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ABSTRACT 

This paper presents two programs for microcomputer aided assessment of the 
performance of robot manipulators. The first program automatically generates 
robot models based on user-supplied kinematic parameters. The program also 
derives a kinematic model that relates the motion of manipulator end-effector to 
the motion of the joints using the inverse kinematic approach. The approach uses a 
robust inversion technique that can handle singular conditions as well as joint 
redundancy. A user can optionally select evaluation of kinematic capabilities of the 
robot manipulator, such as the ability of the end-effector to reach a specified 
position and orientation in space or the evaluation of the work space. The second 
program generates dynamic variables, such as forces and torques, based on 
user-supplied dynamic parameters and equations of motion of the various joints. 

Both programs are written for implementation on personal computers. Several 
runs were carried out to demonstrate the capability and execution times of the two 
programs. 

INTRODUCTION 

The advent of computer-controlled industrial robot that can be programmed to 
perform a set of tasks will eliminate the need for high cost, custom designed 
automation equipment. It can provide for the automation of product assembly and 
its low cost will make possible the automation of small batch production shops. Of 
course, industrial robots because of its physical limitations will be only capable of 
performing a set of tasks that do not violate any of the robot physical constraints. 

To enable selecting the right robot from several candidates or to evaluate the 
capability of an available robot for doing a set of tasks or to evaluate the robot 
performance when using various control schemes we need to employ a robot 
simulation package. Development of such packages has been recently receiving 
extensive attention, see for example Refs. 1-5. Ref. 1 gives a brief survey of various 
approaches used by existing robot simulation packages. Firstly-developed packages 
often require user knowledge of computer programming to use them. Secondly-

This paper is based on a graduation project work of the second author. 
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developed packages offered increased flexibility but are limited to simulation only 
of robots with predefined configurations. A third group of packages create 
semi-automatic controlling equations for customized models and require that the 
user be familiar with the modeling system on which these ~imulation packages are 
built. The most recent group of packages provide automatically generated 
solid-robot-models based on user supplied kinematic paramers, Refs. 1-3. 

Extensive support of dynamic simulation is not available in most robot 
simulators. Few packages provide users with dynamic analysis such.as forces and 
torques for all links to determine effects of these variables on robot performance. 
Users must input dynamic data such as inertia of all links and motor torque 
characteristics. Automatically generated simulated dynamics and real time dynamic 
simulation are still in the research stage. For example, Ref. 6 indicates some 
on-g~ing research attempting to verify robot motions in terms of dynamic 
performance, including overshoot, and tool settling time. 

Packages available were developed for implementation on mainfra~es or 
minicomputers. These packages depend on the availability of large memory, fast 
processor and large disk space. And in addition, these packages are usually 
expensive. The high cost of such hardware and software, of course, hinders the 
introduction of robotic to small batch production shops. On the other hand, the 
availability of low cost microcomputers spurs the investigation of the feasibility of 
having low-cost robot simulation package that can support the selection and use of 
robot manipulators in small batch production shops. The use of microcomputers for 
simulation has its implications on the quality of the results obtained, Ref. 7, but in 
many applications the advantages of the low cost of the microcomputer based 
system outweigh the quality improvement of results obtained by mainframe or 
minicomputer based simulator system. 

In this paper we focus on the development and implementation of robot 
simulation package on personal computers. The implementation of simulation 
package on personal computer reduces the cost of performance evaluation 
significantly but requires lengthy computation time. To reduce this time, the main 
kinematic, dynamic and control characteristics are only considered. In addition 
whenever we see that a very time consuming computation will be needed for a 
complete evaluation, we resort to an interactive support of the user to limit his 
range of interest to a reasonably selected set of variables. 

The robot modeling and simulation package developed for performance 
evaluation of robot manipulators comprises two programs. The first program 
evaluates the kinematic characteristics of the robot. The program comprises four 
modules as shown in Fig. 1. The first module automatically generates a robot model 
from an interactively entered specifications that describe the structure and 
kinematical parameters of the robot. Animated motion of a solid or wirefranie 
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Fig. 1: Kinematical program modules 

model can then be obtained. The second module solves a direct kinematic problem 
to evaluate the working space of the manipulator. The third and fourth modules 
solve inverse kinematic problem to evaluate the capability of end-effector to reach 
specified position and orientation. The first program is described in the first 
section. 

The second program uses the joint kinematic variables computed by the first 
program to compute torques and forces needed to be applied by the joint actuators 
to move the end-effector along a specified trajectory. This is described in the 
second section. 

The third section presents execution times of the various modules on Apricot and 
on IBM-PC compatible microcomputers. Techniques used, or that can be used, for 
enhancing execution time are then provided. 
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KINEMATIC PERFORMANCE EVALUATION OF 
ROBOT MANIPULATORS 

The simulation program described in this section is characterized by its capability 
of automatic modeling of robots from user entered robot kinematic parameters. 
The parameters entered are prompted by appropriate program questions. The user 
needs not to be familiar with any particular modeling method notation. All what is 
required is to know how to define the motion of revolute and prismatic joints 
according to the notation shown in Fig. 2 where the Y axis is taken along the 
longitudinal axis of the links. Fig. 3 shows the simplified interact~ve kinematic 
parameters needed to generate a simplified wireframe model. An example of a 
wireframe model is shown in Fig. 4. The parameters that must be supplied are: 

a) Rotation about X axis b) Rotation about Z axis 

Xn-1 
Zn-1 

c) Rotation about Y axis (d) Translation in the Y direction 

Fig. 2: Manipulator joint notation 
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total number of links and joints, link lengths, type of joints (rotationaVrevolute, 
translational/prism) and rotational axes, 
maximum and minimum joint limits, 
initial position of each joint. 

As shown in Fig. 4, we represented the links by the position of only four points in 
space to reduce computational time. And for the same purpose we also avoided 
drawing circules. This simple wireframe representation is appropriate for low speed 
computer implementation and is sufficient for preliminary and many practical 
kinematic evaluations of robot performance. Obviously, this representation is 
appropriate in selection evaluations, i.e. for screening robots capable of performing 
particular tasks. 

Number of articulated segments =? 4 
Base height =? 50 
Segment number 1 length =? 40 
Segment number 2 length =? 80 
Segment number 3 length =? 80 
Segment number 4 length =? 40 
End effector length =? 20 
Type of joint (1) is 1) Rotation 2) Translation =? 3 
Choose 1 or 2, TRY AGAIN 
Type of joint (1) is 1) Rotation 2) Translation =? 
Along which axis joint (1) is acting: 

1) X, 2) Y and 3) Z =? 2 
Minimum and maximum (angle or length) of joint =? ~180,180 

Type of joint (2) is 1) Rotation 2) Translation =? 1 
Along which axis joint (2) is as:ting: 

1) X, 2) Y and 3) Z =? 3 
Minimum and maximum (angle or length) of joint =? -100,150 
Type of joint (3) is 1) Rotation 2) Translation =? 1 
Along which axis joint (3) is acting: 

1) X, 2) Y and 3) Z =? 3 
Minimum and maximum (angle or length) of joint =? -135,135 
Type of joint (4) is 1) Rotation 2) Translation =? 1 
Along which axis joint (4) is acting: 

1) X, 2) Y and 3) Z =? 3 
Minimum and maximum (angle or length) of joint =? -135,135 
Minimum and maximum angle rotation (about Y axis) 

of end-effector =? -180,180 
Specific joint initial position: 
Joint (1) =? 0 
Joint (2) =? 

\ 
-20 

Joint (3) =? 110 
Joint (4) =? 90 
End effector =? 90 

Fig. 3: Computer prompts and user entered parameters 
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Fig. 4: Automatically generated wireframe robot model 

The program provides an option for solid modeling. If this option is selected, the 
program prompts the user to enter extra kinematic parameters needed for solid 
modeling, such as the cross· sectional dimensions of all links. An example of 
creation of a solid model is shown in Fig. 5. 

Two approaches can be used for the automatic generation of robot kinematic 
models. The first is the Denavit-Hartenterberg's (D-H) approach described in Ref. 
8 and the second is the Borrel's approach which is a classical one, described in Ref. 
9. The later uses the notation shown in Fig. 2. Although the D-H notation is the 
most general one, it has not been used here as it requires a trained user to use the 
program. Instead, the Borrel's notation and approach of Ref. 9 is used because it is 

Fig. 5: Automatically generated solid robot model 
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simpler and requires no user training. The approach can automatically generate 
kinematic models for a large range of industrial robots. Further capabilities for 
handling particular link shapes or other complexities will be added in the future 
with graphic icons support. The procedure of automatic generation of mathematic­
al and graphical model is described below. 

Procedure 1: Automatic Generation of Robot Model: 

1) Accept user definition of number of joints, lengths and links, joint types, 
maximum and minimum joint limits, and axes of joint motions; 

2) accept user specifications of initial positions of joints; 

3) accept user selection of creation of wireframe or solid model and specifications 
of cross section dimensions if the solid modeling is selected; 

4) construct rotational and translational transformation matrices using Borrel's 
approach, Ref. 9; 

4) compute the transformation matrices of joints; 

5) compute consecutive transformation matrices to obtain the position of the 
points that describe the links; 

6) compute isometric projection of the position of the points that describe the 
links and connect them to obtain a model for the manipulator; 

7) if the solid modeling is selected remove hidden surfaces and paint the visible 
ones with appropriate colour and brightness. 

The second module of the program addresses the direct kinematic problem for 
evaluation of reachable (or working) surfaces and volumes. The user selects some 
of the joints to be locked at specified values, and gives the range and incremental 
steps of motion for the remaining joints. The motion of the robot is then animated 
and the traces of end-effector motion are plotted. 

An example of a resultant motion due to incremental steps in two joints is shown 
in Fig. 6 which represent a working surface area. A work or a reachable volume can 
be obtained due to motion of three joints that have no parallel axes. The procedure 
of the module is summarized below. 

Procedure 2: Direct Kinematic Problem Module: 

1) Invoke steps 1-6 of procedure 1 to generate a kinematic robot model; 

2) accept user selection of the joints that should be varied and their incremental 
steps and maximum and minimum limits; 
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Fig. 6: End-effector scanning of a work space area 

3) repeat steps 4-6 for all combinations of moving joint positions; 

4) compute the consecutive transformation matrices of the set of joint positions to 
determine the position of links and consequently the position of the 
end-effector; 

5) invoke step 6 of procedure 1 to draw a wireframe robot model; 

6) save the position coordinate of the end-effector; 

7) draw and/or print the end-effector positions. 

In evaluating robot performance, the user may be interested to check whether 
the manipulator can move the end-effector from an initial to a specified final 
position. The user may also need to evaluate the capability of the end-effector in 
achieving a final specified orientation. In essence, the user specifies the final 
end-effector position and wants to determine the corresponding joint positions. 
This is known as part of the inverse kinematic problem in robotics. Refs. 8-9 show 
how to solve this problem which, in general, requires using a matrix inverse 
algorithm or a robust generalized inverse routine to handle singular positions, e.g. 
Ref. 10. The procedures of the end-effector position and orientation modules are 
described below: 

Procedure 3: Inverse Kinematic Problem: I - End-effector Position Modul~: 

1) Accept initial and final end-effector position coordinates specified by the user; 

2) create end-effector translational motion steps along a line path connecting the 
initial and final positions of the end-effector; 

3) solve for the joint incremental motion needed to produce the end-effector 
translations of step (2) by inverting the Jacobian matrix and obtaining a 
practically feasible joint solutions; 
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4) compute consecutive matrix transformations to obtain changes of link and 
end-effector positions due to increments of joint positions; 

5) invoke step 6 of procedure 1 to draw a wireframe model of the robot; 

6) repeat steps 3-5 until either the required end-effector position is obtained or a 
problem of achieving a specific position is encountered and prompt the user by 
the final status. 

Procedure 4: Inverse Kinematic Problem: II - End-effector Orientation Module: 

1) Apply procedure 3 to check if the specified end-effector position is reachable 
or not and if yes, proceed through the following steps; 

2) accept the user selection of one of the two options: - check the capability of 
reaching a specified orientation, - check all possible orientations at the 
present end-effector position; 

3) for a specified orientation, solve the inverse kinematic problem to determine 
joint increments for obtaining the required orientation; 

4) compute consecutive transformation matrices to obtai!l the position of the links 
and end-effector; 

5) invoke step 6 of procedure 1 to draw a wireframe model of the robot; 

6) if the option of scanning all possible orientations is selected then repeat steps 
3-5 for various hand orientations and prompt the user of the results and of 
difficulties of achieving some of the orientations when encountered; 

7) provide a wireframe model of the robot and a diagram showing end-effector 
orientation at a specific position, as shown in Fig. 7, or all possible end-effector 
orientations at specific positions, as shown in Fig. 8. 

l l{t··· ... . l •.• ·-! I ...... 
\ ..... l -

(.·· -{. .. 
~~'·~ . 
l'••,,. "::r [:• I •:] ····it' ··=· . 

.. . . .. .. 
Fig. 7: Manipulator end-effector achieving a prespecified position and orientation 
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Fig. 8: End-effector scanned orientations at a specified position 

DYNAMIC PERFORMANCE EVALUATION 

Two approachers are used in dynamic modeling and simulation of robots. The 
first uses a user written routine to compute joint torques. The second approach 
automatically generates a dynamic model, Ref. 8, using the kinematical and 
dynamical parameters provided by the user. In this paper, we used the first 
approach because it is simpler and requires less computation which is appropriate 
for microcomputer applications. Of course, the second approach is better as it does 
not require user familiarity with the dynamics of the robot and its axes notations. 
This approach is currently under investigation for future implementation. 

To obtain joint torques to move the end-effector along a prespecified path, we 
run th~ inverse-kinematic position module at first, to obtain a sequence of joint 
displacements. The sequence is saved in a file which is then fed to the dynamic 
module. The procedure of computation is summarized below. 

Procedure 5: Joint Forces and Torques: 

1) Accept manipulator kinematic and dynamic parameters entered by the user; 

2) read joint-position sequences for moving the end-effector along a specified 
path; 

3) accept user entered time period required between motion sequential steps; 

4) 'compute joint speeds and accelerations based on the incremental joint 
positions and user required time step; 

5) check joint speeds and accelerations against their maximum and minimum 
limits, and if any joint violates one of its limits then reduce the time period and 
repe~t steps 4 and 5; 
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6) compute joint forces and torques using the user supplied routine; 

7) check joint forces and torques against their limits and if any joint violates one 
of its limit, then reduce the time period and repeat steps 4-7; 

8) plot speed, acceleration and torque/force for selected joints. 

MICROCOMPUTER IMPLEMENTATION EXPERIENCE 

We coded the two programs in BASIC language. The special graphic commands 
of the GW-BASIC version 2 were used. The two programs were run at first under 
GW-BASIC Interpreter on the IBM-PC and NCR-PC41 microcomputers which 
employ Intel8086 processors and on Apricot XI-20 microcomputer which employs 
an Intel 8086 processor. The screen resolution for the Apricot, IBM-PC, and 
NCR-PC41 monitors used were 800x400, 640x200, and 640x400 respectively. 

The kinematic performance of four-joint robot manipulators were evaluated, 
Figs. 4, 6-8. The computation time for each complete cycle of procedure 1 or 2 
elapsed 15, 15, 20 seconds for the IBM-PC, NCR-PC41, and Apricot microcompu­
ters respectively. The cycle of procedure 3 elapsed 144, 144, and 170 seconds and 
the cycle of procedure 4 elapsed 160, 160, 185 seconds for the IBM-PC, NCR-PC41 
and Apricot microcomputers respectively. 

To speed up computation we obtained a compiled (an executable program) 
version of the nongraphics portion of the first program. The graphical simulation 
portion was excluded because the available Compiler, at time of evaluation, did not 
support graphic commands. Therefore, we let the compiled portion finish all 
computation required and save the joint positions obtained in a RAM disk file. 
This file was then read by the graphical simulation portion of the program for 
display. This approach has led to execution time reduction by a factor of 10 for 
computation. When an 8087 coprocessor support was usd, we obtained an 
additional time reduction factor of 1.5. Thus the complete solution of one direct 
kinematic problem with wireframe representation required 1-1.3 seconds on 
IBM-PC compatible and an Apricot XI-20 microcomputers. 

The solid modeling represenatation of 4 joint robot manipulator on the Apricot 
XI-20 microcomputer required 140 seconds when run under GW-BASIC interpre­
ter. This time was reduced to about 115 seconds when we used the support of the 
complier and the mathematical coprocessor. 

The first program with the GW-BASIC interpreter occupied 64 K Byte of the 
computer memory. Due to this size limitation the interpreter did not allow direct 
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further expansion to allow for extra facilities or for increasing the number of points 
considered on the wireframe model. Of course, these problem can be overcome by 
dividing the program into several ones and pass data through them via external 
files. Also language Interpreters and Compilers that don't have the 64 K Byte 
limitation have recently started to appear. Thus the size of the program will not be 
a serious limiting factor for implementing robot simulation and evaluation packages 
on microcomputers. Moreover, the problem will tend to vanish if we use improved 
Interpreters and Compilers or microcomputers of the Advanced Technology (AT) 
generation (which uses 16 bit processors, e.g. Intel 80286) or higher performance 
technology of the 80386 or 80486 generations. 

On the speed of computation side, we can see that the current technology is 
appropriate for solving direct kinematic problem in off or on-line mode. The 
off-line computation of the inverse kinematic problem which has best computation 
time in the order of 10 seconds is reasonably acceptable. This time is considered 
high in on-line applications specially if there is a man controlling the arm (e.g. in 
resolved-rate and resolved-acceleration operator control). When a man is involved 
in the control loop, the computation period and joint response time should be less 
than 2 seconds. 

Advanced technology does not offer too much improvement in computation 
speed. Only a factor between 10 to 20 enhancement is expected. On the other 
hand, better computation speed improvement for on-line applications, can be 
obtained by using floating point accelerators with software that supports 
mathematical functions and in particular trignometric ones. These type of floating 
point accelerators can speed up computation by a factor of 20 as claimed by Systolic 
Systems Company of San Jose, California, for example. However, these 
accelerators are usually costly. The cost can be larger than the cost of the 
microcomputer system itself. 

The accelerators reduce computation time but don't affect the time of drawings. 
In the four joint manipulator example considered here, the speed of computation 
alone for the inverse kinematic problem was about 1.5 seconds. This time increases 
when the number of joints increases. To decrease this time we either use floating 
point accelerators or personal computers with faster central processors and 
math-coprocessors. 

Procedure 5 was used to compute the inverse dynamic problem of a robot 
manipulator. The end-effector path was a straight line as shown in Fig. 9. Fig. 10 
shows a schematic diagram -of the 4 joint robot used in the study. Each iteration 
required less than a second for computation of the joint speed, acceleration and 
torques. Examples of the program output results are shown in Figs. 11-13 for joint 
number two. Finer time steps can be easily obtained for smoother output results. 
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Fig. 9: Manipulator following a straight line path 

Fig. 10: Schematic diagram of the robot used in the dynamic performance 
evaluation 
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Fig. 13 Actuator torque of Joint no. 2 

SUMMARY AND CONCLUSIONS 

Two computer programs for evaluating the performance of robot manipulators 
on personal computers are presented. The first program has several modules. One 
module creates wireframe and solid model of robot manipulators based on 
user-defined kinematic parameters. The other modules solve the direct kinematic 
problem to evaluate reachable surfaces and volumes, and solve the inverse 
kinematic problem to evaluate the capability of the end-effector to achieve a 
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specified position and orientation. The second program computes joint torques or 
forces required to move the end-effector along a specific trajectory. 

The two programs can be used · to evaluate the kinematic and dynamic 
characteristics of many manipulators to select the right one suitable for performing 
a range of tasks. Program sizes can be easily accommodated by recently provided 
Interpreters and Compilers. Several computer runs for robot simulations revealed 
execution times (using compiled versions supported by a mathematical cop­
rocessor) in the order of 1 second and 10 seconds for one cycle of the solution of 
direct and inverse kinematic problems respectively. Also solid modeling was found 
to take several multiples of the time needed for creating simplified wireframe 
models. Thus it would ·be reasonable to adopt simplified wireframe models in robot 
simulation on personal computers unless there is a particular need for creating solid 
models. The computation time of the direct and inverse kinematic problem show 
that the current technology of microcomputer is appropriate for off-line computa­
tions. In on-line applications that use the inverse kinematics approach the need 
may rise for using a floating-point accelerator or a central processor with high clock 
speed. The need depends on the number of joints of the manipulator. 

On-line computations that use inverse kinematics in a closed loop system will be 
subjected to much stringent computation speed conditions that cannot be 
determined without knowing the structure of the controller, the sensor and the 
robot to be controlled. 
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