
green era in agriculture (Pantigoso et al., 2023). Modern sequencing 
techniques, such as next-generation sequencing, 16S rRNA gene 
sequencing, internal transcribed spacer sequencing, or the 
combination of these methods, provide in-depth information about 
plant microbial partners. They were able to better characterize the 
structure and function of these communities (Mitter et  al., 2019; 
Satam et al., 2023). Still, the cultivation of those microbial partners is 
needed. Indeed, engineering date palm cultivable microbes might 
involve two approaches, either by re-introducing in situ enriched 
indigenous beneficial microorganisms or by inoculating them with 
exogenous beneficial microorganisms. In situ direct inoculation of 
microbes with PGP activities is the most commonly used strategy to 
enhance date palm growth (Yaish et al., 2015; Hazzouri et al., 2020). 
Although inoculating date palm with exogenous microorganisms may 
not directly promote their growth, they could still benefit by recruiting 
other microbial species able to enhance their resilience against abiotic 
stress (Alsharif et al., 2020).

Along with the incessant search for sustainable processes to 
produce dates in hyper-arid ecosystems, like the GCC area, there is a 
need to collect updated information, encouraging researchers to 
engage in new eco-friendly, insightful studies. Therefore, this review 
critically reports knowledge and pertinent scientific achievements on 
desert plant-associated microorganisms and their applications on date 
palms. We also targeted the knowledge available, the gaps, and what 
would be recommended for the desert plant microbes’ inoculation 
approaches to sustain the GCC phœniciculture, with a particular 
emphasis on Qatar.

2 Desert plant-associated 
microorganism: a reservoir of efficient 
biofertilizers

Decades of empirical and theoretical research have revealed that 
plants are not standalone entities. They are influenced by their 
association with microbiota, named “holobiont” (Vandenkoornhuyse 
et al., 2015; Wagg et al., 2022). The holobiont of desert plants is the 
center of interest regarding its performance under severe 
environmental constraints (Araya et al., 2020). Nowadays, several 
projects have reported promising results for the improvement of 
agricultural production systems sustainability, owing to inoculation 
with microbial rhizospheres deriving from plants surviving in arid 

and desertic areas (Köberl et al., 2011, 2013; Eida et al., 2018; Ha et al., 
2021; Procter et al., 2022).

This high-performance potential was reported for the holobiont 
of the desert plant cassava (Manihot esculenta Crantz) (Ha et al., 
2021). The African desert grass Stipagrostis pungens, grown under 
severe drought conditions, revealed harboring beneficial bacteria 
that produce extracellular polymeric substances (e.g., 
exopolysaccharide), which form a hydrophilic biofilm around plant 
roots (Rolli et al., 2015). Thus, protecting the roots from desiccation 
as well as amending the soil structure and its aggregation properties 
result in increased soil water holding capacity and improve the 
overall resilience of the holobiont (Huang et al., 2022; Marasco et al., 
2022). For the Atacama’s desert plants, Cistanthe longiscapa and 
Citrullus colocynthis, it has been reported that their survival strategy 
was forged through intimate interactions with associated soil 
bacteria and fungi (Araya et al., 2020; Procter et al., 2022). Citrullus 
colocynthis was reported to develop symbiotic interactions with 
plant growth-promoting bacteria such as Acidobacteria, 
Bacterioidetes, and Actinobacteria for nitrogen, sulfur, and carbon 
cycles, as well as for the solubilization of phosphate and the synthesis 
of indole-2-acetic acid and siderophores (Procter et al., 2022). The 
four native Saudi  Arabian desert plants, Zygophyllum simplex, 
Panicum turgidum, Euphorbia granulate, and Tribulus terrestris, 
harbor bacterial strains that exhibit distinct biochemical pathways 
regarding nutrient uptake and survival under stress conditions (Eida 
et al., 2018). Recently, Abumaali et al. (2023a,b) stated that Qatari 
wild date palm (Phoenix sylvestris) displayed specific and unique 
bacterial operational taxonomic units (OTUs) that could improve 
date palm tolerance to salinity and drought. Indeed, the rhizospheric 
core microbiome from arid regions may improve the ability of date 
palm to withstand harsh environmental conditions by promoting 
microbe-induced systemic tolerance. To cope with abiotic stress and 
low organic carbon, microbes engage a multitude of direct and 
indirect mechanisms to support plants (Figure 1; Mohanty et al., 
2021). Direct mechanisms involve the increase of vital nutrient 
acquisition (e.g., N, P, and Fe) (Anli et al., 2020), the accumulation 
of osmolytes that impart drought tolerance in plants (e.g., soluble 
sugars, proline, glycine, organic acids, Huang et  al., 2014), the 
production of exopolysaccharide (Rolli et al., 2015), the regulation 
of phytohormone levels including auxin, gibberellin, and cytokinin, 
and particularly the 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase to reduce the ethylene level in roots (Lau et al., 2022), and 
the induction of stress-responsive genes (e.g., NCED, P5CS) (Poudel 
et  al., 2021). Indirect mechanisms encompass actions where 
microbes enhance plants’ resilience by improving soil characteristics 
(Ait-El-Mokhtar et al., 2020), maximizing the total area of the root, 
resulting in improved nutrient and water absorption (Ngumbi and 
Kloepper, 2016), or suppressing pathogens that may exacerbate 
stress conditions (Poudel et  al., 2021). Through these intricate 
interactions, microbes play a key role in bolstering plant resilience 
and enabling them to thrive in challenging environments.

Next, to the advantageous ecological and protective services 
offered by desert plant-associated microorganisms (Köberl et al., 2016; 
Shilev et al., 2019; Karray et al., 2020; Gargouri et al., 2021b), few 
microbial profiling studies have been carried out on the rhizospheres 
and root systems of date palm, the iconic oasis keystone (Chebaane 
et al., 2020; Gagou et al., 2023; Abumaali et al., 2023a). Moreover, 
although high-throughput sequencing technology provides excellent 
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opportunities for the investigation of microbiomes, studies on date 
palm microbiomes remain scarce.

In accordance with the available data, date palm rhizosphere soil 
and root systems shelter a reservoir of beneficial symbiotic 
microorganisms that positively regulate its homeostasis (Ferjani et al., 
2015). Mosqueira et al. (2019) carried out a broad survey of bacterial 
diversity associated with date palm grown across the Sahara desert in 
Tunisia. They identified two major endophytic bacterial phyla, 
Gammaproteobacteria and Alphaproteobacteria, known to perform 
ecological functions of biopromotion and biofertilization in harsh 
environments. Shamim et  al. (2022) demonstrated that 
Micromonospora and Mycobacterium bacterial taxa were effective in 
alleviating salinity stress when date palms were irrigated with saline 
water. Cherif et al. (2015) further showed that Gammaproteobacteria, 
a class of endophytic bacteria isolated from date palm, was also 
effective in improving plant drought tolerance. Using pyrosequencing, 
Yaish et  al. (2016) revealed that the composition of endophytic 
bacterial and fungal communities in P. dactylifera differs according to 
the concentration of salt in the irrigation water.

Up-to-date, there are few reports addressing date palm microbial 
profiling (Ferjani et al., 2015; Yaish et al., 2016; Mosqueira et al., 2019; 
Chebaane et al., 2020; Al-busaidi et al., 2022; Shamim et al., 2022). 
Few of them go deeper beyond the species identification level. 
Consequently, advanced technologies, such as high-throughput 
sequencing, have become highly recommended to be  able to 
characterize in depth the rhizosphere and endophytic microbiota of 
P. dactylifera, which would further contribute to dissecting more 
beneficial microbial taxa and better understanding their role in 
enhancing date palm stress mitigation.

3 Beneficial contributions of the use 
of date palm cultivable 
microorganisms to promote 
sustainable phœniciculture

The rhizosphere and endosphere of arid land habitats offer a 
valuable reservoir of biomolecules with fertilizing and biocontrol 
properties against a large spectrum of biotic and abiotic constraints 
(Alsharif et al., 2020). They feature a wide diversity of plant growth-
promoting (PGP) microbial communities involved in vital processes, 
exchanging services for niches and nutrients, ultimately resulting in a 
win–win and high-performance partnership with the plant partner 
(Vacheron et al., 2013; Soussi et al., 2016). Consequently, they are 
regarded as potential and pertinent candidates to substitute 
conventional fertilizers and pesticides. This would promote food 
security and the sustainability of food production systems (Gargouri 
et al., 2021b; Ben Zineb et al., 2022).

The recent overview by Alsharif et al. (2020) on the diversity 
of desert plant rhizosphere microbiomes, including the latest 
findings and applications, reported that desert PGP 
microorganisms are genetically better equipped to adapt to harsh 
environments than those evolving in non-arid soils. Furthermore, 
many research teams were focusing on studying arid land-
associated microbial communities to explore their beneficial 
agronomical contributions following their inoculation with cash 
crops, such as wheat (Singh and Jha, 2016), cowpea (Minaxi et al., 
2012), Salicornia (Marasco et al., 2016), and date palm (Anli et al., 
2020; Chebaane et  al., 2020). Among the available data, a 
consensus emerges on the advantageous contribution provided by 

FIGURE 1

(A) An overview of the date palm close-up inoculation system through re-introduction in situ of enriched indigenous beneficial microorganisms. 
(B) Date palm perception of external stimuli and the activation of both direct and indirect defense mechanisms to support the plant in dealing with 
abiotic stresses. Arrows indicate promotion; blunt-ended lines indicate inhibition. All the stress response mechanisms of PGP bacteria and AMF shown 
in this figure are synthesized from the studies listed in Table 1. AMF, arbuscular mycorrhizal fungi; PGP, plant growth-promoting; IAA, indole-3-acetic 
acid; ABA, abscisic acid; ACC, 1-aminocyclopropane-1-carboxylic acid; CK, cytokinin; ROS, reactive oxygen species.
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TABLE 1 Studies depicting previously evaluated inoculation potential on date palm plants.

Stress 
type

Inoculation 
methods

Microbes used Amendment Response References

PGP 
(bacteria/
fungi)

AMF

Drought stress

25, 75% FC

Rhizosphere 

inoculation (fresh corn 

root fragments and 

spores)

–
Autochthonous 

AMF consortium

Rock phosphate + local 

compost

Improvement of leaf 

number, stomatal 

conductance, chlorophyll 

fluorescence, and pigment 

content.

Enhancement of total 

soluble sugar content. 

Decrease of hydrogen 

peroxide (H2O2).

Improvement of soil traits.

Akensous et al. (2023)

Water 

regimes: 

32 L/h for 

well-watered 

and 16 L/h for 

drought stress

Rhizosphere 

inoculation (fresh corn 

root fragments and 

spores)

Indigenous PGP 

bacteria (from the 

rhizosphere of 

palm groves)

Aoufous consortium
Organic waste-based 

compost

Improvement of plant 

biomass.

Rise of phosphorus uptake, 

total soluble sugar, and 

protein content.

Boost plant–water 

relationship.

Decrease in 

malondialdehyde (MDA) 

and H2O2.

Improvement of organic 

matter, soil phosphorus, 

and glomalin content.

Akensous et al. 

(2022a)

25, 75% FC

Fresh inoculum (roots 

and substrate 

containing 

spores) + soil 

drenching

Four PGP bacteria 

(from the 

rhizosphere of 

palm groves)

Exogenous AMF 

Rhizoglomus 

irregulare

Indigenous AMF

Glomus sp. 

Sclerocystis sp., and 

Acaulospora sp.

Grass/green waste-

based compost

Enhancement of plant 

growth and physiological 

parameters.

Enhancement of leaf water 

potential, electrical 

conductivity, organic 

matter, and total organic 

carbon.

Improvement of N and P 

content.

Increase in sugar and 

protein content.

Decrease in MDA and 

H2O2.

Anli et al. (2020, 

2021)

25, 50, 75, 

100% FC

Fresh inoculum (roots 

and substrate 

containing 

spores) + soil 

drenching

Bacillus S48

28 species from the 

rhizosphere of palm 

grove

–

Improvement of the leaf ’s 

relative water content.

Enhancement of proline 

content.

Decrease of the antioxidant 

defensive machinery: 

superoxide dismutase 

(SOD), catalase (CAT), 

glutathione peroxidase 

(POX), and glutathione 

S-transferase.

Enhancement of electrical 

conductivity.

Harkousse et al. 

(2021)

(Continued)
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TABLE 1 (Continued)

Stress 
type

Inoculation 
methods

Microbes used Amendment Response References

PGP 
(bacteria/
fungi)

AMF

25, 75%, FC

Fresh mycorrhizal 

barley root fragments, 

spores, and hyphae

–

Exogenous AMF

G. monosporus, G. 

Clarum, and G. 

deserticola

Indigenous AMF

Glomus sp., 

Sclerocystis sp., and 

Acaulospora sp.

–

Increasing the number and 

area of date palm leaves.

Higher relative water 

content (RWC).

Improving the mineral 

nutrition of date palms 

(higher levels of P, Ca, Mg, 

K, and Mn).

Increase of POX and 

polyphenol oxidase (PPO) 

enzyme activities.

Meddich et al. (2018), 

Meddich (2021)

25, 75% FC

Soil with alfalfa fresh 

root fragments, spores, 

and hyphae

–

Native AMF 

consortium

Rhizophagus 

intraradices

Funneliformis 

mosseae

–

Increasing the shoot height 

and biomass.

Enhancement of the RWC.

Increasing cell wall 

elasticity to maintain high 

RWC in leaves without 

lowering leaf water 

potential under stressful 

conditions.

Baslam et al. (2014)

25, 75% FC

Soil from trap cultures 

containing spores, 

hyphae, and 

mycorrhizal root 

fragments

–

Glomus clarum, G 

deserticola, and G 

monosporus

–

Accumulation of K+, Ca2+, 

Mg2+, and P in leaves

Enhancing shoot dry weight

Faghire et al. (2010)

Long-term 

drought stress 

25% FC

Spores conserved in 

sterile soil + fresh 

mycorrhizal barley 

root fragments, spores, 

and hyphae

–

Rhizophagus 

intraradices, 

Funneliformis 

mosseae

–

Alleviation of the 

detrimental effect of 

drought on growth 

performance

Alleviation of H2O2 and 

MDA accumulation 

Improvement of antioxidant 

enzyme activities: CAT, 

SOD, ascorbate peroxidase 

(APX), and guaiacol 

peroxidase (G-POD).

Decrease of oxidative 

damage and increase of 

proteins and soluble sugar 

contents.

Benhiba et al. (2015)

Salt stress

Up to 7.6 dS 

m−1.

Trap cultures with date 

palm and common 

millet seeds

–

Albahypha 

drummondii, 

Dominikia disticha, 

Funneliformis 

coronatus, and 

Rhizoglomus 

irregulare

–

Positive correlation between 

soil salinity and easily 

extractable glomalin-related 

soil protein and spore 

density.

Chebaane et al. (2020)

(Continued)
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TABLE 1 (Continued)

Stress 
type

Inoculation 
methods

Microbes used Amendment Response References

PGP 
(bacteria/
fungi)

AMF

240 mM NaCl

Fresh mycorrhizal 

barley root fragments, 

spores, and hyphae

–

Exogenous AMF

G. monosporus, G. 

Clarum, and G. 

deserticola

Indigenous AMF

Glomus sp., 

Sclerocystis sp., and 

Acaulospora sp.

–

Greater AMF colonization 

of date palm roots.

High stomatal conductance.

High level of RWC and leaf 

water potential under salt 

stress compared to control 

plants.

Meddich et al. (2018)

0, 50, 100, and 

200 mM NaCl

Seed coating 

application

Bacillus and 

Enterobacter
– –

Production of 

1-aminocyclopropane-1-

carboxylic acid (ACC) 

altering plant ethylene 

levels.

Production of ammonia.

Solubilization of phosphate 

ion (PO4
3−) and zinc ion 

(Zn2+).

Enhancement of seedling 

root elongation.

Yaish et al. (2015)

0, 10, and 

20 g·L−1 NaCl

Fresh mycorrhizal 

corn root fragments

–

Autochthonous 

AMF

Exogenous AMF

–

Improvement of growth 

parameters.

Enhancement of 

antioxidant enzyme 

activities.

Outamamat et al. 

(2021)

0 and 240 mM 

NaCl

Solid substrate (roots 

and substrate 

containing spores)

–

Indigenous AMF:

Glomus sp., 

Sclerocystis sp., and 

Acaulospora sp.

–

Improvement of 

physiological parameters 

through elevating stomatal 

conductance, 

photosynthetic efficiency, 

and leaf water potential.

Delayed salt stress effects on 

nutrient uptakes.

Amelioration of P, K as well 

as Ca content.

Decrease in MDA and H2O2

Rise in SOD, CAT, POX as 

well as APX activities

Ait-El-Mokhtar et al. 

(2019, 2021)

0 and 240 mM 

NaCl
– –

Autochthonous 

AMF consortium
Green waste compost

Increase in P and Ca2+ 

uptake, chlorophyll content, 

relative water content, 

stomatal conductance, 

antioxidant enzymatic 

activities (superoxide 

dismutase, ascorbate 

peroxidase, catalase)

Decrease in lipid 

peroxidation and H2O2 

content.

Ait-El-Mokhtar et al. 

(2020, 2022)

(Continued)
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the inoculation of PGP bacteria on date palm to better adapt to 
abiotic stresses (Figure 1; Table 1).

3.1 Contribution of PGP microorganisms to 
abiotic stress mitigation in date palm

3.1.1 Salinity
Producing dates with an economically profitable yield and 

competitive quality under the constraints of continuously increasing 
salinity remains a difficult challenge to overcome. Selection of tolerant 
date palms to salinity was addressed by means of in vitro culture (Roy 
et al., 2014), given that working directly in the soil makes the task 
difficult in arid and hyper-arid regions affected by salinity (Al Kharusi 
et al., 2019). Studies indicate that close inoculation of date palm with 
PGP bacteria (Figure  1) could reduce oxidative stress, directly or 
indirectly, for example, via the accumulation of osmolytes or by the 
production of hormones capable of modulating the plant’s response 
(De Zelicourt et al., 2013; Hazzouri et al., 2020). Yaish et al. (2015) 
reported that date palm endophytic bacteria synthesize 
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase capable of 
cleaving part of ACC (a precursor in the ethylene biosynthesis 
pathway) induced by salt stress and causing inhibition of root 
elongation (Lau et al., 2022). This molecule can thus play a role in 
promoting the growth and development of the date palm in 
saline environments.

Furthermore, date palm nutrient utilization under salinity 
constraints can be improved when associated with mycorrhiza. This 
symbiotic relationship may enhance their yield by improving 
absorption of soil nutrients through fungal hyphae extension in the 
rhizosphere area, thereby increasing surface uptake (Akensous et al., 
2022b). Accordingly, Meddich et  al. (2018) noticed a consistent 
increase of Ca, P, K, Mg, and Mn when date palm seedlings, inoculated 
with arbuscular mycorrhizal fungi (AMF), were subjected to different 
stresses. Moreover, the inoculation of date palm plantlets with a 
consortium made of AMF and a mixture of Glomus sp., Sclerocystis 
sp., and Acaulospora sp. improved the physiological responses of the 

stressed plants (photosynthetic efficiency, leaf water potential, and 
stomata conductance). The enhancement of photosynthetic capacity 
resulted in a higher capacity of gas exchange, a better efficiency of the 
photosystem II (PS II), and a more efficient regulation of the energy 
flow between the photochemical reactions and the non-photochemical 
reactions (Ait-El-Mokhtar et al., 2019, 2022). More interestingly, the 
strains of AMF from Tunisian oasis ecosystems increased the fraction 
of easily extractable glomalin-related soil protein (EE-GRSP), 
suggesting that the AMF undergo a survival mode to mitigate the 
negative effects of salt stress for themselves as well as for their date 
palm host plants (Chebaane et al., 2020).

3.1.2 Drought
In addition to strengthening date palm trees’ resilience to 

salinity, arid land’s microorganisms employ different pathways to 
counter the negative consequences of drought, mainly in young date 
palm plantations (Hazzouri et  al., 2020). They induce systemic 
tolerance by triggering a series of biochemical and physiological 
responses. In this respect, Harkousse et al. (2021) reported that 
inoculation with a consortium composed of 28 species of 
rhizosphere AMF, collected from an oasis palm grove, improved the 
relative water content of the leaves of stressed date palm plants and 
increased their proline content, a fundamental osmoregulation 
solute (Liang et al., 2013). Next to this, Anli et al. (2020) reported 
that the co-inoculation with plant growth-promoting rhizobacteria 
and AMF (composed of Sclerocystis sp., Acaulospora sp., and 
Glomus sp.) increased date palm protein and soluble sugar contents 
and boosted the antioxidant defense activity. Date palm plants 
inoculated and subjected to water stress responded with an increase 
in their water potential and water content, which ensured the 
maintenance of physiological turgor levels. It should be noted that 
the accumulation of osmolytes and the strengthening of antioxidant 
power can contribute to osmotic regulation, the maintenance of 
cellular turgor, the preservation of cellular structures, and the traps 
of reactive oxygen species [e.g., hydrogen peroxide, H2O2, and 
malondialdehyde (MDA)]. This likely resembles a primary 
avoidance strategy developed by date palms inoculated in response 

TABLE 1 (Continued)

Stress 
type

Inoculation 
methods

Microbes used Amendment Response References

PGP 
(bacteria/
fungi)

AMF

0, 120, and 

240 mM NaCl

Fresh inoculum (roots 

and substrate 

containing 

spores) + spraying 

closely to the roots

PGP bacteria 

isolated from DP 

rhizospheric soil

Native AMF:

Glomus sp., 

Sclerocystis sp., and 

Acaulospora sp.

Exotic AMF

Rhizophagus 

irregularis

Green waste-based 

compost

Increasing plant growth: 

plant height; leaf number; 

and fresh and dry weights 

of shoots and roots.

Accumulation of osmotic 

adjustment compounds and 

antioxidant enzyme activity

Increasing total 

chlorophylls, carotenoids, 

and chlorophyll a and b 

content.

Increasing soluble sugars 

and protein

Toubali et al. (2020)

FC, field capacity; DP, date palm; AMF, arbuscular mycorrhiza fungi; PGP, plant growth promotion; RWC, relative water content.
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to water stress. Furthermore, the inoculation of date palm roots, 
indoor and outdoor, activates hormonal biosynthesis (ABA, for 
example) to ensure acceptable levels of stomatal and photosynthetic 
activities (Meddich et  al., 2021). Indeed, inoculated date palms 
responded with an increase in the elasticity of their leaf cell walls 
and modified the redistribution of water between the symplastic 
and the apoplastic compartments (Baslam et al., 2014). Therefore, 
this could serve as an alternative strategy to survive water stress 
through corrective responses at the level of vital physiological 
attributes such as relative water content (RWC), electrolyte loss/
leakage (EL), and stomatal conductance.

Overall, the inoculation with microorganisms from the date palm 
rhizosphere could serve as an integrated approach to improve date 
palm defenses and mitigate the negative effects imposed by salt and 
water stresses and by pathogens. Such inoculation could serve as an 
effective means to improve their growth and productivity under future 
climate change scenarios.

4 Current challenges limiting date 
palm biofertilizer efficiency in arid 
conditions and potential solutions

Cultivated date palm microorganisms’ inoculum has been used to 
boost date palm resistance to abiotic and biotic stresses and would 
represent potential substitutes for conventional pest control products 
(Meddich et al., 2018; Omomowo et al., 2023). Nevertheless, they 
remain facing efficiency, technical, and sustainability challenges (Qiu 
et al., 2019). To reach an acceptable efficiency level on date palm, these 
beneficial microbes must overcome key steps: establishment, survival, 
colonization, and interaction with the host tree.

4.1 Soil-related factors

Date palms are typically grown in arid regions where soils are 
often coarse-textured and calcareous, deficient in nutrients and 
organic matter, and where the pH is rather alkaline (Alotaibi et al., 
2023). Therefore, the availability of nutrients and the effectiveness of 
fertilizers, particularly phosphorus, can affect their development. 
Indeed, phosphorus represents the macronutrient most sensitive to 
soil pH, and its availability in alkaline and calcareous soils is made low 
in particular by the presence of Ca2+, whose precipitation and 
retention power are rather high (Ben Zineb et al., 2019b). The use of 
slow-release phosphorus fertilizer, such as rock phosphate, might be a 
potential solution (Ben Zineb et al., 2022). Moreover, to reduce the 
adverse effects of limestone, phosphate-solubilizing microorganisms’ 
amendments are recommended. Yet, interactions between phosphate-
solubilizing microbes with intrinsic soil properties (humidity, water 
and nutrient availability, temperature, pH, etc.) and date palm 
exudates must also be taken into account (Uroz et al., 2019; Fitzpatrick 
et  al., 2020). Additionally, current strategies implemented in soil 
management are rather inappropriate (Almadini et al., 2021), as they 
are heavily dependent on fertilizers produced by the chemical 
industry, which are often harmful to soil microorganisms. Indeed, 
chemical fertilizers might be partially immobilized right after their 
application, which induces lower root colonization and thereby 
limited inoculation efficiency. In this respect, El Hilali et al. (2022) 

found reduced levels of mycorrhizal root colonization in date palms 
receiving synthetic fertilizers.

4.2 Plant-related factors

In the date palm multiplication process, the transition from the 
laboratory to the field, acclimation, is one of the most critical stages, 
as it represents the transition from an assisted or autotrophic lifestyle 
to an autonomous/self-sufficient or heterotrophic mode (Nazir et al., 
2015; Solangi et  al., 2022). Indeed, after in vitro cultivation, the 
plantlets are extracted from their synthetic cultivation medium and 
transferred into soil and acclimatized in a less controlled environment, 
where they have to adapt to survive (different light, less humidity, 
different atmosphere, different nutrients, and substrate) (Hassan, 
2017; Saadaoui et al., 2019). In addition, plants can modify, directly or 
indirectly, the habitat of the rhizosphere, notably by rhizodeposits, 
which end up modifying the surrounding conditions of the roots. 
Therefore, research work remains necessary to identify the optimal 
physiological stage of date palm for inoculation with PGP 
microorganisms in order to obtain maximum benefit.

4.3 Inoculant-related factors

Inoculant formulation is a critical aspect and should be optimized 
to allow high competition and survivability of the inoculum under 
severe environmental conditions. The exogenous microorganisms 
have to overcome colonization issues and establish a symbiotic and 
beneficial environment for both entities (Ferjani et al., 2015). Indeed, 
the persistence of the inoculated microorganisms can be promoted via 
the use of consortia composed of resistant PGP microorganisms (e.g., 
engineered microbial communities, SynComs) rather than 
monocultures containing single selected strains in order to improve 
the survival rates and the physiological activity of the microbial 
inoculum (Uroz et al., 2019; Fitzpatrick et al., 2020). In this respect, 
Anli et al. (2020) reported that a close-up inoculation of date palm 
with indigenous PGP bacteria increased the AMF root system 
infection under drought stress, probably because the inoculated 
bacteria enhanced the AMF multiplication and activity (Ben Zineb 
et al., 2022).

Generally, inoculant development mainly focuses on genetic and 
PGP traits and often neglects ecological traits that are critical to the 
success of inoculations (Kaminsky et al., 2019). The release of exotic 
species into the rhizosphere of date palms risks disrupting their 
ecological balance, which would make indigenous communities less 
competitive and therefore more vulnerable compared to exogenous 
species. Therefore, the isolation and screening of pre-adapted dryland 
microorganisms should take into consideration both PGP and 
ecological criteria, which means strains that are both functional and 
have increased environmental adaptation potentials (Mefteh et al., 
2018; Ben Zineb et al., 2019a; Toubali et al., 2020; Harkousse et al., 
2021). Furthermore, due to sampling constraints, extensive niche 
specialization, and the low adaptability of conventional cultural 
practices, many date palm microorganisms were neglected in terms of 
cultivation and characterization in the laboratory (Bull et al., 2016). 
Consequently, the creation of complete collections of strains via 
systematic culturomics, diversifying culture conditions, and taking 
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advantage of high-throughput sequencing should improve our 
understanding of the diversity of cultivable rhizosphere microbiomes 
of the date palm (Matar and Bilen, 2022; Li et al., 2023).

Additionally, the formulation of the inoculant has to support, at 
the same time, microbial growth and the protection of viable cells in 
order to trigger an efficient response in date palm (Bashan et al., 2016). 
An inoculum formulation using varied and innovative technologies 
should be  tested (microencapsulation, nanotechnology, etc.) to 
increase the efficiency of inoculum application (Kragh et al., 2018). 
Furthermore, it is recommended that date palm pre-adapted inoculum 
and/or selected compounds of prebiotics, such as phytoalexin and 
triterpenes, be used in order to favor microbes of interest (Pantigoso 
et al., 2023). Finally, a multiple approach combining conventional 
pathogenicity tests, targeting non-target organisms, and genomics 
should be implemented before field dissemination of the inoculum 
(Qiu et al., 2019).

AMF counts among the most represented, oldest, most 
widespread, and most important symbioses on Earth that contribute 
to feeding the world. They associate with an estimate of 72% of land 
plants and can deliver up to 90% of the total plant phosphorus, making 
these microorganisms a focal point of attention for many biotech 
companies. AMF inoculum production remains mainly limited to in 
vivo systems (e.g., greenhouse), which are often inexpensive and 
suitable for large-scale production with densities reaching 80–100 
propagules per cm3 of substrate (Gianinazzi et al., 2002). Yet, these 
cultivation systems are not exempt from contaminants and may 
require large spaces. Their cultivation under in vitro conditions using 
whole plants or their organs is a promising alternative to producing 
high-quality inoculum that is free of any contaminants and requires 
limited space. Still, in vitro production yields do not reach the level of 
in vivo systems; they are costly and restricted to a few species (Ijdo 
et al., 2011). Therefore, there is an urgent need to propose novel in 
vitro cultivation systems providing clean, safe, and robust spore date 
palm inoculum, produced at high densities and with reduced costs 
(Gargouri et al., 2021a).

At the application level, administration practices must favor the 
protection of the inoculated microbes against environmental stresses. 
Thus, the inoculation technique is decisive for the success of 
the inoculation.

4.4 Stress-related factors

The date palm is in constant challenge against lack of water, rising 
salinity, extreme temperatures, degradation and loss of soil fertility, 
pests, and diseases. The combination of multiple stresses of biotic and 
abiotic nature (high salinity, accentuated drought, high temperatures, 
pathogens, etc.) or abiotic stresses alone (salinity stress, water stress, 
or thermal stress) could have more harmful effects on the survival of 
the date palm (Safronov et al., 2017; Khan et al., 2020). In this respect, 
Meddich et al. (2021) reported that the effect of drought induces more 
severe damage when the plant is at the same time infected with 
Fusarium oxysporum f. sp. albedinis (Foa). High temperatures also 
make plants more vulnerable to diseases and contribute to the 
emergence of more virulent pathogens (Ali et al., 2023). Khan et al. 
(2020) revealed a more significant diminution of shoot elongation 
when date palms were simultaneously exposed to a combined stress 
composed of salt and cadmium than when they were exposed to a 

single stress (NaCl or Cd). In fact, when cadmium (Cd) interacts with 
NaCl, there is the formation of Cd-Cl complexes, which act as 
stimulators of Cd uptake by the plant. However, studies dealing with 
the effect of multiple stresses (more than two) on tolerant microbiota 
to monitor date palm cultivar responses are still missing. 
Consequently, systematic studies are pivotal to understanding the 
tripartite interactions involving date palm trees, stress-tolerant 
microbiota, and multi-abiotic stresses (Anderegg et  al., 2015). 
Ultimately, the development of an approach for beneficial microbiota 
tolerant to multiple stresses will make it possible to better understand 
the behavior of the date palm with respect to climate change.

5 Desert plants microbes’ inoculation 
approach to promote sustainable date 
palm production

5.1 Literature search strategy

We collected and analyzed the available literature (mainly 
international peer-reviewed studies) published in recent years from 
2010 up to May 2023 based on the search engines of Web of Science, 
ScienceDirect, and Google Scholar, using the following keywords: 
“Qatar and date palm,” “Qatar and microbiome,” “Qatar and soil 
microbial communities,” “Qatar and soil bacterial communities,” 
“Qatar and soil fungal communities,” “Qatar and soil mycorrhizae.” 
This query led to insufficient results because of the lack of studies on 
the investigated topics, particularly those studying microbial ecology, 
community structure, and their interactions with date palm plants.

5.2 Overview and future research 
directions

In the GCC, where water scarcity and desert conditions pose 
significant challenges to agriculture (Al-Khateeb et al., 2020), date 
palm trees have been of keen research interest as they are among the 
main agricultural sectors concerned by the sustainability issue (Al 
Nabil, 2021; Karanisa et al., 2021). Despite multiple programs aiming 
at the rehabilitation and rescue of palm groves (Meddich et al., 2018), 
the soil microbiota associated with the date palm is poorly represented 
in global microbial databases. Moreover, there are still no detailed 
reports based on modern science on the microbiome of wild plant 
species in the GCC soils (Al-Thani and Yasseen, 2021; Abumaali 
et al., 2023a).

Although ancestors of wild date palm populations exist in remote 
areas of the GCC region and have been shown to be quite different 
from those found in Africa and the Middle East (Gros-Balthazard 
et al., 2018), only a limited number of publications report on wild date 
palm and desert plants or the inoculation of cultivated date palm 
(Abumaali et  al., 2023a). It is obvious that the restoration of any 
ecosystem needs to integrate different components and data available 
on the ecosystem in question, in particular the microorganisms 
associated with the local plants (Anli et al., 2020).

Accordingly, in order to enhance date palm resilience to climate 
change and promote sustainable cultivation and production of dates 
in Qatar, a number of research priorities were identified: (i) To aid in 
understanding how date palm–microbe interactions would help them 
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resist in the desert environmental stresses, further investigation is 
required to have a more holistic perception regarding date palm root-
associated microbiome, especially wild date palm, as suggested in 
Figure 2. The use of modern high-throughput sequencing should 
improve the characterization of the composition and performance of 
the rhizospheric and endophytic microbiota of the date palm to 
be able to exploit and valorize it optimally. (ii) Given the scarcity of 
data on desert microbiome and the effect of their application in date 
palm oases in Qatar, it’s important to note that research and 
experimentation specific to autochthone microbes would be necessary 
to determine their most effective synthetic combination and optimal 
screening and application methods for a profitable cultivation of date 
palm in the area (Figure 2), paving the path for beneficial agricultural 
applications (Al-Yahya’ei et al., 2011). (iii) Future research programs 
using agro-ecological approaches should prioritize the maintenance 
and improvement of soil fertility and structure. Practices like cover 
plants and adapted halophytes for ecological or agricultural purposes 
can enhance soil organic matter and reduce erosion, leading to 
healthier and more productive soils. In addition, it makes sense to 
provide a microclimate favorable to the development of 
complementary underlying crops, particularly of a fodder nature 
(Toubali et  al., 2020). Overall, recognizing the importance of 
integrating different ecosystem components, particularly 
microorganisms, for ecosystem restoration, research priorities have 
been identified to enhance date palm resilience in the GCC. These 
priorities include investigating date palm–microbe interactions, 

optimizing high-throughput sequencing for characterizing the 
microbiota, studying desert microbiomes for application in date palm 
cultivation, and implementing agro-ecological approaches to improve 
soil fertility. A holistic model, suggested in Figure  2, should 
be  developed, involving modern and environmentally friendly 
agricultural technologies, to serve as a lever and catalyst for 
establishing sustainable agriculture and economy.
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FIGURE 2

Road map of future studies that will further promote the sustainability of date palm in the GCC. Based on the research question of interest, the concept 
of a synthetic microbial community generated from indigenous microbes screened from the autochthone wild date palm populations (P. sylvestris) and 
native desertic plants is necessary to pave the path for beneficial agriculture practices. The application of culturomics technology and microbial high-
throughput sequencing to determine (a) the microbial diversity and composition profiling, (b) the taxonomic novelty assessment, (c) the microbial 
functional analysis, and (d) the core microbiome network of the native plants. This knowledge should help guide next-generation field applications to 
promote the sustainability of date palm cultivation.
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