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ABSTRACT 

 

FERNANDEZ, RACHAEL, K.., Masters:  

June : 2017, Masters of Science in Computing 

Title: Accurate Classification of Partial Discharge Phenomena in Power Transformers in 

the Presence of Noise 

Supervisor of Thesis: Khaled, Bashir, Shaban. 

The objective of this research is to accurately classify different types of Partial 

Discharge (PD) phenomenon that occurs in transformers in the presence of noise. A PD is 

an electrical discharge or spark that bridges a small portion of the insulation in electrical 

equipment, which causes progressive deterioration of high voltage equipment and could 

potentially lead to flashover. The data for the study is generated from a laboratory setup 

and it is 300 time series signals each with 2016 attributes corresponding to 3 types of PDs; 

namely: Porcelain, Cable and Corona. The data is collected from two sensors with different 

bandwidths, in which Channel A signals refer to the data collected from the higher 

frequency sensor and signals from Channel B refer to data of the lower frequency sensor. 

Different feature engineering approaches are investigated in order to find the set of the 

most discriminant features which help to achieve high levels of classification accuracy for 

Channel A and Channel B signals. First, features that describe the shape and pulse of 

signals in the time domain are extracted. Then frequency domain based statistical features 

are generated. In comparison with classification accuracies using frequency domain 

features, time domain based features gave higher accuracy of more than 90% on average 

for both channels in the absence of noise while frequency domain features allowed 

classification accuracy up to 80% on average. However, in the presence of noise, both 
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methods degraded. To overcome this, Regularization techniques were applied on the 

features from the frequency domain which helped to maintain classification accuracy even 

in the presence of high levels of noise.   
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Chapter 1 

1. Introduction 

1.1 Overview and Motivation 

The conventional power grid is a rigidly hierarchical system in which power plants 

at the top of the chain ensuring power delivery to all the customers in the network. The 

communication is essentially one-way and requires manual restoration in case of failure of 

any of the components in the network [1]. This conventional grid is now being 

revolutionized to become ‘Smart’ by the “integration and application of Real-time 

monitoring, advanced sensing, communications, analytics and control” [2]. The smart grid 

supports “dynamic flow of energy and information to accommodate existing and new 

forms of energy supply” and also incorporates renewable sources of energy like solar 

panels, wind mills, etc. [3] . The communication is now a two-way pipeline to promote 

various functions like self-coordination, self-awareness, self-healing, and 

self-reconfiguration, boosting the deployment of renewable energy sources, augmenting 

the efficiency of power generation, transmission, and usage [4]. The most important 

function of which is the self-healing which refers to continuous self- assessments to detect 

and analyse faults and respond quickly to restore grid components [5].  

Power transformers are the main components of the grid and are numerous in 

number in any grid. They are responsible for transferring electrical energy from one 

electrical circuit to another without changing the frequency. Transformers and other 

high-voltage (HV) equipment exhibit a phenomenon of partial discharge (PD) which is “an 

electrical discharge or spark that bridges a small portion of the insulation in the electrical 

equipment” [6]. This activity leads to progressive deterioration of components and is a 
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common symptom of impending faults. The faults are sometimes catastrophic and usually 

lead to irreversible internal damage. Moreover, the transient and intermittent nature of PDs 

disables detection and protection relay until disastrous flashovers are developed [7]. 

Monitoring, detection and classification of different types of PD lead to partial 

implementation of the self-healing function. 

PD activity is an electrical breakdown that is found in high-voltage equipment 

which is confined to regions in the insulator. It causes a slow but progressive degradation 

of the insulation material. Thus, PD measurement is one of the important methods for 

determining the health of the HV equipment. Also, different types of PD have different 

effects on the equipment and is therefore necessary to distinguish between these different 

types of PD. For example, a PD activity on the surface of the insulator is less harmful than 

PD activity found in an internal void in the insulator [7]. 

The health of the equipment can be continuously monitored by recording vast 

amount of data captured from sensors that are either attached or in close proximity to the 

equipment. The data necessary for classifying PD types are extracted. This necessitates the 

need for applying the principles of data mining for efficient extraction of useful knowledge 

from the raw data. Further, data mining can be classified into descriptive modelling and 

predictive modelling.  The former is used for identifying patterns in the data, whereas the 

latter is used for making predictions for new data based on a set of historical data [7][8]. 

Before predictive modelling is used on the data to assess the condition of the HV 

equipment, the PD signal has to be de-noised, which helps in removing the noise due to 

external electrical or magnetic interferences that corrupt the data. Thereafter, the de-noised 

data are analysed in the time or frequency domain in order to differentiate between the 
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different PD types.  Once the PD type is identified, the frequency spectrum of the PD signal 

can be analysed to assess/evaluate the severity of the PD activity based on the magnitude 

of the signal. The obtained information can then be used to interpret the equipment’s health. 

The detection of PD activity can be either online or offline. Traditionally, PD 

measurements were done offline using a decoupling capacitator which can decouple the 

transformer  from the electrical network. This method necessitates the transformer to be 

disconnected from the network and PD measurement is typically done during the 

maintenance period. However, in online monitoring, the PD measurement can be carried 

out during regular operation of the transformer [8]. Physio-chemical analysis of the oil in 

oil-filled transformers is one of the popular methods for online monitoring in which the 

degradation and properties of the oil and the gases that are released can be used to predict 

the type of the PD activity. In this thesis, we will perform online monitoring of the 

transformer using non-invasive current transformer (CT) sensors, so that the PD activities 

can be classified in real time. Specifically, we focus on performing accurate PD 

classification in a noisy environment, where often the performances of traditional 

approaches degrade. 

Although experts have been investigating PD activity in HV equipment for decades 

now, there is no universally accepted method for PD detection [19]. This is due to the 

different types of PD activity that can be generated. In addition, different types of sensors 

could be used for acquisition of the signal. This leads to unlimited variations in the type of 

the PD detection system that can be constructed.  Hence, a method that is tailored to our 

needs must be implemented to detect and classify PD activity [8]. 
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1.2 Problem Statement 

We are tackling the problem of PD classification in the presence of noise, and aiming to 

perform that with high accuracy regardless of the level of noise. This problem poses various 

challenges including: 

1) Hard to detect PD activity: The PD activity in the signal does not occur 

continuously nor does it appear in regular intervals. This makes it hard to detect 

harmful PD activity in transformers due to their transient and intermittent nature. 

The only way to detect these PD signals are by monitoring the equipment 

continuously so that variations in the signal can be identified. These variations 

could also be due to the noisy environment surrounding the transformers that is 

susceptible to magnetic and electrical interferences that often interfere with PD 

detection. Hence, a method for processing the data that can tolerate these 

inaccuracies have to be implemented [9]. 

2. Hard to achieve high classification accuracies, particularly in the presence of 

high noise levels: Many PD detection systems have been reported in the literature 

[13]. These systems however are not robust in imperfect conditions, since their 

performance is seriously affected in noisy environments. This work represents one 

step forward towards robust detection of PD signals. Figure 1 shows the different 

levels of noise (different Signal-to-Noise Ratio (SNR) levels with which our data 

is corrupted) with which we will test our system. 
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Figure 1: Different levels of noise with which we will test our system 

 
 

In the this thesis, we overcome these challenges by converting the signal in the time 

domain to a signal in the frequency domain, as it is less susceptible to noise when compared 

to the signal in the time domain. Unlike the previous methods, we introduce an automated 

feature learning method that relaxes the need for data de-noising and maintains high 

classification accuracies in imperfect conditions. Regularization techniques are applied to 

the spectrum of the PD signals in order to adaptively select the most discriminant features 

of PD signals and preserve high classification accuracies.  

1.3 Thesis Objectives 

The aim of this research is to devise a method for online monitoring and accurate 

classification of PD activity in power transformers such that it is immune to noise. In this 

thesis we will classify three common types of PDs that are external to the transformer, 

namely: Porcelain, Cable and Corona. The main objectives of the research is to construct 

a classification model that is robust to noise. Moreover, data has to be processed in real 

time. 

SNR 20 SNR 10 SNR -10 SNR -20 SNR -30 SNR -40

Increasing levels of noise 
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1.4 Contributions of the thesis 

In this thesis, we have contributed to PD research by: 

1) Creating two sets of novel features for processing the signal in the Time domain. 

2) Applying Regularization techniques for classifying the different PD types. To the 

best of our knowledge, no one has applied Regularization techniques for 

diagnosing PD types before. 

3) Using a novel form of pessimistic testing for measuring classification accuracy. 

1.5 Thesis Overview 

This chapter provided an overview of the research and presented the research 

problem and objectives. In Chapter 2, a background to the main concepts used in this 

research are introduced, followed by a review of the related work in PD classification. In 

Chapter 3, we describe the methodology that is followed in the research. Chapter 4 will 

give a detailed description of the experimental setup, datasets and the results that were 

achieved. We finally conclude with Chapter 5 that will provide a summary of our research 

and the future work that will be followed to construct a complete PD monitoring system. 
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Chapter 2 

2. Background and Related Work 

In this chapter, we will review some of the previous work on detecting PD along 

with some background information on the concepts that are related to this thesis.  

2.1 Background 

In this section, we will review some of the main concepts related to electrical 

signals and the machine learning approaches that are required for better understanding.  

2.1.1 Background on Electrical Signals 

Some of the main concepts related to electrical signals like the domains for signal 

processing, signal de-noising and phase-resolved analysis will be reviewed in this section. 

A signal is a function that carries information by mapping to a domain, often time or space 

into a range such as air pressure, light intensity, etc. [11].  

Each sinusoidal signal can vary with time over 3 parameters, namely: 

2. Frequency: Measure of how many times the sinusoidal wave completes a full 

cycle, where one full cycle is 360 degrees of phase. 

3. Amplitude: Measure of the intensity of the wave. 

4. Phase: Measure of the relative displacement between or among waves having the 

same frequency. 
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Figure 2: Sinusoidal wave that completes a cycle in 0.2 s 

 

Figure 2 depicts a sinusoidal wave that completes a full cycle in 0.2 seconds, (i.e.) 

a frequency of 5 for every second. 

2.1.1.1 Signal Domains 

The PD signal can be processed in two different domains for analysing PD, where each 

domain has its own set of features:  a) Time domain b) Frequency domain 

c) Time-Frequency domain. . 

a) Time Domain 

The signal in the time domain displays the displacement over a period of time, e.g., 

stock market values. It is plotted with time in the X-axis and the amplitude of the signal in 

the Y-axis. Figure 3 shows the plot of the signal in the time domain. 

The signal in the time domain is generally not regarded as suitable for detecting PD 

types, as it is suitable for recognising only certain types of PD and is highly sensitive to 

noise. These disadvantages lead to the transition to the frequency domain to process the 

data which is better suited for detecting PD type and location [14]. 
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Figure 3: PD signal in the time domain 

 

b) Frequency Domain 

While the signal in the time-domain shows how the amplitude of the signal changes 

over time, the frequency-domain shows how the signal's energy is distributed over a range 

of frequencies. In other words, it measures how many times the signal cycle is repeated 

over a certain period of time. It is plotted by the range of frequencies over which the signal 

exists in the X-axis and the magnitude of the signal in the Y- axis. This representation of 

the frequency domain is commonly called the frequency spectrum [15].  

Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT) can be applied on 

the signal in the time domain to convert into a signal in the frequency domain. Processing 

the signal in this domain is one of the most popular approaches for PD detection 

[8][16][17][21], in which each sample in the frequency spectra can be considered as a 

feature. The frequency domain is less susceptible to noise when compared with the time 

domain [22]. 



  
   

10 
 

 

Figure 4: PD signal in the frequency domain 

 

c)  Time-Frequency domain 

The signal in the wavelet domain combines the information from the time and 

frequency domains. Discrete Wavelet Transform (DWT) or Continuous Wavelet 

Transform (CWT) converts the signal into a Wavelet “by decomposing the time-series 

signal into a series of coefficients, where each series of coefficients represents a particular 

division in the time-frequency plane” [27]. The DWT of a signal can be computed by 

passing it through a list of filters. The signal is decomposed simultaneously with low-pass 

and high-pass filters. The low-pass filter produces the details coefficients and the high-pass 

filter produces the approximate coefficients as output [58]. 

𝑦𝑙𝑜𝑤[𝑛] =  ∑ 𝑥 [𝑘] 𝑔[2𝑛 − 𝑘]∞
𝑘=−∞    (2.1)  

  𝑦ℎ𝑖𝑔ℎ[𝑛] =  ∑ 𝑥 [𝑘] ℎ[2𝑛 − 𝑘]∞
𝑘=−∞    (2.2)  

The output of both filters are subsampled by two (i.e.) length of the signal is halved. 

These outputs are further processed by passing it again through the high and low pass filters 

for n levels [28].  
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Figure 5: Decomposition of a signal through 3 levels using DWT [23] 

 
 

2.1.1.2 PD Signal De-noising 

De-noising the signal is one of the necessary steps for extracting the PD pulse as 

the PD pulses are very weak and the environment from where they are captured are 

generally noisy as well [26]. The de-noising of the signal can be done by decomposing the 

signal into a wavelet. This is done by choosing a level N and then computing wavelet 

decomposition coefficients of the signal for levels 1 to N [58]. This step is followed by 

selecting threshold detail coefficient for de-noising the signal. Finally, the de-noised time 

domain signal can be reconstructed from the wavelet by applying the Inverse Discrete 

Wavelet Transform (IDWT) [28]. 
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Figure 6: De-noising the PD signal using wavelet analysis 

 

2.1.1.3 Phase Resolved Analysis 

From PD measurement, some basic parameters like the individual PD magnitude 

(apparent change q) and their corresponding phase of occurrence (φ) with respect to the 

AC cycle can be calculated. Using these basic parameters, integrated parameters like peak 

discharge magnitude (qm), average discharge magnitude (qa), discharge current (i) and 

discharge rate (n) i.e. number of PD pulses per second can be calculated [25][61]. From 

these parameters, we can calculate the variation of any of these integrated parameters with 

respect to the phase φ. The four commonly used univariate distributions that are calculated 

for each phase window are Error! Reference source not found.[24]: 

1. (n - φ): total number of PD pulses detected vs. φ. 

2. (qa - φ): average discharge magnitude vs. phase position φ. 

3. (qm - φ): peak discharge magnitude vs. φ. 

4. (i - φ): average discharge current vs. φ. 
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Figure 7: Phase resolved distribution in positive and negative half cycles [25] 

 

2.1.2 Background on PD detection and classification 

In this section, main concepts related to PD detection are presented. This includes 

background on the data acquisition methods, feature engineering processes and the 

different classification models. 

2.1.2.1 Data Acquisition 

Modern PD detection methods can be broadly classified into the following categories 

of their data acquisition methods [12]:  

i. Analysis of Chemical Compounds:  This method works by detecting the chemical 

compounds that are produced as a result of PD activity The two main methods that 

are based on this principle are [29]: 

a) High Performance Liquid Chromatography (HPLC): It identifies the 

products that are released due to the insulation breakdown of the 

transformer wall. These by-products are primarily glucose and degraded 
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forms of glucose. This test is performed by evaluating the oil samples at an 

offsite lab. 

b) Dissolved Gas Analysis (DGA): This method measures the gas levels that 

are produced due to the breakdown of oil in oil-filled transformers. The gas 

levels vary due to equipment ageing and the component in which the PD 

occurs and is measured by taking oil samples from the transformer tanks 

[18]. 

ii. Optical Occurrence: It works by detecting light that is emitted as a result of PD 

activity. The optical signals are influenced by various factors like insulation 

material, temperature, intensity and pressure. These signals are measured using 

optical sensors [29]. 

iii. Acoustic Emission (AE): This is an online method for PD detection that picks up 

mechanical vibrations during PD activity, using devices like piezoelectric 

transducers, fibre optic sensors etc. It is extremely effective for identifying the 

location of the PD source due its immunity against electromagnetic noise [30]. 

iv. Ultra-High Frequency Method: This is also an online method for PD detection 

and uses high frequency sensors that can cover a wide range of frequency spectrum 

and can be divided into 2 types based on the frequency ranges that they cover; 

a) Very High Frequency (VHF) (3MHz – 300 MHz)  b) Ultra High Frequency 

(UHF) (300 MHz – 3 GHz) [30]. 

v. Electrical Methods: It is mainly used for PD detection in cables and primarily uses 

inductive and capacitive sensors for capturing the PD signals. They are grouped 

into 2 categories, namely [29]: 
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1. Direct Probing: Capacitive couplers are connected to the phase terminals 

of the transformers for measuring the PD activity. 

2. Radio Frequency (RF) Emission Testing: Antennas that are connected in 

the area of the transformers measure the PD activity. 

Both the methods use a time domain recording device like a data storage 

oscilloscope to record the PD activity which is then detected using digital 

processing methods. 

2.1.2.2 Feature Engineering 

Feature Engineering is the process of extracting features using the domain 

knowledge of the data and then applying feature selection methods to reduce the 

dimensionality of the features. This section covers the main concepts related to Feature 

Extraction and Selection. 

2.1.2.2.1 Feature Extraction 

Feature Extraction is the process of extracting information from the raw data that 

is most suitable for applying a classification model. This section reviews some of the 

popular feature extraction methods. The type of features that are extracted differ with 

respect to the domain in which the signal is processed.  

A survey of PD detection methods identified Pulse Characteristic and Signal Processing 

Tools as the most popular method for feature extraction in the time domain [11]. 

a) Pulse Sequence Analysis  

Pulse Sequence Analysis (PSA) parameters which are captured from the time-series signal 

using Pulse Characteristic Tools are used as the features. These features work on the 

principle that the discharges that occur during PD, occur in a sequence, which are different 



  
   

16 
 

for each PD type. The two main parameters of PSA are dU (change in applied voltage 

between consecutive discharges) and dT (time difference between consecutive discharges) 

[31].  

 

 

Figure 8: Corona discharge with primary pulse and decaying pulse 

 

b) Pulse Shape Analysis  

The shape of the pulse can provide additional information about the type of the PD to 

be detected, when compared with Pulse Sequence Analysis. In the latter method, the actual 

shape of the pulse is not considered, which is actually a good feature for defining the 

characteristic of the pulse [59]. Some of the features that describe the pulse shape are [13]: 

i. Amplitude: The average amplitude of the signal. 

ii. Rise Time: The mean rise time of the pulse. 

iii. Fall Time: The mean fall time of the pulse. 

iv. Pulse Width: The width of the pulse, which is calculated at 50% of the pulse 

amplitude. 
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Figure 9: Pulse Shape Analysis parameters; tr-Rise time, td-Decay/Fall time, tw-Pulse 

Width [62] 

 

c) Statistical Features 

Statistical features can be extracted from the signal, irrespective of the domain. Some 

of the statistical features that can be extracted are [13]:  

a) Mean µ: It is the estimate of the central value under the distribution clusters. 

b) Variance σ2: Standard Deviation σ is the estimate of the width of the distribution 

around its mean value. Variance is calculated as the square of Standard Deviation. 

c) Skewness Sk: Measure of the degree of asymmetry of the distribution around the 

mean value 

d) Kurtosis Ku: Measure of the degree of flatness of a distribution relative to the 

normal distribution. 

Average (mean) value: 𝜇 =  
∑ 𝑥𝑖 𝑓(𝑥𝑖)𝑁

𝐼=1

∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

 
(2.3)  
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Variance: 𝜎2 =  
∑ (𝑥𝑖− 𝜇)2 𝑓(𝑥𝑖

𝑁
𝑖=1 )

∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

 
(2.4)  

Skewness: Sk = 

∑ (𝑥𝑖− 𝜇)3 𝑓(𝑥𝑖
𝑁
𝑖=1 )

𝜎3 ∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

 
(2.5)  

Kurtosis: Ku = 

∑ (𝑥𝑖− 𝜇)4 𝑓(𝑥𝑖
𝑁
𝑖=1 )

𝜎4 ∑ 𝑓(𝑥𝑖)𝑁
𝑖=1

 – 3.0 
(2.6)  

 

2.1.2.2.2 Feature Selection 

Feature Selection is used for selecting a subset of the features that are best for the 

classification model. Principal Component Analysis (PCA) is the most commonly used 

method for feature selection in PD detection 

a) Principal Component Analysis (PCA) 

PCA is a “multivariate technique that analyses datasets in which observations are 

described by several inter-correlated quantitative dependent variables” [10]. PCA extracts 

the ‘principal components’ or the important information from the data. This is done by 

reducing the dimensionality while maintaining the maximum possible variation in the set. 

This is achieved by transforming the data into a lower dimensional space in the direction 

of maximum variance. It is calculated by eigenvalue decomposition of a data covariance 

matrix [8]. 
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Figure 10: Transforming the data to a lower dimensional space to identify patterns using 

PCA. 

 

2.1.3 Classification Model 

This is the last step in data mining, where the types of PD are classified. In this section 

we will review three of the commonly used classifiers for PD detection. 

a) Support Vector Machine (SVM)  

SVM is the most commonly used classifier for PD detection. It works by trying to 

construct the best hyperplane between the samples of two classes [60]. It was essentially 

constructed for binary classification. However, it works for multi-class data as well by 

reducing it into a set of binary classification problems [17].  

 

 

Figure 11: SVM Example [17] 
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b) K – Nearest Neighbour (KNN)  

KNN is better suited for real world applications where the data is not linearly separable. 

It works by calculating the distance between each sample in the test data that is to be 

classified, and the training data that has already been classified. The class of the data to be 

classified is predicted by taking the majority of the class of the ‘K’ nearest neighbours. 

Some of the distance calculating measures are Euclidean, Manhattan, Hamming, City 

Block, Cosine and Distance Correlation [8][57]. 

 

 

Figure 12: In 1NN, the green circle will be classified as B. 

Source: http://www.fsanchezcv.com/  

 

c) Self-Organising Map (SOM)  

SOM is an unsupervised neural network in which the data in a multidimensional space 

is mapped onto a 2D space, while preserving the original order of the inputs. It also forms 

clusters of similar data together. Therefore, it can be said that SOM reduces dimensions 

and groups similar items together.  

http://www.fsanchezcv.com/
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Each node in the network is made up of a weight vector whose dimension is the same 

as that of the input vector. The input data is classified by calculating the distance between 

the vector of the input data and the weight vector of each node in the network [34].  

 

Figure 13: SOM - Mapping multidimensional data into 2D data [35] 

 

2.2 Related Work 

In this section, we will review some of the work that has been done in PD classification. 

The papers that have been reviewed are categorised based on their:  

1. Data Acquisition System 

2. Feature Engineering  

3. Feature Classification 
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2.2.1 Data Acquisition  

Data acquisition systems for PDs can be broadly categorised into: 1) Optical 

Methods 2) Chemical Methods 3) Electrical Methods 4) Acoustic Methods 5) Ultra High 

Frequency (UHF) Methods. 

Optical sensors can detect PD by measuring the optical emissions from PD. This 

method enjoys immunity from electromagnetic interference and high sensitivity when 

compared with other conventional methods [30]. However, this method is not highly used 

as it is difficult to implement it in HV transformers due to the opaque nature of oil. 

PDs can be detected using chemical analysis by breaking down the materials 

surrounding the PD activity into different chemical compounds. Chemical testing has two 

well-known tests, namely, 1) Dissolved Gas Analysis (DGA) 2) High Performance 

Chromatography Analysis (HPLC). 

DGA is a widely used method for detecting PD activity by correlating different 

levels of released gases to a specific type of fault in the HV transformer. However, there 

are several debates as to whether the levels of dissolved gases really correlate to a specific 

type of fault. HPLC the other well-known test for chemical analysis measures the levels of 

glucose and degraded forms of glucose. However, HPLC and DGA suffer from the problem 

of not having standard values for mapping glucose concentration and their correlation to 

HV transformer fault [20]. 

Overall, chemical testing suffers from two main disadvantages. This form of testing 

does not provide any details regarding the location of the PD activity. Mostly, the 

transformers should be disconnected from the network to collect oil samples on which the 
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testing can be done. In the case of HPLC, the oil sample has to be sent out of the HV 

transformer site for analysis and can take a long time to obtain the results. These limitations 

lead us to search for a better PD detection method [17]. 

On the other hand, electrical detection records the electrical pulse that is contrived 

during any PD activity. The electrical detection method can be carried out both online and 

offline and is better than the chemical method in this aspect. However, this method is highly 

susceptible to noise. Using this method, it is difficult to distinguish noise from a PD signal, 

because the width of the PD pulse is short which is similar to the characteristics of ‘noise’. 

This leads to false detection in online PD detection. This can be overcome by disconnecting 

the transformer from the network and connecting to an external power source to reduce the 

noise levels. However, this can result in a loss for the company [30]. In spite of this 

disadvantage, this form of detection is widely used in many power plants across the world. 

Acoustic detection is similar to electrical discharge in the sense that it captures the 

signal related to the PD activity. The electrical method records the electrical signal of the 

PD, whereas, the acoustic method records the acoustic signal [37]. The acoustic signal is 

better than the chemical and electrical methods as it can identify the type of the PD in 

addition to the source of the PD activity, by attaching multiple sensors to different parts of 

the transformer. Knowing the location of the PD can help the plant technicians for repairing 

the transformers quickly. However, this method suffers from sensitivity as the acoustic 

signals are very weak. Hence, the sensors must be highly responsive to  detect even minor 

changes to the amplitude of the signal identify a PD activity [30]. 

UHF detection method is another online PD detection method in transformer. It 

uses UHF sensors, RF sensors or antennas to measure the PD activity. This method enjoys 
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immunity against electrical noise and can be used for detecting PD type and location. 

However, this method is costly and its design is complex in nature [37]. In this thesis, we 

use the UHF detection method as it overcomes the critical disadvantages like sensitivity 

and supports online detection of PD activity. 

2.2.2 Feature Engineering 

The features for PD detection system are often obtained by processing the signal in 

the 1) Time domain 2) Frequency Domain 3) Wavelet Domain. 

The pulse of a signal is defined as a “rapid change in the amplitude of a signal to a 

higher or lower value than the baseline value followed by a rapid return to the baseline 

value” [31]. The Pulse Sequence Analysis (PSA) and Pulse Shape Analysis methods can 

be used for extracting features from the signal in the time domain. 

In PSA, the space charges that are created after each pulse in the PD source location 

modify the electric field, which affects the delay time between consecutive pulses. This 

method works on the principle that PD data is obtained as phase-resolved plots, where 

phase-resolved means that the PD pulses are time domain signals that are superimposed 

over the applied sinusoidal voltage. The PSA correlates signal from one source only, so 

this method will fail if the pulse is superimposed from multiple sources. In addition, these 

type of features are highly sensitive to noise [32].  

On the other hand, Pulse Shape Analysis can be applied for the signal in the time 

and frequency domain [32]. However, this method requires advanced analysis systems for 

classification in real time. 
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The signal time domain is highly susceptible to noise and these features usually 

suffer when the signal is subjected to highly noisy conditions. In this case, features can be 

extracted from the signal in the frequency domain which is less susceptible to noise. 

The signal in the time domain is converted to the frequency domain by applying 

DFT or FFT. Each sample in the frequency spectra are then used as a feature. The features 

can be normalized to reduce the influence of the electric field stress on the signal. As 

opposed to the approaches where the raw signal in the frequency domain is processed as 

is, some statistical parameters can be extracted as features [56][57]. These features are 

described in the Section 2.1.2.2.1.  

If the entire feature spectra is used as the feature vector, it leads to complex analysis 

which is not good for classification of PD type in real time. To overcome this, PCA which 

is a feature selection method can be applied to the signal in the time and frequency domain. 

It was applied to the features derived from the frequency spectra by Pattanadech et.al [56]. 

On the other hand, Firuzi et. al applied it to the raw signal in the frequency domain, but 

used it as a feature extracting method [16]. 

Some papers process the signal in the wavelet domain, as this domain contains the 

information about the time and frequency components in the signal simultaneously. This 

method is good for signals with irregular and transition features which is similar to the 

characteristics of the PD signals. However, selecting a mother wavelet and number of 

levels for decomposition are quite difficult to choose. It is also computationally intensive 

which is not good for PD detection system that have to possess low processing time [38]. 
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In this thesis, we use the frequency domain to process the signals as it offers a 

balance between processing the signal in the time and wavelet domain. It is not as sensitive 

as the time domain and doesn’t require complex processing which the wavelet domain 

demands. 

2.2.3 Feature Classification 

Various classification models have been used for classifying the features that are 

extracted from the signal in the time or frequency domain. The classification models that 

usually did well are, SVM, KNN and SOM. These classifiers were introduced in the last 

section. PCA has often been used in conjunction with other classifiers and has usually 

provided good results. This ascertains that PCA produces separable representation that is 

suitable for classification. 

The performance of a classifier depends on the data and there are no rules to map 

the best classifiers for a given dataset. Multiple classifiers are usually run on the data to 

identify the classifier that best suits our data. 
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Chapter 3 

3. Methodology 

This chapter will describe the methodology that has been followed to predict the type of 

the PD activity. The signal has been processed in the time and frequency domains using 

different features, classification models and validation methods.  

3.1 Data Processing 

The raw PD signal that was generated in the lab is a time-series signal. For processing 

the signal in the frequency domain, this time domain signal is converted into the frequency 

domain by applying Fast Fourier transform (FFT).  

3.1.1 Fast Fourier Transform  

The FFT decomposes an N sample time domain signal into N time domain signals, 

each of which is made up of a single sample. The frequency spectra corresponding to each 

of these N time domain signals is then computed. Finally, the N spectra are fused to form 

one frequency spectrum. The FFT is calculated exactly the same as DFT but is much faster 

than the latter. Let x0, x1…..XN-1 be complex numbers. The DFT can be computed as: 

𝑋𝑘 =  ∑ 𝑥𝑛

𝑁−1

𝑛=0

𝑒
𝑖2𝜏𝑘𝑛

𝑁⁄   ,   𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1 … . 𝑁 − 1 

(3.1)  

 𝑒−2𝜋𝑖𝑘/𝑁 is known as the twiddle factor. It is a "rotating vector", which rotates in 

increments according to the number of samples, N. 

The FFT algorithm can be represented by a Butterfly Diagram. The simplest 

butterfly, which is made up of two inputs A= X0 and B= X1 and 2 is depicted in Figure 14. 
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Figure 14: Simple FFT butterfly 

 

The number of stages required for computing an N-point FFT is log2N. This is the 

reason why FFT sizes are usually in powers of two, and is also known as the “Radix 2 

FFT”. For an 8-point signal, we require log28 stages (i.e.) 3 stages to compute the FFT . 

The overview of these stages is depicted in Error! Reference source not found.. 

 

 

 

 

 

 

The function fft() in R and Matlab can compute the value of Xk for each sample in 

the signal, by providing the entire signal as a vector of values. The fft() function returns the 

signal in the frequency domain which is a vector made up of complex numbers. This 

Figure 15: 3 stages of FFT of an 8-point signal 
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complex vector is converted into a vector of real numbers by applying the abs() function 

which calculates the absolute value of the complex number. 

3.2  Feature Engineering 

We know that a feature is a piece of information that is potentially used for prediction 

and that feature engineering is the process of designing features, which are fed as inputs to 

machine learning algorithms. In this section, we will explain the feature engineering 

methods that were followed for the PD signal in the time and frequency domains. 

3.2.1 Feature Extraction 

Feature Extraction is the process of creating a subset of new features by 

combinations of the existing features (i.e.) we build a new set of features from the original 

feature set. It involves a transformation of the features, which is often not reversible 

because some information is lost during the transformation.  

 

Figure 16: Feature Extraction process 

 

Feature Extraction in this thesis is done on the signal in the time domain. We extract 

features, which provide information regarding the peaks in the dataset. Some of the features 
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that we have extracted from the signal in the time domain are loosely based on the Pulse 

Shape Features that were described in Section 2.1.2.2.1. 

3.3 Build Classification Models 

Once we have defined our problem and prepared the data for processing, we need to 

apply machine-learning algorithms to the data in order to solve our problem.  

3.3.1 Naïve Bayes Classifier 

It is a probability-based classifier that applies Bayes’ theory by assuming that there 

is independence between the features. In other words, the effect of a feature on a given 

class is considered to be free from the influence of other features. It uses the 

maximum-likelihood estimation to approximate the feature learning process in the training 

stage. After this, it computes the posterior probability of each sample and assigns the 

sample to the class with the highest posterior probability [39][44]. 

Given a sample x, the classifier will predict that x belongs to the class with the highest 

posteriori probability [36] (i.e.) x is predicted to belong to class Ci if and only if,  

) for 1 ≤ j ≤ m, j ≠ i. x| j C) > P (  x| i CP (  (3.2)         

3.3.2 J48 

It is a tree-based model, which is one of the most simple classification models. In 

this classifier, the rules are optimally inferred from decision trees. The decision tree model 

can be constructed without complicated computations and this makes them 

computationally efficient. However, the tree model sometimes declines to include all 

discriminant features, which in turn affects the detection accuracy. This classifier is 
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appropriate for the applications of PD detection where quick diagnosis and detection is 

needed [40]. 

3.3.3 Bagging  

Bagging is a “bootstrap” ensemble method that learns many classification models, 

each with only a part of the data. The bootstrap sample is obtained by creating random 

subsets of the data by sampling. For training a dataset D of size n, bagging generates m new 

training sets, each of size n′, by sampling  D uniformly (with replacement).  Bagging then 

creates k bootstrap samples and trains k classifiers on each bootstrap sample. To test the 

model, each classifier votes on every instance the test set. The majority of the votes decide 

the class of the instance [41].  

 

 

Figure 17: Overview of the Bagging Algorithm 

Source: http://cse-wiki.unl.edu/wiki/index.php/Bagging_and_Boosting  

http://cse-wiki.unl.edu/wiki/index.php/Bagging_and_Boosting
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3.3.4 Multilayer Perceptron (MLP) 

An MLP is a “network of simple neurons called perceptrons. The MLP accepts 

multiple values as inputs by forming a linear combination of its input weights” [33]. It then 

computes as output, the class of the instance using a non-linear activation function. 

Mathematically this can be written as : 

𝑦 =  𝜑 ( ∑ 𝑤𝑖 𝑥𝑖 + 𝑏) =  𝜑 (𝑤𝑇 𝑥 + 𝑏)

𝑛

𝑖=1

 

(3.3)  

Where,  

 w is the vector of weights, 

 x is the vector of inputs, 

 b is the bias, 

 𝜑 is the activation function. 
 

A typical MLP network contains “an input layer made up of source nodes, one or more 

hidden layers of computation nodes and an output layer of nodes” [42]. Figure 18 shows 

the flow graph of the perceptron. 

 

Figure 18: Flow graph of the perceptron 

Source: http://users.ics.aalto.fi/ahonkela/dippa/node41.html 

http://users.ics.aalto.fi/ahonkela/dippa/node41.html
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3.3.5 Sequential Mining Optimization (SMO) 

The SMO is an algorithm that solves the Quadratic Programming (QP) problem 

which is faced during training of the SVM classifier. The SVM classifier is described in 

Section  2.1.3.  

Training the SVM requires large matrix operations that are time-consuming and very 

slow. SMO is a simple iterative algorithm that can solve these problem without any extra 

storage or optimization steps [41] [43]. SMO does this by breaking the problem into a series 

of smaller problems which are then solved analytically [44]. 

3.3.6 Random Forest (RF) 

RF is a popular and efficient algorithm that is based on the principle of model 

aggregation. It fits many classification trees to a dataset and then combines predictions 

from all the trees. Each tree is considered to be an individual classifier and has its own 

weight. At each node in the tree, a subset of features are chosen randomly and the best split 

for the tree is calculated from this subset [45]. The final classification of a sample is decided 

based on the majority of the classification output of all the trees [39]. 

3.3.7 JRip and OneR 

It is an inference and rule-based learning method that tries to come up with 

propositional rules which can be used to classify elements [46]. It has a lower 

computational cost than other rule learning methods. OneR is another simple classification 

method that uses a single feature to classify the elements. In other words it uses only one-

rule (OneR) to classify the elements.  
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Both JRip and OneR are computationally efficient. However, like the J48 method, 

they may not use all of the discriminant features which negatively impacts their 

classification accuracy [39]. 

3.3.8 Logistic Regression 

It is a method for fitting a regression curve y = f(x) where x is a set of features and y is 

the predictor variable. The logistic function, also called the sigmoid function is an ‘S’ 

shaped curve, that predicts the probability (value between 0 and 1) of an observation  

belonging to a given class. [47].  

σ (z) = 1 (1 +  𝑒−𝑧⁄  ) (3.4)  

The logistic model consists of a vector β in a N-dimensional feature space. A point x 

in the feature space is projected onto this vector to convert it into a real number z in the 

range -∞ to +∞ [48].  

𝑧 =  𝛼 + 𝑥1𝛽1+ . . . + 𝑥𝑁𝛽𝑁 (3.5)  

This value of z is then mapped onto the range of 0 to 1 using the sigmoid function, 

which is measure of the probability of class membership. 

3.4  Regularization 

In Machine Learning and Statistics, a common task is to create a model to fit a set of 

training data. This model is then used for making predictions to classify new data. 

However, the model that is created maybe too specific (overfit) or too general (underfit) 

for the dataset. The degree of fit for any model is measured using the loss function. The 

loss function can be generally defined as L(actual value, predicted value) that is applied 
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during the learning process to learn from mistakes that are done during predictions [52]. 

Consider a dataset D = { x1, x2 … xn }  where each xi represents an attribute of the dataset. 

Let us consider that the complexity of the model can be controlled by a complexity index 

k, 1 ≤ k ≤ kmax. Consider a modelling task to fit a conditional regression model,  

y=g(zk)+e (3.6)  

Where y is the class variable and z is a subset of size k of the remaining variables in 

the vector. Equation 3.6 shows that the class variable y can be predicted using a model and 

a loss function. 

Hence, the ideal model can be defined as the model that minimizes the loss function. 

This ideal model can be expressed generally as Model = argmin ∑ L(actual, 

predicted(Model)) [50].  

Regularization is a technique that will avoid the problem of overfitting by making the 

model more general. The principal idea behind regularization is that, models that overfit 

the data are complex by probably being built using too many attributes. In order to 

overcome this, a regularization term is introduced to avoid overfitting [52]. This can be 

expressed mathematically as [50] 

Model = argmin ∑ L(actual, predicted(Model)) + λ R(Model) 

Regularization creates a more general model by minimizing the Residual Sum of 

Squares (RSS) (loss function) that is added to the L1 or L2 norm function. The L1-norm 

works by minimizing the sum of the absolute differences (S) between the target value (Yi) 

and the estimated values (f(xi)) of the coefficients or attributes in the dataset [53]. 
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S= ∑ |𝑦𝑖 − 𝑓(𝑥𝑖)|𝑛
𝑖=1  (3.7)  

On the other hand, the L2-norm is also known as Least Squares. It works by 

minimizing the sum of the differences (S) between the target value (Yi) and the estimated 

values (f(xi)) of the coefficients of the attributes [52]. 

S= ∑  (𝑦𝑖 − 𝑓(𝑥𝑖))𝑛
𝑖=1

2
 (3.8)  

In the usual linear regression model, given N predictors x1…..xN, the response y is 

predicted by,  

𝑦 =  𝛽0 + 𝑥1𝛽1+ . . . + 𝑥𝑁𝛽𝑁 (3.9)  

Where the model fitting procedure produces the vector of coefficients 𝛽 = (𝛽1 +

 𝛽2 + ⋯ +  𝛽𝑁)  The regularization thus tries to solve the following equation [50]: 

𝑚𝑖𝑛
𝛽0, 𝛽

 
1

𝑁
 ∑  𝑤𝑖 𝑙(𝑦𝑖, 𝛽0 +  𝛽𝑇 𝑥𝑖 ) +  𝜆 [ (1 − 𝛼) /2 ‖𝛽‖2 

2 + 𝛼 ‖𝛽‖1  ]

𝑁

𝑖=1

 

(3.10)  

Where, l(y, η) is the negative log-likelihood, β0 is the intercept, yi is the response 

variable, xi is the ith predictor variable and α is the mixing parameter 0 ≤ α ≤ 1 [51]. 

Regularization techniques can be of three types, namely: 

1. Ridge: It performs shrinkage of the coefficients and avoids overfitting by 

penalizing large coefficients using the L2-Norm. This method seeks to minimize   

𝑅𝑆𝑆(𝛽) + λ ∑ 𝛽𝑗
2𝑝

𝑗=1  where λ is the regularization parameter, β is the estimated 

coefficients and p is the number of coefficients. This method solves Equation 3.10 

by setting α=0 which is the ridge penalty. 
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2. Lasso: It performs selection and shrinkage of the coefficients and avoids overfitting 

by penalizing large coefficients using the L1-Norm. This method seeks to 

minimize: 𝑅𝑆𝑆(𝛽) + λ ∑ |𝛽𝑗|𝑝
𝑗=1 , where λ is the tuning parameter, β is the estimated 

coefficients and p is the number of coefficients. This method solves Equation 3.10 

by setting α=1 which is the lasso penalty. 

3. Elastic Net: It is similar to the lasso technique and performs selection and shrinkage 

of the coefficients and tries to “retain the big fish” or the most important attributes. 

It mixes the penalties of Lasso and Ridge and sets 0 ≤ α ≤ 1 which is the elastic net 

mixing parameter in Equation 3.10 [54]. 

 

3.5  Classification Model Testing 

Once the classification models have been created, we have to test the model to check 

if it is a reasonable representation of the system. For checking the accuracy of a model, the 

dataset is divided into the train and test sets, where the train set is used for building the 

model and the test set is used to examine “how well the model has been trained”. The model 

testing methods that we have used in this thesis are:  

1) Percentage Split: The dataset is split N% into train and (100-N)% test sets. This 

method is also called hold-out.  

2) Cross-Validation: This method involves splitting of the dataset into a number of 

equally sized groups of observations (folds). The model is then trained on all the folds 

except one. This one left-out fold is used for testing the model. This process is repeated 

until all the folds have acted as the test set. The performance measures are averaged 

across all folds to finally evaluate the model. 



  
   

38 
 

3) Custom testing: In this form of testing, the training set is made up of the clean dataset 

and the test set is made up of the noisy dataset, which is obtained by adding noise of 

various Signal to Noise Ratios (SNR) to the clean dataset. The train and test datasets 

are divided into folds. For example, if the train and test datasets are made up of 10 folds 

each, then 10 files are created. Each of these files are created by taking 9 folds of the 

train set and the 1 left out test set is obtained from the test set. This is repeated until all 

of the folds in the test set have been added at least once to any of the 10 files. Once the 

10 files are obtained, the model is evaluated on each of these 10 files, by taking 90% 

as train data(clean dataset) and the remaining 10% as test data (noisy dataset). The final 

accuracy of the model is calculated by averaging the performance measures that are 

obtained by running the model on these files. 

 

Figure 19: Creation of the 10 files 

 

This type of pessimistic testing that we have used not only validates the accuracy of the 

system when posed with different levels of noise but also validates the accuracy when 

tested with new samples that haven’t been encountered in the training set. 
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Chapter 4 

4. Experimental Evaluation 

4.1 IEC 61850 Merging Unit 

The Merging Unit (MU) is the computing power of the grid system and is equipped 

with Digital Signal Processing (DSP) and communication capabilities for continuous 

monitoring of the power system. Smart Grid functions like self-healing and asset 

management require communication between the MU and the transformers. The MU 

communicates using the IEC 61850 protocol, which allows high-speed Ethernet 

communication between the various system devices and provides a standardized 

configuration language and data model [49].  

This MU is powerful and can monitor and detect impending faults like PDs. Once PDs 

are detected, the MU can classify the type of PD and can communicate this information 

to the Supervisory Control And Data Acquisition (SCADA) system. This makes the MU 

perfect for anticipating PDs and reporting these impending faults to the operator at the 

SCADA system, so that remedial action can be taken. 

Power system equipment like transformers and circuit breakers are also known as 

Intelligent Electronic Devices (IEDs) as they are microprocessor-based controllers. The 

communication between the IEDs and MUs are via Generic Object Oriented Substation 

Events (GOOSE) messages, as they provide a fast and reliable mechanism by multicasting 

or broadcasting event data to system devices in a network [49][55]. 
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4.2 Experimental Setup 

The data for our experiments has been generated from our laboratory setup in UAE. 

Figure 20 shows the experimental setup. The smart MU was implemented using Robin 

Z530, which is a single board computer with a COM Express carrier board and a data 

acquisition system.  

 

Figure 20: Experimental Setup [49] 
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The main components of the setup are [48]: 

1) HV Test Equipment: Used for generating controllable PDs during insulation 

breakdown. 

2) Picoscope: It is a data acquisition system with a bandwidth of 60Mhz and sampling 

rate of 500 MS/s. 

3) Real-Time Automation Controller (RTAC): It can convert data between multiple 

protocols. It also manages and communicates with the IEDs. 

4) IEDs: The MU is integrated with IEDs to emulate a primary substation that can control, 

protect and communicate with a power system. 

5) Ethernet Switch: All the IEDs are connected using a 24-Port Ethernet switch. 

6) Satellite Synchronized Clock: The IEDs are synchronized using this clock. 

7) SCADA-HMI System: The MU reports PD activities directly to the SCADA system. 

 

 

Figure 21: Simplified Block Diagram Showing the Major Components of the Setup 
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Two wide-bandwidth Current Transformers (CTs), CT-A (200 Hz – 500 MHz) and 

CT-B (1.0 Hz – 20MHz) and are used for capturing current signals over a wide frequency 

range (1.0 Hz – 500 MHz). 

4.3 Overview of our PD monitoring system 

The overview of a general PD monitoring system is depicted in Error! Reference source 

not found.. The PD system is made up of the following main components: 

1. Transformer 

2. CT sensors 

3. MU 

4. SCADA system 

The PD system uses CT sensors to record the signals from transformers. These raw signals 

are sent to the computing power of the system, that is the IEC-61850 MU. This MU is 

made up of:  

1. Computing unit – It is responsible for feature extraction and classification. It can 

predict the type and severity of the PD activity. 

2. Storage unit – It stores the raw signal and features for a period of time so that they can 

be accessed by a human operator for further details. 

3. Communication Interface – It acts as an interface between the MU and the SCADA 

system. 

The SCADA system displays the type of PD activity to a human operator at the SCADA 

who can request for more details like the signal and the features that determined the type 

of the PD for some period of time. 

In this thesis, we will focus on the computing unit of the MU that is responsible for  
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feature extraction and classification of the PD types. 

 
 

 
 
        
 
 
 
 
 
 
 
 
 

Figure 22: Overview of our PD monitoring system 
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4.4  Challenges in Monitoring Impending Faults 

The objective of the MU is to detect impending faults, as they could potentially 

lead to a flashover. However, this is quite a difficult task because of the following reasons: 

1) The low magnitude and intermittent nature of the PD activity makes it hard to be 

detected. In addition, the IEDs will not be able to detect these PD activities until the 

magnitude of the PDs reach full scale. 

2) The non-stationary features of the impending faults vary depending on the type of the 

insulation material and degradation level, sensor types and their locations.   

3) The bandwidth of the measuring instruments (CTs) should be compatible with the 

bandwidth of the MU. 

4.5  Description of the Dataset 

The data that we obtained from the laboratory is made up of 285 observations, which 

are equally distributed among three PD classes, namely, Porcelain, Cable and Corona. 

These three types correspond to the common PDs that can affect the transformer externally. 

Each PD class refers to a PD activity that may occur in the different parts of the transformer.  

1. Porcelain: This type of PD occurs due to damage to the porcelain bushing. 

2. Cable: It occurs due to faulty cables and cable accessories. 

3. Corona: This occurs due to transient gaseous ionization when the voltage stress 

exceeds a critical value.  

Each of these 285 observations is made up of 2016 samples, which shows the variation 

of the magnitude of the signal over time. For the purpose of this research, two CTs, CT-A 

and CT-B monitored the health of the transformer. The data that is received from CT-A 

(200 Hz-500 MHz) which is the higher frequency sensor, is referred to as Channel A 
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whereas the data from the lower frequency sensor CT-B (1.0 Hz – 20 MHz), is referred to 

as Channel B. The sampling rate is 500 Ms/s. 

 Figure 23 and Figure 24, shows the difference in the shape of the signal between the 

3 types of the PD classes from CT-A. 

 

 

Figure 23: PD activity measured by CT-A. Clockwise: a) Porcelain b) Cable 3) Corona  
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Figure 24: PD activity measured by CT-B. Clockwise: a) Porcelain b) Cable 3) Corona 

 

4.6  Feature Engineering 

We processed the signal in the time and frequency domains. We first started with 

working on the signal in the time domain. From the signal in the time domain, we extracted 

two types of novel features, namely: 

1) Simple Features: This type of features extracted information about the signal by 

measuring the  

 Average of the signal  

 Maximum magnitude (highest positive peak)  

 Minimum magnitude (lowest negative peak)  
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 Total number of positive peaks  

 Total number of negative peaks/valleys.  

The Simple features extracted these 5 features from the 2016 sampling points of 

each observation. 

2) Shape Features: On the other hand, unlike the simple features, the shape features 

were aimed at extracting information about the PD peak in the signal and not the 

signal itself. A feature vector containing details about the highest 10 positive peaks 

and lowest 10 negative peaks were extracted.  

 

 

Figure 25: Measurement of peak magnitude, prominence and width in Matlab 

Source: https://www.mathworks.com/help/signal/ref/findpeaks.html  

 

 

 

https://www.mathworks.com/help/signal/ref/findpeaks.html
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The details that were extracted about each peak are  

 Location 

 Magnitude 

 Prominence: This measures how much the peak stands out due to its height 

and its location relative to other peaks.  

 Width: Measure of the width of the peak at half the prominence. 

The shape features can be thought of as a variation of pulse shape features. Figure 

25 shows the measurement of the shape features in Matlab.  The Shape features extracted 

these 4 features from the 2016 sampling points of each observation. These 4 features were 

extracted for the 10 highest peaks (10 x 4) and 10 lowest valleys (10 x 4). Hence, a total of 

80 features were used to represent the 2016 sampling points. 

The simple combined with the shape features did very well in the absence of noise. 

Both sets of features gave us almost perfect results when a Cross-Validation of 10-folds 

was executed on the datasets from both CTs. Figure 26 and Figure 27 show the 

classification accuracies of clean PD signals using simple and shape features, respectively. 

Five different classification models including Naive Bayes, Bagging, J48, SMO and 

Multi-perceptron were used to examine the effectiveness of these features in the absence 

of noise.  
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Figure 26: Classification accuracy using simple features extracted from Clean Data 

 

 

 

Figure 27: Classification accuracies using shape features extracted from Clean Data 

 

However, when noise of SNR -10 was incorporated into the clean signal, the accuracy 

dropped drastically. Figure 29 and Figure 30 show the accuracy of the simple and shape 
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features when five classifiers are run on the noisy data. The raw (clean) data was used as 

the training set and the noisy data of SNR -10dB was used as the testing set. 

 

  

Figure 28: Left: Clean Signal.  Right: Noisy signal (in red)  acquired when SNR of -10dB 

is added to the clean signal (thin line in blue) 

 

 

 

Figure 29: Classification accuracies using simple features extracted from noisy data of 

SNR =-10dB 
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Table 1: Confusion matrix for Channel A using Simple Features (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 90 0 0 

Cable  18 72 0 

Corona 1 62 27 

 

 

Table 2: Confusion matrix for Channel B using Simple Features (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 90 0 0 

Cable  90 0 0 

Corona 64 0 26 

 

 

 

Figure 30: Classification accuracies using shape features extracted from noisy data of 

SNR= -10dB 
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Table 3: Confusion matrix for Channel A using Shape Features (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 51 0 39 

Cable  0 90 0 

Corona 0 63 27 

 

 

Table 4: Confusion matrix for Channel B using Shape Features (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 72 0 18 

Cable  72 0 18 

Corona 16 0 74 

 

 

In the simple features, the ‘average of the signal’ feature was greatly disturbed due 

to the addition of noise. This was because of the introduction of various peaks to the signal, 

which affected the magnitude and the number of peaks and valleys in the signal.   

On the other hand, the shape features also suffered as the feature vector is 

completely made up of peak-related features. From Figure 28 we can see that the average 

of the noisy signal is vastly different from the clean signal. We can also see that several 

peaks have been introduced in the noisy signal. This affected all the peak-related features 

in both Simple and Shape features. As the classification accuracy deteriorated in the case 

of both types of features, it is confirmed that the signal in the time domain is highly 

susceptible to noise. As the time domain was not robust enough to withstand noise, we 

moved to processing the signal in the frequency domain. 
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The signal in the time domain was converted into the frequency domain by applying 

FFT. Four statistical parameters: Mean, Variance, Skewness and Kurtosis were extracted 

from the signal. This method gave better results than when the signal (corrupted with noise) 

was processed in the time domain. 

Table 5 and Table 7 depict the results of applying Custom Testing on the Statistical 

Features that were extracted from the signal in the frequency domain. For the Custom 

Testing, each of the 10 files was made up of 90% raw data and 10% noisy data for different 

SNR levels. 

 

Table 5: Classification accuracies of PD signals from Channel A using statistical features  

SNR 

(db) 

 

 

SVM 

 

SMO 

 

KNN 

 

RF 

 

Bagging 

 

OneR 

 

JRip 

 

J48 

20 36.3 100 100 100 100 100 97.78 99.26 

10 37.41 100 100 100 100 100 97.78 98.52 

-10 33.33 76.3 69.26 51.85 51.85 51.85 60.37 75.93 

-20 33.33 66.67 66.67 33.33 33.33 33.33 33.33 42.96 

-30 33.33 43.33 42.96 33.33 33.33 33.33 33.33 33.33 

-40 33.33 33.7 34.44 33.33 33.33 33.33 33.33 33.33 

 
 

Table 6:  Confusion matrix for Channel A using Statistical Features (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 9 0 0 

Cable  0 9 0 

Corona 0 9 0 
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Table 7: Classification accuracies of PD signals from Channel B using statistical features 

SNR 

(dB)  

 

SVM 

 

SMO 

 

KNN 

 

RF 

 

Bagging 

 

OneR 

 

JRip 

 

J48 

20 77.04 90 100 100 100 100 99.26 98.52 

10 76.3 83.7 100 100 100 87.04 98.89 97.78 

-10 33.33 67.04 51.48 77.78 77.78 52.96 72.22 53.33 

-20 33.33 58.52 33.33 33.33 33.33 19.63 52.96 33.33 

-30 33.33 66.67 33.33 33.33 33.33 9.63 30 33.33 

-40 33.33 33.33 33.33 33.33 33.33 21.48 33.33 33.33 

 

 

Table 8: Confusion matrix for Channel B using Statistical Features (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 9 0 0 

Cable  9 0 0 

Corona 9 0 0 

 

 

4.7  Existing Work  

We will compare our results with the system proposed by Ramy et. al [39]. This paper 

describes the detection of 3 types of PD activities, namely: Sharp, Void and Surface using 

an acoustic sensor.  

The data that is received from the acoustic sensor is made up of 2500 attributes and is 

the signal in the time domain. The captured PD time-domain signals are first transformed 

to the frequency domain using FFT. From the frequency spectrum that is obtained, the 

lower frequency components are selected as a feature vector. This feature vector is made 
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up of 250 points from the lower frequency band of the signal. This paper achieved very 

high accuracy, even in the presence of very high noise ratios, making it highly robust to 

noise. Figure 31 shows the selection of the lower frequency components that are used as 

the feature vector. 

 

 

Figure 31: Selection of lower frequency components that are used as the feature vector. 

[39] 

 

The results we get from this system will be compared with the results that we get 

from our system for this research. The classification accuracy obtained on the PD signals 

corrupted with white noise is depicted in Table 9. 
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Table 9 : Classification accuracy of acoustic PD signals (existing work) corrupted with 

white noise using Custom Testing 

SNR 

(dB) 

 

RF 

 

KNN 

 

SVM 

 

NB 

 

J48 

 

JRIP 

 

OneR 

20 99.26 

 

94.81 98.89 98.89 98.15 97.04 87.78 

10 99.26 

 

95.56 98.89 63.7 97.78 93.33 89.26 

-10 55.93 

 

95.93 86.67 33.33 59.26 60 78.15 

-20 33.33 

 

47.04 33.33 33.33 37.04 38.89 52.96 

-30 33.33 

 

33.33 33.33 33.33 34.44 33.7 34.81 

-40 33.33 

 

33.33 33.33 32.59 34.07 34.07 33.7 

 

 

Table 10: Confusion matrix of PD Acoustic Signals (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 8 0 1 

Cable  1 7 1 

Corona 0 3 6 

 

By applying the methodology of the this system on our data, we achieve the 

accuracies depicted by  Table 11 and Table 13 for Channel A and Channel B respectively. 
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Table 11: Classification accuracy of PD signals from Channel A corrupted with white 

noise using Custom Testing 

SNR 

(dB)  

 

SVM 

 

SMO 

 

KNN 

 

RF 

 

Baggin

g 

 

OneR 

 

JRip 

 20 85.56 100 38.15 100 100 96.67 78.52 

10 93.33 100 38.52 100 100 100 89.26 

-10 80 68.52 33.33 56.67 82.96 75.93 71.48 

-20 49.26 66.67 33.33 18.89 45.56 63.33 48.89 

 -30 33.33 42.96 33.33 45.93 61.85 37.04 34.44 

-40 33.33 33.33 33.33 30.37 44.44 34.07 33.33 

 

 

Table 12: Confusion matrix of Channel A using the methodology described by the 

existing work (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 9 0 0 

Cable  0 9 0 

Corona 3 2 4 

 

 

Table 13: Classification accuracy of PD signals from Channel B corrupted with white 

noise using Custom Testing 

SNR 

(dB)  

 

SVM 

 

SMO 

 

KNN 

 

RF 

 

Baggin

g 

 

OneR 

 

JRip 

 20 99.26 90.37 87.41 95.93 93.33 91.11 99.63 

10 85.19 90.37 33.33 87.04 90.37 89.63 98.52 

-10 51.48 76.3 33.33 51.85 77.41 73.7 83.7 

-20 28.15 48.52 33.33 66.67 53.33 46.3 60.37 

 -30 32.96 33.33 33.33 52.96 38.89 19.63 49.63 

-40 33.33 33.33 33.33 19.63 34.07 16.3 38.52 



  
   

58 
 

 

 
 

Table 14: Confusion matrix of Channel B using the methodology described by the 

existing work (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 0 0 9 

Cable  0 8 1 

Corona 0 1 8 

 

 

Our aim is to beat the results that we achieve from using this methodology described 

by this system, even at higher noise levels.  

4.8  Regularization 

We applied Lasso Regularization on the data using the GLMNET library that is 

available in the R language [63]. The Lasso Regularization model is run using the Logistic 

Regression classifier that is pre-defined in the GLMNET library. Lasso can be applied on 

Equation 3.10 by setting α to 1. The equation is reduced to 

𝑚𝑖𝑛
𝛽0, 𝛽

 
1

𝑁
 ∑  𝑤𝑖 𝑙(𝑦𝑖, 𝛽0 +  𝛽𝑇 𝑥𝑖 ) +  𝜆  ‖𝛽‖1 

𝑁

𝑖=1

 

(4.1)  

The best-fit for 𝜆 is obtained by performing a cross-validation of the model. The 

ideal model is built using this best-fit 𝜆 for predicting the class of the observations. The 

best-fit for 𝜆 is obtained by performing cross-validation on 15 observations (5 observations 

from each class). These observations are not a part of the Custom Testing and remain 
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unseen for further processing.  

The custom testing is performed on the remaining 270 observations. Consider 

File-1 (out of 10 files) of the Custom testing, where 90% of the data is clean and 10% of 

the data is corrupted with SNR +20 noise. The number of attributes has been decreased 

from 2016 to 22. The best-fit for lambda (λ = 0.004) was chosen from 1000 lambda values 

by the model after 10 folds of cross-validation. The selected coefficients (non-zero 

coefficients) is depicted in  

Figure 32. The axis on the top shows the number of non-zero coefficients at each 

level of lambda. 

 

 
 

Figure 32: Non-zero coefficients chosen by the model plotted against the log of the 

lambda values 

 

Figure 33 shows the path of the coefficient against the L1 – norm of the whole 

coefficient vector as λ varies. 
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Figure 33: Non-zero coefficients chosen by the model plotted against the L1 Norm of the 

coefficients 

 

A summary of the GLMNET path is depicted by Figure 34. 

 

 

Figure 34: GLMNET path at λ =0.004 

 

Where, Df (Degrees of freedom) represents the number of non-zero coefficients at 

the current value of λ. Figure 35 represents the cross-validation curve, which is represented 
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by the red dotted line. The upper and lower standard deviation curves along with the λ 

sequence are shown like error bars around the red-dotted line. 

 

 

Figure 35: Values of lambda.min and lambda.1se plotted against deviance. 

 

There are two vertical lines that depict two values of lambda. These values are: 

1. lambda.min – Value of lambda that gives minimum mean cross-validation error. 

2. lambda.1se – Value of lambda, which gives the most regularized model, such that 

the error is within one standard error of the minimum. 

Generally, the lambda.min for each dataset is identified by cross-validation of the 

model. In the case of custom-testing, the lamba.min is taken as the average of lambda.min 

values that are found for each of the ten files that are used in the custom testing. 

4.9 Results 

In this section, we will present the results of applying Regularization on our dataset for 

both channels.  
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The results are reported for two settings of the Lasso Regularization.  

1. Setting-1: The dataset is not standardized for Lasso.  

2. Setting-2: The dataset is standardized for Lasso. 

The results that are reported in Table 15 and Table 17 are obtained by running Custom 

Testing that is described in Section 3.5. The training data is corrupted with little noise of 

SNR = 0dB as opposed to using raw data. This type of training data in which the raw signal 

is corrupted with some noise helped to achieve high accuracies using Lasso. The clean 

signal and the signal corrupted with minimal noise of SNR = 0dB are shown in Figure 36. 

 

 

 

Figure 36: Top: Clean Signal.  Bottom: Signal corrupted with SNR 0 noise. 
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Regularization was applied on Channel A and Channel B under the two different 

settings, as described previously. The values of the best fit for lambda for each setting is 

indicated in Table 15 and Table 17 for Channels A and B respectively. 

 

 

Table 15: Classification accuracies of applying Lasso on Channel A 

SNR 

(dB) 

Standardization = FALSE 

λ = 15.971 

Setting-1 

 

 

Standardization = TRUE 

λ = 0.0049 

Setting-2 

20 100 100 

10 100 100 

-10 98.88 99.25 

-20 75.92 82.59 

-30 68.51 65.92 

-40 46.66 40 

 

 

 

Table 16: Confusion matrix of Channel A using Regularization (SNR=-20dB) 

 Porcelain Cable  Corona 

Porcelain 9 0 0 

Cable  0 6 3 

Corona 0 1 8 

 

 

 

From Table 15, we can see that Setting-1 did better than Setting-2. We can infer from 

these values, that for Channel A we need not standardize the data. 
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Table 17: Classification accuracies of applying Lasso on Channel B 

SNR 

(dB) 

Standardization = FALSE 

λ = 182.49 

Setting-1 

 

 

Standardization = TRUE 

λ = 0.004 

Setting-2 

 
20 66.29 67.03 

10 66.29 66.29 

-10 61.11 60.37 

-20 57 71.85 

-30 60 44.44 

-40 65.55 33.33 

 

 

 

Table 18: Confusion matrix of Channel B using Regularization (SNR=-10dB) 

 Porcelain Cable  Corona 

Porcelain 4 2 3 

Cable  0 9 0 

Corona 9 0 0 

 

 

 

From Table 17, we can see that Setting-2 does better than Setting-1. Hence, in the case 

of Channel B, we would have to standardize the data to get better classification accuracies. 

 

4.9.1 Comparison of the results 

In this section, we will compare the accuracy of the best performing Lasso setting with 

the average of the classification accuracies of all the classifiers used by the state-of-the-art 

system through each noise level. 

As the SVM classifier did not do well constantly, two averages of the classifiers were 

calculated. The first average was calculated over all the classifiers whereas, the second 
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average was computed over all the classifiers except SVM. 

 

 

 

Figure 37: Comparison of results of Channel A 

 

 

From Figure 37Error! Reference source not found., we can infer that Lasso 

constantly does better than the methodology followed by the state-of-the-art system, across 

all levels of noise.  
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Figure 38: Comparison of results of Channel B 

 

 

From Figure 38, we can see that the Lasso either performs better than the existing 

system for Channel A. 

Overall, Lasso performed much better on Channel A which is the data from the 

sensor with the higher bandwidth, when compared with Channel B which is the data from 

the sensor with the lower bandwidth. This shows that it is better to use Channel A for 

achieving higher classification accuracies. It is interesting to note that Regularization 

performs better than the existing system for higher levels of noise in the case of Channel 

B. Hence, Regularization performs well when it has sufficient information from the signal, 

as in the case of Channel A. 
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Chapter 5 
 

5. Conclusion and Future Work 
 

This chapter provides a summary of the thesis based on the experimental results that 

we have achieved using the different methodologies along with the future work for this 

research.  

5.1 Conclusion  

PD location detection and type classification are well-known areas of research. 

Nowadays, PD research focuses on enhancing the usability of Smart Grids by evaluating 

the health of HV equipment. In this thesis, we addressed the classification problem between 

three types of PD activities that occur in power transformers, which are one of the costliest 

and mostly found components in any power grid.  

The data from two sensors with different bandwidths were compared and it was inferred 

that the data from the higher frequency sensor achieved higher classifier accuracy when 

compared to the cheaper lower frequency sensor.  

Simple and Shape features from the signal in the time domain and statistical 

features from the frequency domains were extracted. However, these features collapsed 

when the signal was corrupted with even small levels of noise. As we wanted to create a 

more robust PD classification system, we applied Lasso Regularization to create a simple 

classification model that could achieve high classification accuracies even when a very 

pessimistic form of testing was applied. This simple Lasso model did not require tuning 

for different levels of noise, as the regularization parameter λ is fixed across all noise levels. 

We also inferred that Lasso achieved higher classification accuracies than the existing 

system especially when the data was corrupted with higher levels of noise.  
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We contributed to PD research mainly in the following ways: 

1. Proposed simple features for processing the signal in the time domain. 

2. Proposed shape features for processing the signal in the time domain. 

3. Proposed Lasso Regularization for processing the signal in the frequency domain. 

Other contributions: 

1. Applied statistical features for processing the signal in the frequency domain. 

2. Used data collected from CT sensors and compared the results between two sensors 

of different bandwidths. 

 

5.2 Future Work 

The work done as part of this thesis will be added on to construct a complete PD 

monitoring system. This system would be capable of detecting the severity of the PD type 

in addition to classifying PD types, which was the work of this thesis. The research can be 

made more profound by considering other types of real noise such as random noise and 

discrete spectral interferences. Other techniques to get better classification accuracies from 

lower frequency sensors can also be investigated. 

Research can also be done to check if Lasso can be applied to other types of PD signals 

(acoustic PD, electrical PD etc.) and for other signal types like Electroencephalogram 

(EEG) signals. 
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