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ASSIGNMENT PROBLEM I: 

A SPECIALIZED BRANCH AND BOUND ALGORITHM 

ABSTRACT 

M. Assad Elnidani* 

Jay E. Aronson** 

The multiperiod assignment problem is an important specialization of 

the three dimensional assignment problem, which is a generalization of the 

classical (two dimensional) assignment problem. This model describes the 

optimization problem of assigning people to activities (jobs) over several 

time periods. In the most general case, there is a cost assigning a person to 

an activity in each time period, and a cost of transferring a person from one 

activity in each period to another activity in the following period. The 

number of time periods is not restricted to equal the number of persons and 

activities. 

We present an integer, multiperiod, multicommodity network flow 

model formulation of the multiperiod assignment problem. we develop a 

specialized branch and bound algorithm that exploits the multicommodity 

structure of the model. We report favorable computational results of an 

implementation of the algorithm, and compare them to those of a 

commercial mixed-integer, linear programming code. 
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1. Introduction 

The multiperiod assignment problem is an important specialization of 

the three dimensional assignment problem, which is a generalization of the 

classical (two dimensional) assignment problem. This model describes the 

optimization problem of assigning m activities Gobs) to n persons over T 

discrete time periods. In this model, the most general case, two types of 

costs are considered. There is a cost associated with the assignment of 

person ito job j, in time period t. Also considered is the cost of transferring 

person i from job j in period t to job kin period t+ 1. The transfer cost can be 

set high as a penalty for situations where no employee is allowed to repeat a 

job assignment for two consecutive time periods. This situation may arise 

for health concerns, such as jobs that require handling of hazardous 

materials. 

The number of time periods is not restricted to be equal to the number 

of persons or activities, as is the case in other related models [1, 2, 3, 4]. 

Additionally, the number of persons is not restricted to equal the number of 

activities, however, without loss of generality, it is assumed so. Clearly 

dummy persons or jobs can be added as needed. Costs associated with 

assigning a dummy person to a job, or a person to a dummy job and 

associated transfer costs are zero, unless otherwise stipulated. 

We refer to the problem of optimally assigning n persons to m jobs over 

T time periods as the multiperiod assignment problem. Applications occur 

in the scheduling of parallel activities on concurrent processor computers, 

the assignment of salesmen to territories, the assignment of consultants to 

clients, the assignment of groups within an organization to various projects 

and problems in manpower planning [5]. 



The multiperiod assignment problem may be mathematically 

formulated as an integer, multicommodity network flow problem, where 

persons are the commodities [5]. Because of the problem's structure, it is 

possible to devise a specialized branch and bound algorithm that solves a set 

of shortest path problems. Here we discuss a specialized algorithm that 

exploits the multicommodity network structure directly. 

In the next section, we present some general background material on 

multicommodity network flow problems and the definitions and notation 

used. In Section 3, we present the formulation of the problem as an integer, 

multicommodity network flow model. The specialized branch and bound 

algorithm and an example are presented in Section 4. In Section 5, we 

describe the implementation of the algorithm and report its computational 

results on randomly generated test problems. We also present a favorable 

comparison of our implementation to those of the commercial linear/integer 

programming package MPSX/MIP/370 [6]. A summary and conclusions are 

given in Section 6. We assume that the reader is familiar with linear 

programming [7 -9], network models and optimization [7, 1 0], and integer 

programming [ 11, 12]. For additional material on dynamic networks, see 

[13]. See [14] for a recent survey of multidimensional assignment problems. 

For work on related models, see [1-4, 15-23]. 

2. General Background Material 

2.1 The Multicommodity Network Flow Problem 

A multicommodity network flow problem can be thought of as a set of 

independent, single commodity network flow problem, in which the arcs are 

linked together by a set of mutual are capacity constraints [24,10]. When the 

commodities are measured in the same units (weight, volume, etc.), the 

linking are constraints have the generalized upper bounded (GUB) structure 

[25]. 
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Algorithms for solving the multicommodity network flow problem have 

been presented by several authors. See Kennington and Helgason [1 0] for a 

complete theoretical development of the primal partitioning algorithm 

utilized in this paper to solve the linear programming relaxation of the 

problem. For additional material on the standard and integer 

multicommodity network flow problems, see [26-29, 30, 31]. The linear 

programming constraint matrix of a multicommodity network flow problem 

is not necessarily totally unimodular, except in special cases [26-28]. Thus, 

the integrality of basic feasible solutions to the linear programming 

relaxation of the multicommodity, multiperiod assignment problem to be 

presented is not guaranteed. We show an example in Section 4. 

2.2 Definitions and Special Notation 

Upper case English letters are used to define sets and matrices; lower 

case letters are for vectors and indices. The meaning will be clear from the 

context. Unless otherwise specified, the index i represents persons; the 

index j represents jobs; and the index t represents time periods. 

Let G be a directed network [N ,E], consisting of a finite set of nodes 

N = {1 ,2 ... ,p} and a finite set of directed arcs, E = {(i,j), (k,h), ... , (q,s)} 

joining pairs of nodes inN. Arc (i,j) is said to be directed away from node i 

and towards node j [7]. We assume that the network is connected; there 

exists a path in the network, to be defined shortly, between every pair of 

nodes i and j. We also assume, without loss of generality, that there exists no 

parallel arcs. Two or more arcs are said to be parallel if they have the same 

origin and destination nodes. 

The integer, multicommodity network flow model may be represented 

by a collection of linked networks, each with a single source and a single 
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sink. The following is a description of the definitions, terminology and 

notation: 

Path: A path is defined from node ho to node ~. as a sequence of arcs 

P = {(~o,hl), (ho, hi), ... , (hp-1'~)} 

Cycle: A cycle is a path in which ho = hp. Thus a cycle is a closed path [11]. 

Arc Orientation: The orientation of arc a= (i,j) in the path P = {(ho, h1), ... ,(hk, hk+l) 

, ... ,(~ 1 , ~)},is+ 1 if ((hk, hk+l) = (i,j) for some k; and- 1 if (hk, hk+l) = 

(j,i) for some k. 

Directed Acyclic Network: A network that contains no cycle of the form 

C = {(ho, h1), (h1, h2
), ••• ,(h

8
, ho) }, such that the orientations on arcs (hk, hk+l) 

for all k = O, ... ,s are equal, is said to be directed acyclic. 

SC Source node. SC will always be represented by 1, or the lowest node 

number inN. 

SK Sink node. SK will always be represented by p, or the highest node 

number inN (usually p = INI) 

n Number of persons (commodities). 

m Number of jobs ( = n). 

T Number of consecutive time periods over which the assignment of 

the n persons to the m jobs occurs. 

(s,v)l Arc (s,v) of commodity i. Nodes is the origin node and node vis the 

destination node. 
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1. A singleton set SC, representing the single source node (Figure 1 ), 
SC= {1 }. 

ii. A singleton Set SK, representing the single sink node (Figure 2), 
SK = {2 + 2n (T- 1 )}. 

111. A node set NtB, identifying job assignments at the beginning of 
period t, fort = 1 , ... ,T; (Figures 1 - 4), 

N1
E = SC, and 

N1
E = {j + n (2t- 3) + 1 I J = 1, ... ,n}, fort= 2, ... ,T. 

iv. A node set N1
E, identifying job assignments at the end of period t, for 

t = 1 , ... ,T: (Figures 1-4), 

N1
E = {j+2n (t-1) + 1 I j =1 , ... ,n}, fort =1 , ... ,T-1, and 

NTE= SK. 

The sets N8 and NE are the set of nodes identifying job assignments at 

the beginning of all time periods and the set of nodes identifying job 

assignments at the end of all time periods, respectively. These sets are 
defined as 

The set of nodes, N, is then given by 
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'---y--J '-------.,----___J '---y--J 

SC"N~ E~ N~ 

Figure 1: Source Arcs of Commodity i and the Source Node. The 
source arc set, E~c = {(1j+l) lj=1, ... ,n}, for i=1, ... ,n. 
Source node set SC = N1 = { 1} and node set N~ = {2, 3, ... , 
n+ 1 } are also shown. 

'-v-J '------r---___J '-v-J 
N~ &~1 SK•N~ 

Figure 2: Sink Arcs of Commodity i and the Sink Node. The sink arc 

set E1x = (~+j,p) I j=l, ... ,n; p=2+2n(T-l)}, for 
i=l, ... ,n. Node set N~ = {~+j I j=l, ... ,n} and sink node 
set SK = Ni = {2+2n(T-1)}, where ~""n(2T-3)+1, are also 
shown. 
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13+1 ~------~a.+ I 

13+2 f-------~ a.+2 

13+n~------------~a.+n 

'-v-' '-------~-------' '-v-' 

N~ E: N~ 

Figure 3: Inner Assignment Arcs of Commodity i. The inner 

assignment arc set~= {(l3+j,a.+j) lj=1, ... ,n}, for i=1, ... ,n; 

the node sets N~ = {l3+j lj=1, ... ,n} andN'E = { u+j I 
j=l, ... ,n}, where a=2n(t-1)+1 and 13=n(2t-3)+1, for 
t=2, ... , T -1 are also shown. 

'--v-' '-------~------' '--v-' 

N=
1 E~ N~ 

Figure 4: Transfer Arcs of Commodity i, E~= {(u+k,J}+j) I k=l, ... ,j; 

j=l, ... ,n} for i=l, ... ,n. The node sets N'8 = {P+j lj=l, ... ,n} 
and N~ = {u+k I k=1, ... ,n}, where a= 2n(t-l)+l and J3 = 
n(2t-1)+ 1, for t=l, ... ,T -1 are also shown. 
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3.2 The Arc Set 

The arc set, E, contains the following distinguished subsets: 

1. A source arc set: The origin node of a source arc is always node 1 ; the 

destination node of a source arc is a node from the set N1E. The source 

arc set of commodity i is given by Eisc, defined as follows: Eisk = {(j + q 

- n, q + 1) I j = 1 , ... , n + 1; q = 2n (T- 1) + 1 }. 

The number of arcs in Eisk is n (Figure 2). 

iii. An inner assignment arc set: The inner assignment arc set of commodity i 

is given by E\ and defined by: 

Ei1 = {(q-n,q) I q = j + 2n (j- 1) + 1; J = 1, ... ,n; t = 2, ... , T- 1} 

The number of arcs in Ei1 is n (T- 2) (Figure 3). 

iv. A transfer arc set: The transfer arc set is given by EiT and defined by: 

E\ = {U + q, k + q + n) I q = 2n (t- 1) + 1; t = 1, ... ,T- 1; j = 1, ... ,n; k 

=1 , ... ,n}. The number of arcs in E\ is n2 (T-1) (Figure 4). 

The union of the above four sets defines the arc set Ei of commodity i, 

Ei = Eisc U E\ U EiT U EisK 

Thus the arc set E for all n commodities is given by 

The set of all assignment arcs for all n commodities is given by: 

1l 

EA = \....) EiA' 
\=l 

and the set of all transfer arcs for all n comodities is given by 
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n 
(MCMAP) Min L L C~v X~v 

i=l (•,v) e £' 

subject to: 

:E x~. 
se N1 

x~j - :E xJ. 
.e Ni 

n . 
L X~v 
i=l 

=1 

=0 

=0 

=0 

=0 

=-1 

:::; 1 

~ 0, integer 

; i=1, ... ,n, 

; i=1, ... ,n 

; i E N1, 

; i=l, ... ,n 

;;eN'n 
;j=2, ... ,T-l, 
; i=l, ... ,n 

; i E NE 
; t=2, ... ,T-l, 

; i=l, ... ,n 

; i E N~ 
; p e SK, 
; i=l, ... ,n 

;p E SK, 

; (s, v) e EA, 

; i=l, ... ,n 
; (s, v) e Ei 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

The objective function (1) is to be minimized. Constraint sets (2) 

through (7) are the conservation of flow relations (see Table 1). Constraint 

set (8) consists of the mutual capacity relations on the assignment arcs. 

Constraint set (9) imposes the nonnegativity and integrality conditions 

associated with flow assignments. There are n [2+2n (t -1)] conservation of 

flow constraints and nT mutual arc capacity constraints. Note that when T = 

2, constraint set ( 4) is dropped from the problem. The n networks of the n 

commodities are identical, directed acyclic networks. Every path in the 

network of commodity i is directed away from the source node and toward 

the sink node for i = 1 , ... n. 
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demand node (sink). For each commodity i, the source node has a requirement of 

ri 1 = + 1, and the sink node has a requirement of riP= - 1. The remaining nodes s, s 

= 2, ... ,p - 1, have requirements of ri, = 0. 

3.5 Mutual Arc Capacity Constraints 

Mutual arc capacity constraints are associated only with the assignment arcs. 

The right hand side is 1 for every mutual arc capacity constraint. This imposes a 

restriction on the total combined flow on the linked group of assignment arcs of the 

n commodities. Although the linking constraints are stated as inequalities, they are 

tight for every feasible solution to the problem (proved following the model). 

3.6 Mathematical Programming Model 

Let x\v be the flow on arc (s,v)i . From the set definitions, the integer, 

multicommodity, multiperiod, assignment problem (MCMAP) may be stated 

mathematically follows: 
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e. Continue with Step 3. 

Step 3: Select Next Current Problem (CP). 

If the Candidate List is empty, stop, the incumbent is the optimal 
solution. 

Otherwise, choose the next problem from the candidate list to be the 
next current problem and continue with Step 4. 

Step 4: Early Fathoming I LP Solution. 

Remove the current problem from the candidate list or branch left, the 

person is not assigned the job. If the lower bound of the current 

problem is greater than or equal to Z*, remove it from the candidate 
list and return to Step 3. 

Otherwise: 

a. Relax the integrality constraints of CP to produce CPr. 
b. Solve CPr. 

c. Let Z be the value of the optimal objective function of CPr. 
d. Continue with Step 5. 

Step 5: First Fathoming Criterion (Infeasibility Check). 

If the current problem has no feasible solution, fathom it. Return 
toStep 3. 

Otherwise, continue with' Step 6. 

Step 6: Second Fathoming Criterion (Compare to Incumbent). 

The third fathoming criterion (Step 7), states that a subproblem is fathomed if 

its linear programming relaxation has an optimal integer basic feasible solution. It 

is sufficient to test for the integrality of flow through only the basic assignment 

arcs. By definition of the networks of LMCMAP, xisv• the flow through the transfer 
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If Z is greater than or equal to Z*, fathom the current problem. Return 

to Step 3. Otherwise, continue with Step 7. 

Step 7: Third Fathoming Criterion (Integrality Check). 

If the linear programming relaxation of CP has an integer optimal 

feasible solution then, 

a. Set Z* = Z. 

b. Record the current problem's solution. 

c. Return to Step 3. 

Otherwise, return to Step 2. 

4.2 General Remarks on the Algorithm with Regard to 
Implementation 

The linear programming relaxation, LMCMAP, is the first candidate problem 

at the root node of the branch and bound tree. The arcs of the problem are stored in 

a single array where commodity 1 arcs are followed by commodity 2 arcs and so 

on. Let xh be the flow assigned to the h'h arc in the arc array. A problem is 

separated into two candidate problems by fixing the value of a variable, say x\~. to 

0 or 1. A variable is fixed to zero by assigning a relatively large positive value to 

the corresponding objective function coefficient. A variable is fixed to one by 

assigning a negative value for which its absolute value is relatively large, to the 

corresponding objective function coefficient. The cost array is reset to its original 

values at the end of each iteration of the algorithm. 

A depth first strategy was implemented. It is relatively straightforward to 

implement, and based on the computational results discussed in the next section, 

did not pose a massive combinatorial hurdle. Few branch and bound nodes sere 

evaluated. 
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MAP 

MCNF LP CPU 

MCNF Best % LP Solutions Solution 

Pro b. Reinv Solution Within Iter- (B&B MCNF Time 

No. Freq. Found IP ations Nodes) Reinvs (Sec.) 

1 100 2286 0.00% 264 1 2 1.90 
2 100 2427 0.37% 295 1 2 2.21 
3 100 4159 0.00% 479 0 4 5.65 
4 25 568 1.61% 141 4 5 0.39 
5 25 605 0.00% 139 2 5 0.38 
6 100 694 0.00% 174 2 1 0.75 
7 100 700 0.00% 144 0 1 0.48 
8 100 737 0.55% 227 1 2 1.01 
9 25 868 0.23% 217 1 8 0.82 
10 25 856 0.00% 215 0 8 0.86 
11 25 1088 0.00% 248 0 9 l.lO 
12 25 1118 0.00% 311 0 12 1.64 
13 100 1223 0.00% 263 0 2 1.59 
14 100 1362 0.00% 329 2 3 2.24 
15 100 3439 0.38% 1040 5 11 21.70 
16 100 3375 1.17% 1027 10 10 21.49 
17 100 5708 0.23% 1565 9 15 52.49 
18 25 373 0.00% 100 0 4 0.23 
19 25 518 0.19% 178 2 7 0.63 
20 25 642 0.00% 195 0 7 0.73 
21 25 765 0.00% 369 1 14 1.96 
22 100 260 0.00% 360 2 3 2.43 
23 100 1527 0.00% 377 1 3 2.86 
24 100 1863 0.92% 484 5 4 3.95 
25 25 1045 1.85% 609 3 24 4.69 
26 25 1206 1.60% 712 4 28 6.51 
27 25 1296 0.00% 519 0 20 4.15 
28 25 1510 0.00% 814 2 32 8.79 
29 100 1688 0.42% 1082 6 10 15.49 
30 100 4153 0.75% 4551 29 182 177.12 
31 25 414 0.00% 752 14 30 3.48 
32 25 595 0.00% 283 0 11 1.51 
33 100 807 2.28% 709 3 7 6.36 
34 100 745 0.00% 373 0 3 2.66 
35 25 906 0.00% 789 3 31 7.65 

Table 4: (Part I) Summary of Computational Results ofMAP on the IBM 3081-24 Using the 
VS FORTRAN 77 Compiler with the Optimization Level Set to 3. MAP and 
MCNF parameters: INTCHK=3, FBOUND=l.03, ISPAN=25, LB=lO, UB=35. 
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MAP 

MCNF LP CPU 
MCNF Best % LP Solutions Solution 

Prob. Reinv Solution Within Iter- (B&B MCNF Time 

No. Freq. Found IP ations Nodes) Reinvs (Sec.) 

36 25 1113 0.72% 2465 4 98 30.27 
37 25 1247 1.88% 1611 "12 64 20.56 
38 25 1473 0.00% 1581 8 63 24.45 
39 25 1648 0.10% 1762 4 70 29.44 
40 25 1777 0.00% 2724 11 108 49.63 
41 100 1977 1.91% 4875 9 48 103.16 
42 DNR 
43 25 279 0.00% 117 0 4 0.45 
44 25 487 0.00% 411 0 16 2.91 
45 25 687 1.63% 1042 7 41 10.54 
46 100 892 1.59% 1168 2 ll 13.53 
47 100 868 0.81% 2031 6 21 26.85 
48 100 912 1.90% 1372 4 13 UU4 
49 25 1121 2.19% 3739 19 149 59.85 
50 DNR 
51 25 314 0.00% 162 2 6 0.81 
52 25 559 2.01% 1126 12 69 16.13 
53 25 784 0.000/o 1988 8 79 28.22 
54 25 986 0.000/o 5422 11 216 100.90 
55 25 1224 1.75% 9960 13 398 221.74 
56 25 1478 0.96% 12565 17 506 331.47 
51 25 1738 1.28% 11990 14 479 796.80 
58 DNR 
59 25 328 0.00% 198 0 7 1.20 
60 25 609 0.00% 645 1 25 7.16 
61 25 885 1.14% 2155 5 86 37.70 
62 25 1131 1.34% 3571 9 142 82.09 
63 DNR 
64 25 407 0.99% 264 2 10 2.07 
65 25 687 1.03% 1143 3 56 21.34 
66 25 938 0.54% 3149 6 125 72.36 
67 DNR 
68 25 426 0.00% 329 0 13 3.14 
69 25 768 1.45% 6857 18 274 136.95 
70 DNR 

DNR = Problem d1d not run 

Table 4: (Part 2) Summary of Computational Results of MAP on the IBM 3081-24 Using the 
VS FORTRAN 77 Compiler with the Optimization Level Set to 3. MAP and 
MCNF parameters: INTCHK=3, FBOUND=l.03, ISPAN=25, LB=10, UB=35. 
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6. Summary and Conclusions 

We presented a complete mathematical formulation of the integer 

multicommodity, multiperiod assignment problem formulation of Aronson 

[5]. Instead of following Aronson's technique of exploiting linked shortest 

path problems, we concentrated on exploiting the special, multicommodity 

structure of the linear programming relaxation of the problem. We 

developed and implemented a specialized branch and bound algorithm in 

which is embedded a modified version of MCNF, a multicommodity 

network flow code. Computational tests comparing our implementation to 

the commercial code MPSX/MIP/370 indicate that our methodology 

performs quite favorable. The range of the ratio of the solution CPU times 

of MAP to the solution CPU times of MPSX/MIP/370 for all problems 

solved to optimality by MAP was 0.19 to 2.85. MAP was faster in solving 

approximately 55% of the test problems. 

A problems extension of the work on MAP includes constructing and 

experimenting with a specialized version of the primal partitioning 

multicommodity network flow algorithm implementation, MCNF. It is 

expected that the new method would perform much better because the 

majority of the solution time is spent in solving linear programming 

relaxations. Another modification that may be applied to the branch and 

bound algorithm is in the management of the candidate list. 

Further enhancements would exploit the multiperiod structure by 

solving the subproblems in a forward manner [13, 41-43]. Others involve 

using fictitious bounds [44]. One may also use a heuristic, as in [5], to find 

an initial incumbent solution in Step lg of the Algorithm. Given this 

solution, an initial basis Subgradient optimization [33,27,11] may also be 

applied. In our companion papers, we discuss special properties of the 

model [ 45] and variations of the model for facility location and personnel 

planning [ 46,47]. 

- 126-



REFERENCES 

[1] Balas, E. and Saltzman, M.J., "Facets of the Three-Index Assignment 

Polytope", Discrete Applied Mathematic, 23, (1989), 201-229. 

[2] Balas, E. and Saltzman, M. J., "An Algorithm for the Three-Index 

Assignment Problem," Operations Research, prob. 39, 1 

(forthcoming). 

[3] Evans, J. R., "The Multicommodity Assignment Problem: A Network 

Aggregation Heuristic," Computers and Mathematics with 

Applications, 7, 2, (1981), 187 - 194. 

[ 4] Pierskalla, W. P., "The Tri-Substitution Method for the 

Three-Dimensional Assignment Problem," CORS Journal, 5, (1967), 

71 - 81. 

[5] Aronson, J. E., "The Multiperiod Assignment Problem: A 

Multicommodity Network Flow Model, a Specialized Branch and 

Bound Algorithm," European Journal of Operational Research, 23, 

(1986), 367 - 381. 

[6] International Business Machines Corporation, "IBM Mathematical 

Programming Systems Extended/370." White Plains, NY, 1979. 

[7] Bazaraa, M. S. and Jarvis, J. J., Linear Programming and Network 

Flows, John Wiley and Sons, New York, NY, 1977 .. 

[8] Gass, S. 1., Linear Programming: Methods and Applications, 5th 

edition, McGraw-Hill, New York, NY, 1985. 

(9] Simmonard, M., Linear Programming, Prentice-Hall, Englewood 

Cliffs, NJ, 1966. 
- 127-



[10] Kennington, J. L. and Helgason, R. V., Algorithms for Network 

Programming, John Wiley and Sons, Inc., New York NY 1980. 

[11] Parker, R. G. and Rardin, R. L., Discrete Optimization, Academic 

Press, Inc., San Diego, CA, 1988. 

[12] Salkin, H. M. and Mathur, K., Foundation of Integer Programming, 

North-Holland, New York, NY, 1989. 

[13] Aronson, J. E., "A Survey of Dynamic Network Flows," Annals of 

Operations Research (Shetty, B., ed.), 20, (1989), 1-66. 

[14] Gilbert, K. C. and Hofstra, R. B., "Multidimensional Assignment 

Problems, " Decision Sciences, 19, 2, ( 1988), 306 - 321. 

[15] Charnes, A., Cooper, W. W., Niehaus, R. J. and Stedry A., "Static and 

Dynamic Assignment Models with Multiple Objectives, and Some 

Remarks on Organization design," Management Science, 15, 8, 
(1969), B365 - B375. 

[16] Haley, K. B., "The Multi-Index Problem," Operations Research, 11, 

(1963), 368-379. 

[17] Haley, K. B., "The Existence of a Solution to the Multi-Index 

Problem," Operational Research Quarterly, 16, ( 1965), 471-474. 

[18] Little, J. D. C., Murty, K. G., Sweeney, D. W. and Karel, C., "An 

Algorithm for the Traveling Salesman Problem," Operations 

Research, 11, 6, (1963). 

[19] Pierskalla, W. P., "The Multi-Dimensional Assignment and 

- 128-



Quadratic Assignment Problems," Technical Memorandum No. 93, 

Case Western Reserve University, Operations Research Department, 

School of Management, Cleveland, OH, (1967). 

[20] Pierskalla, W.P., "The Multi-Dimensional Assignment Problem," 

Operations Research, 15, 2, ( 1968), 422-431. 

[21] Schell, E., "Distribution of a Product by Several Properties," 

Directorate of Management Analysis, Proceedings of the Second 

Symposium in Linear Programming, (Antosiewicz, H. ed.), 2, 

DCS/Comptroller H.Q. U.S. Air Force, Washington, DC, ( 1955), 615-

642. 

[22] Shamma, M. M., A G•~neralized Assignment Problem, Unpublished 

Ph.D. Dissertation, Computer Science/Operations Research Center, 

Southern Methodist University, Dallas, TX, 1971. 

[23] Vlach, M., "Branch and Bound Method for the Three Index 

Assignment Probh~m," Ekonomicko-Matematicky Obzor 

(Czechoslovakia), 3, ( 1967), 181-191. 

[24] Kennington, J. L., "A Survey of Linear Co~~ Multicommodity 
Network Flows," Operations Research, 26, 2, (1978), 209 - 236. 

[25] Dantzig, G. B. and VanSlyke, R. M., "Generalized Upper Bounding 

Techniques," Journal of Computer and System Sciences, 1, (1967), 

213-226. 

[26] Evans~ J. R., Theoretical and Computational Aspects of Integer 

Multicommodity Network Flow Problems, Unpublished Ph.D. 

Dissertation, Department of Industrial and Systems Engineering, 

Georgia Institute of Technology, Atlanta, GA, 1975. 

- 129-



[27] Evans, J. R., "A Combinatorial Equivalence Between a Class of 

Multicommodity Flow Problems and the Capacitated 
Transportation Problem," Mathematical Programming, 10, 3, (1976), 
401-404. 

[28] Evans, J. R., "A Single Commodity Transformation for Certain 

Multicommodity Networks," Operations Research, 26, 4, (1978), 673 
-681. 

[29] Evans, J. R., "The Simplex Method for Integral Multicommodity 
Networks," Naval Research Logistics Quarterly, 25, 1, (1978), 31 - 38. 

[30] Evans, J. R. and Jarvis, J. J., "Network Topology and Integral 

Multicommodity Flow Problems," Networks, 8,2, (1978), 107 - 120/ 

[31] Sakarovitch, M., "Two Commodity Network Flows and Linear 
Programming," Mathematical Programming, 4, (1973), 1 - 20. 

[32] Teigen, J ., "Identifying Redundant Constraints and Implicit 
Equalities in Systems of Linear Constraints," Management Science, 
29, 10, (1983), 1209- 1221. 

[33] Bean J. C., "A Lagrangian Algorithm for the Multiple Choice 
Integer Program," Operations Research, 32, 5, (1984), 1185- 1193. 

[34] Geoffrion, A. M. and Marsten, R. E., "Integer Programming 

Algorithms: A Framework and State-of-the-Art Survey," 
Management Science, 18, 9, (1972), 465-49. 

[35] Balinski, M. L., "Integer Programming Methods, Uses, 
Computation," Management Science, 12, 3, (1965), 253-313. 

- 130-



[36] Balinski, M. L. and .Spielberg, K., "Methods for Integer 

Programming: Algebraic, Combinatorial and Enumerative," in J. S. 

Aronofsky (editor), Progress in Operations Research, 3, Wiley, New 

York, NY (1969). 

[37] Beale, .B., "Survey. of Integer ~egrammiltg," Operations Research 

Quarterly, 16, 2, (1965), 219-228. 

[38] Geoffrion, A. M., "Integer Programming by Implicit Enumeration 

and Balas' Method," SIAM review, 9, 2, (1967), 178 - 190. 

[39] Geoffrion, A. M., "An Implicit Enumeration Approach for Integer 
Programming," Operations Research, 17, 3, (1969), 437 - 454. 

[ 40] Kennington, J. L., "A Primal Partitioning Code for Solving 

Multicommodity Network Flow Problems (Version 1)," Technical 

Report OR 79008, Department of Operations Research, Southern 

Methodist University, Dallas, TX 1979. 

[41] Aronson, J. E. and Chen, B. D., "A Forward Network Simplex 

Algorithm for Solving Multiperiod Network Flow Problems," 

Naval Research Logistics Quarterly, 33, (1986), 445-467. 

[42] Aronson, J. E., Morton, T. E. and Thompson, G. L., "A Forward 

Simplex Method for Staircases Linear Programming Problems," 

Management Science, 31, 6, (1985), 664-679. 

[43] Aronson, J. E. and Thompson, G. L., "A Survey of Forward Methods 
in Mathematical Programming," Large Scale Systems, (1984), 1 -

16. 

[44] Bazaraa, M. R. and Elshafei, A. N., "On the Use of Fictitious Bounds 

in Tree Search Algorithms," Management Science, 23, 8, (1977), 

904-908. 
- 131-



[ 45] Elnidani, M. A. and Aronson, J. E., "The Multicommodity, 

Multiperiod Assignment Problem II: Theoretical Results," Working 

Paper 89-277, Department of Management Sciences and Information 

Technology, College of Business Administration, The University of Ge 

[ 46] Elnidani, M. A. and Aronson, J. E., "The Multicommodity 

Multiperiod Assignment Problem III: Variations for Facility 

Location and Personnel Planning" Working Paper 89 - 278, 

Department of Management Sciences and Information Technology, 
College of Business A 

[ 47] Elnidani, M. A. The Multi period Assignment Problem, Doctoral 

Dissertation, Department of Operations Research and Engineering 

Management, Southern Methodist University, Dallas, TX, 1986. 

- 132-



APPENDIX: Proof of the Proposition 

Proposition: 

The assignment arc mutual capacity constraints of LMCMAP (8) are 

implicit equality constraints. 

Proof: 

Assume contradicting the desired result, that there exists a feasible 

solution (not necessarily basic) such that at least one constraint from (8) is 

not tight. Let that constraint be the one associated with assignment arcs 

(s,v). By the assumption: 

n . 
L X~v < 1 

(A.l) 

i= l 

holds. Let t be the time period which corresponds to the assignment arcs (s,v), i.e. 

S E.N1
B and v£N1

E. To satisfy the flow conservation constraints, (A.2) must be true: 

1~1 LI!J}~ EA x~f] = 11 
' 

(A.2) 

where e e N'B, fe N'E. 

I. e., the sum of the total combined flow on all assignment arcs having their origin 

nodes in the set N1
B and their destination nodes in the set N1

E must equal n, because 

the directed acyclic networks have a total supply and demand of n. There are n 

such assignment arcs (s,v) of then commodities in period t, i.e. 

n 
y = 1: x!v 

i= l (A.3) 
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Therefore, n-y units must flow through the remaining n- 1 unassigned 

assignment arcs of the n commodities in period t. By the nonnegativity constraints 
(9), (A.l) and (A.3) 

O$y<l (A.4) 

holds. Therefore, 

n;?!n-y>n-1 (A.5) 

holds, implying that there is at least one set of assignment arcs, say (e,t) of 

the n commodities, for which the arcs are assigned a total combined flow 

that is strictly greater than 1. Therefore, the solution cannot be feasible. 

Thus, the mutual arc capacity constraints are tight for all feasible solutions 
to the problem. 

Q.E.D. 
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