
Engineering Journal of Qatar University, Vol. 4, 1991, p. 141 - 156.

MICROCOMPUTER AIDED SELECTION OF
ROBOT MANIPULATORS

Tarek M. Abdel-Rahman and Nabeel H. Salem
Mechanical Engineering Department, Qatar University,

Doha, Qatar

ABSTRACT

This paper presents two programs for microcomputer aided assessment of the
performance of robot manipulators. The first program automatically generates
robot models based on user-supplied kinematic parameters. The program also
derives a kinematic model that relates the motion of manipulator end-effector to
the motion of the joints using the inverse kinematic approach. The approach uses a
robust inversion technique that can handle singular conditions as well as joint
redundancy. A user can optionally select evaluation of kinematic capabilities of the
robot manipulator, such as the ability of the end-effector to reach a specified
position and orientation in space or the evaluation of the work space. The second
program generates dynamic variables, such as forces and torques, based on
user-supplied dynamic parameters and equations of motion of the various joints.

Both programs are written for implementation on personal computers. Several
runs were carried out to demonstrate the capability and execution times of the two
programs.

INTRODUCTION

The advent of computer-controlled industrial robot that can be programmed to
perform a set of tasks will eliminate the need for high cost, custom designed
automation equipment. It can provide for the automation of product assembly and
its low cost will make possible the automation of small batch production shops. Of
course, industrial robots because of its physical limitations will be only capable of
performing a set of tasks that do not violate any of the robot physical constraints.

To enable selecting the right robot from several candidates or to evaluate the
capability of an available robot for doing a set of tasks or to evaluate the robot
performance when using various control schemes we need to employ a robot
simulation package. Development of such packages has been recently receiving
extensive attention, see for example Refs. 1-5. Ref. 1 gives a brief survey of various
approaches used by existing robot simulation packages. Firstly-developed packages
often require user knowledge of computer programming to use them. Secondly-

This paper is based on a graduation project work of the second author.

141

Tarek M. Abdei-Rahman and Nabeel H. Salem

developed packages offered increased flexibility but are limited to simulation only
of robots with predefined configurations. A third group of packages create
semi-automatic controlling equations for customized models and require that the
user be familiar with the modeling system on which these ~imulation packages are
built. The most recent group of packages provide automatically generated
solid-robot-models based on user supplied kinematic paramers, Refs. 1-3.

Extensive support of dynamic simulation is not available in most robot
simulators. Few packages provide users with dynamic analysis such.as forces and
torques for all links to determine effects of these variables on robot performance.
Users must input dynamic data such as inertia of all links and motor torque
characteristics. Automatically generated simulated dynamics and real time dynamic
simulation are still in the research stage. For example, Ref. 6 indicates some
on-g~ing research attempting to verify robot motions in terms of dynamic
performance, including overshoot, and tool settling time.

Packages available were developed for implementation on mainfra~es or
minicomputers. These packages depend on the availability of large memory, fast
processor and large disk space. And in addition, these packages are usually
expensive. The high cost of such hardware and software, of course, hinders the
introduction of robotic to small batch production shops. On the other hand, the
availability of low cost microcomputers spurs the investigation of the feasibility of
having low-cost robot simulation package that can support the selection and use of
robot manipulators in small batch production shops. The use of microcomputers for
simulation has its implications on the quality of the results obtained, Ref. 7, but in
many applications the advantages of the low cost of the microcomputer based
system outweigh the quality improvement of results obtained by mainframe or
minicomputer based simulator system.

In this paper we focus on the development and implementation of robot
simulation package on personal computers. The implementation of simulation
package on personal computer reduces the cost of performance evaluation
significantly but requires lengthy computation time. To reduce this time, the main
kinematic, dynamic and control characteristics are only considered. In addition
whenever we see that a very time consuming computation will be needed for a
complete evaluation, we resort to an interactive support of the user to limit his
range of interest to a reasonably selected set of variables.

The robot modeling and simulation package developed for performance
evaluation of robot manipulators comprises two programs. The first program
evaluates the kinematic characteristics of the robot. The program comprises four
modules as shown in Fig. 1. The first module automatically generates a robot model
from an interactively entered specifications that describe the structure and
kinematical parameters of the robot. Animated motion of a solid or wirefranie

142

Microcomputer Aided Selection of Robot Manipulators

Autanatic Generation of Robot Graphical M:>del M:>dule

r------------- --------- ----~
I
I
I
I
I
I
I
I
I
I
I

I
I
I

Kinematic Parameters

I
Wireframe M:>del

Construction

Solid M:>del Parameters

I -
Solid M:>del Constructioo

L ____________________ j

r----- -----l
Reachable I

Surface/Volcnne I
I
I
I
I
1
I
I
I
I L----- ____ J

Direct Kinematic Module

~------ -------,
I Han:i Position I
I I
I I
I I
I Hand orientation I
I - Specified I
1

1
- Scanning I

I I
1 I
I I L _____________ _j

Inverse Kinematic M:>dule

Fig. 1: Kinematical program modules

model can then be obtained. The second module solves a direct kinematic problem
to evaluate the working space of the manipulator. The third and fourth modules
solve inverse kinematic problem to evaluate the capability of end-effector to reach
specified position and orientation. The first program is described in the first
section.

The second program uses the joint kinematic variables computed by the first
program to compute torques and forces needed to be applied by the joint actuators
to move the end-effector along a specified trajectory. This is described in the
second section.

The third section presents execution times of the various modules on Apricot and
on IBM-PC compatible microcomputers. Techniques used, or that can be used, for
enhancing execution time are then provided.

143

Tarek M. Abdei-Rahman a.nd Nabeel H. Salem

KINEMATIC PERFORMANCE EVALUATION OF
ROBOT MANIPULATORS

The simulation program described in this section is characterized by its capability
of automatic modeling of robots from user entered robot kinematic parameters.
The parameters entered are prompted by appropriate program questions. The user
needs not to be familiar with any particular modeling method notation. All what is
required is to know how to define the motion of revolute and prismatic joints
according to the notation shown in Fig. 2 where the Y axis is taken along the
longitudinal axis of the links. Fig. 3 shows the simplified interact~ve kinematic
parameters needed to generate a simplified wireframe model. An example of a
wireframe model is shown in Fig. 4. The parameters that must be supplied are:

a) Rotation about X axis b) Rotation about Z axis

Xn-1
Zn-1

c) Rotation about Y axis (d) Translation in the Y direction

Fig. 2: Manipulator joint notation

144

Microcomputer Aided Selection of Robot Manipulators

total number of links and joints, link lengths, type of joints (rotationaVrevolute,
translational/prism) and rotational axes,
maximum and minimum joint limits,
initial position of each joint.

As shown in Fig. 4, we represented the links by the position of only four points in
space to reduce computational time. And for the same purpose we also avoided
drawing circules. This simple wireframe representation is appropriate for low speed
computer implementation and is sufficient for preliminary and many practical
kinematic evaluations of robot performance. Obviously, this representation is
appropriate in selection evaluations, i.e. for screening robots capable of performing
particular tasks.

Number of articulated segments =? 4
Base height =? 50
Segment number 1 length =? 40
Segment number 2 length =? 80
Segment number 3 length =? 80
Segment number 4 length =? 40
End effector length =? 20
Type of joint (1) is 1) Rotation 2) Translation =? 3
Choose 1 or 2, TRY AGAIN
Type of joint (1) is 1) Rotation 2) Translation =?
Along which axis joint (1) is acting:

1) X, 2) Y and 3) Z =? 2
Minimum and maximum (angle or length) of joint =? ~180,180

Type of joint (2) is 1) Rotation 2) Translation =? 1
Along which axis joint (2) is as:ting:

1) X, 2) Y and 3) Z =? 3
Minimum and maximum (angle or length) of joint =? -100,150
Type of joint (3) is 1) Rotation 2) Translation =? 1
Along which axis joint (3) is acting:

1) X, 2) Y and 3) Z =? 3
Minimum and maximum (angle or length) of joint =? -135,135
Type of joint (4) is 1) Rotation 2) Translation =? 1
Along which axis joint (4) is acting:

1) X, 2) Y and 3) Z =? 3
Minimum and maximum (angle or length) of joint =? -135,135
Minimum and maximum angle rotation (about Y axis)

of end-effector =? -180,180
Specific joint initial position:
Joint (1) =? 0
Joint (2) =?

\
-20

Joint (3) =? 110
Joint (4) =? 90
End effector =? 90

Fig. 3: Computer prompts and user entered parameters

145

Tarek M. Abdei-Rahman and Nabeel H. Salem

Fig. 4: Automatically generated wireframe robot model

The program provides an option for solid modeling. If this option is selected, the
program prompts the user to enter extra kinematic parameters needed for solid
modeling, such as the cross· sectional dimensions of all links. An example of
creation of a solid model is shown in Fig. 5.

Two approaches can be used for the automatic generation of robot kinematic
models. The first is the Denavit-Hartenterberg's (D-H) approach described in Ref.
8 and the second is the Borrel's approach which is a classical one, described in Ref.
9. The later uses the notation shown in Fig. 2. Although the D-H notation is the
most general one, it has not been used here as it requires a trained user to use the
program. Instead, the Borrel's notation and approach of Ref. 9 is used because it is

Fig. 5: Automatically generated solid robot model

146

Microcomputer Aided Selection of Robot Manipulators

simpler and requires no user training. The approach can automatically generate
kinematic models for a large range of industrial robots. Further capabilities for
handling particular link shapes or other complexities will be added in the future
with graphic icons support. The procedure of automatic generation of mathematic­
al and graphical model is described below.

Procedure 1: Automatic Generation of Robot Model:

1) Accept user definition of number of joints, lengths and links, joint types,
maximum and minimum joint limits, and axes of joint motions;

2) accept user specifications of initial positions of joints;

3) accept user selection of creation of wireframe or solid model and specifications
of cross section dimensions if the solid modeling is selected;

4) construct rotational and translational transformation matrices using Borrel's
approach, Ref. 9;

4) compute the transformation matrices of joints;

5) compute consecutive transformation matrices to obtain the position of the
points that describe the links;

6) compute isometric projection of the position of the points that describe the
links and connect them to obtain a model for the manipulator;

7) if the solid modeling is selected remove hidden surfaces and paint the visible
ones with appropriate colour and brightness.

The second module of the program addresses the direct kinematic problem for
evaluation of reachable (or working) surfaces and volumes. The user selects some
of the joints to be locked at specified values, and gives the range and incremental
steps of motion for the remaining joints. The motion of the robot is then animated
and the traces of end-effector motion are plotted.

An example of a resultant motion due to incremental steps in two joints is shown
in Fig. 6 which represent a working surface area. A work or a reachable volume can
be obtained due to motion of three joints that have no parallel axes. The procedure
of the module is summarized below.

Procedure 2: Direct Kinematic Problem Module:

1) Invoke steps 1-6 of procedure 1 to generate a kinematic robot model;

2) accept user selection of the joints that should be varied and their incremental
steps and maximum and minimum limits;

147

Tarek M. Abdel-Rahman and Nabeel H. Salem

.. "".~
·" .,J' -· .·
I •• ·"'"

:w:f.
·..g.,_

.r ,. __
I •-.,.
I •• ._

""\. ·­·-.......

..
~~ --- ---

1-
....

.: ..I-~
I ~:.
"I:.J.

Fig. 6: End-effector scanning of a work space area

3) repeat steps 4-6 for all combinations of moving joint positions;

4) compute the consecutive transformation matrices of the set of joint positions to
determine the position of links and consequently the position of the
end-effector;

5) invoke step 6 of procedure 1 to draw a wireframe robot model;

6) save the position coordinate of the end-effector;

7) draw and/or print the end-effector positions.

In evaluating robot performance, the user may be interested to check whether
the manipulator can move the end-effector from an initial to a specified final
position. The user may also need to evaluate the capability of the end-effector in
achieving a final specified orientation. In essence, the user specifies the final
end-effector position and wants to determine the corresponding joint positions.
This is known as part of the inverse kinematic problem in robotics. Refs. 8-9 show
how to solve this problem which, in general, requires using a matrix inverse
algorithm or a robust generalized inverse routine to handle singular positions, e.g.
Ref. 10. The procedures of the end-effector position and orientation modules are
described below:

Procedure 3: Inverse Kinematic Problem: I - End-effector Position Modul~:

1) Accept initial and final end-effector position coordinates specified by the user;

2) create end-effector translational motion steps along a line path connecting the
initial and final positions of the end-effector;

3) solve for the joint incremental motion needed to produce the end-effector
translations of step (2) by inverting the Jacobian matrix and obtaining a
practically feasible joint solutions;

148

Microcomputer Aided Selection of Robot Manipulators

4) compute consecutive matrix transformations to obtain changes of link and
end-effector positions due to increments of joint positions;

5) invoke step 6 of procedure 1 to draw a wireframe model of the robot;

6) repeat steps 3-5 until either the required end-effector position is obtained or a
problem of achieving a specific position is encountered and prompt the user by
the final status.

Procedure 4: Inverse Kinematic Problem: II - End-effector Orientation Module:

1) Apply procedure 3 to check if the specified end-effector position is reachable
or not and if yes, proceed through the following steps;

2) accept the user selection of one of the two options: - check the capability of
reaching a specified orientation, - check all possible orientations at the
present end-effector position;

3) for a specified orientation, solve the inverse kinematic problem to determine
joint increments for obtaining the required orientation;

4) compute consecutive transformation matrices to obtai!l the position of the links
and end-effector;

5) invoke step 6 of procedure 1 to draw a wireframe model of the robot;

6) if the option of scanning all possible orientations is selected then repeat steps
3-5 for various hand orientations and prompt the user of the results and of
difficulties of achieving some of the orientations when encountered;

7) provide a wireframe model of the robot and a diagram showing end-effector
orientation at a specific position, as shown in Fig. 7, or all possible end-effector
orientations at specific positions, as shown in Fig. 8.

l l{t··· l •.• ·-! I
\ l -

(.·· -{. ..
~~'·~ .
l'••,,. "::r [:• I •:] ····it' ··=· .

..
Fig. 7: Manipulator end-effector achieving a prespecified position and orientation

149

Tarek M. Abdel-Rahman and Nabeel H. Salem

Fig. 8: End-effector scanned orientations at a specified position

DYNAMIC PERFORMANCE EVALUATION

Two approachers are used in dynamic modeling and simulation of robots. The
first uses a user written routine to compute joint torques. The second approach
automatically generates a dynamic model, Ref. 8, using the kinematical and
dynamical parameters provided by the user. In this paper, we used the first
approach because it is simpler and requires less computation which is appropriate
for microcomputer applications. Of course, the second approach is better as it does
not require user familiarity with the dynamics of the robot and its axes notations.
This approach is currently under investigation for future implementation.

To obtain joint torques to move the end-effector along a prespecified path, we
run th~ inverse-kinematic position module at first, to obtain a sequence of joint
displacements. The sequence is saved in a file which is then fed to the dynamic
module. The procedure of computation is summarized below.

Procedure 5: Joint Forces and Torques:

1) Accept manipulator kinematic and dynamic parameters entered by the user;

2) read joint-position sequences for moving the end-effector along a specified
path;

3) accept user entered time period required between motion sequential steps;

4) 'compute joint speeds and accelerations based on the incremental joint
positions and user required time step;

5) check joint speeds and accelerations against their maximum and minimum
limits, and if any joint violates one of its limits then reduce the time period and
repe~t steps 4 and 5;

150

Microcomputer Aided Selection of Robot Manipulators

6) compute joint forces and torques using the user supplied routine;

7) check joint forces and torques against their limits and if any joint violates one
of its limit, then reduce the time period and repeat steps 4-7;

8) plot speed, acceleration and torque/force for selected joints.

MICROCOMPUTER IMPLEMENTATION EXPERIENCE

We coded the two programs in BASIC language. The special graphic commands
of the GW-BASIC version 2 were used. The two programs were run at first under
GW-BASIC Interpreter on the IBM-PC and NCR-PC41 microcomputers which
employ Intel8086 processors and on Apricot XI-20 microcomputer which employs
an Intel 8086 processor. The screen resolution for the Apricot, IBM-PC, and
NCR-PC41 monitors used were 800x400, 640x200, and 640x400 respectively.

The kinematic performance of four-joint robot manipulators were evaluated,
Figs. 4, 6-8. The computation time for each complete cycle of procedure 1 or 2
elapsed 15, 15, 20 seconds for the IBM-PC, NCR-PC41, and Apricot microcompu­
ters respectively. The cycle of procedure 3 elapsed 144, 144, and 170 seconds and
the cycle of procedure 4 elapsed 160, 160, 185 seconds for the IBM-PC, NCR-PC41
and Apricot microcomputers respectively.

To speed up computation we obtained a compiled (an executable program)
version of the nongraphics portion of the first program. The graphical simulation
portion was excluded because the available Compiler, at time of evaluation, did not
support graphic commands. Therefore, we let the compiled portion finish all
computation required and save the joint positions obtained in a RAM disk file.
This file was then read by the graphical simulation portion of the program for
display. This approach has led to execution time reduction by a factor of 10 for
computation. When an 8087 coprocessor support was usd, we obtained an
additional time reduction factor of 1.5. Thus the complete solution of one direct
kinematic problem with wireframe representation required 1-1.3 seconds on
IBM-PC compatible and an Apricot XI-20 microcomputers.

The solid modeling represenatation of 4 joint robot manipulator on the Apricot
XI-20 microcomputer required 140 seconds when run under GW-BASIC interpre­
ter. This time was reduced to about 115 seconds when we used the support of the
complier and the mathematical coprocessor.

The first program with the GW-BASIC interpreter occupied 64 K Byte of the
computer memory. Due to this size limitation the interpreter did not allow direct

151

Tarek M. Abdel-Rahman and N11beel H. Salem

further expansion to allow for extra facilities or for increasing the number of points
considered on the wireframe model. Of course, these problem can be overcome by
dividing the program into several ones and pass data through them via external
files. Also language Interpreters and Compilers that don't have the 64 K Byte
limitation have recently started to appear. Thus the size of the program will not be
a serious limiting factor for implementing robot simulation and evaluation packages
on microcomputers. Moreover, the problem will tend to vanish if we use improved
Interpreters and Compilers or microcomputers of the Advanced Technology (AT)
generation (which uses 16 bit processors, e.g. Intel 80286) or higher performance
technology of the 80386 or 80486 generations.

On the speed of computation side, we can see that the current technology is
appropriate for solving direct kinematic problem in off or on-line mode. The
off-line computation of the inverse kinematic problem which has best computation
time in the order of 10 seconds is reasonably acceptable. This time is considered
high in on-line applications specially if there is a man controlling the arm (e.g. in
resolved-rate and resolved-acceleration operator control). When a man is involved
in the control loop, the computation period and joint response time should be less
than 2 seconds.

Advanced technology does not offer too much improvement in computation
speed. Only a factor between 10 to 20 enhancement is expected. On the other
hand, better computation speed improvement for on-line applications, can be
obtained by using floating point accelerators with software that supports
mathematical functions and in particular trignometric ones. These type of floating
point accelerators can speed up computation by a factor of 20 as claimed by Systolic
Systems Company of San Jose, California, for example. However, these
accelerators are usually costly. The cost can be larger than the cost of the
microcomputer system itself.

The accelerators reduce computation time but don't affect the time of drawings.
In the four joint manipulator example considered here, the speed of computation
alone for the inverse kinematic problem was about 1.5 seconds. This time increases
when the number of joints increases. To decrease this time we either use floating
point accelerators or personal computers with faster central processors and
math-coprocessors.

Procedure 5 was used to compute the inverse dynamic problem of a robot
manipulator. The end-effector path was a straight line as shown in Fig. 9. Fig. 10
shows a schematic diagram -of the 4 joint robot used in the study. Each iteration
required less than a second for computation of the joint speed, acceleration and
torques. Examples of the program output results are shown in Figs. 11-13 for joint
number two. Finer time steps can be easily obtained for smoother output results.

152

Microcomputer Aided Selection of Robot Manipulators

\

•./(··· ...
'· ···· ..)!rl
L.· -- r·, "r·- ·-- I C ·, -.. _ _-·-. I. ·· ... 1.~ -.~I / : ~j., ~r-;~ !

i /[•'f.: \ i 1 t·· i !'· ,· i·. · .. / ·~- :·!
'k'ii \,~'.,I __ ., .;..>

l' '•."! '• I ~~--·"
I ; ·LJ -.;.

r-i., •" I "•

i cr;
Fig. 9: Manipulator following a straight line path

Fig. 10: Schematic diagram of the robot used in the dynamic performance
evaluation

Rod/sec.
30 r----------------------------------,

20

10

0

-10

-20

-30
6 8 10

Time period
12 14 16 0 2 4

Fig. 11: Speed of joint no. 2

153

Tarek M. Abdel-Rahman and Nabeel H. Salem

15

10

5

0

-5

-10

-15

-20

-25
0 2 4 6 B . 10

Time penod
12 14 16

Fig. 12 Acceleration of Joint no. 2

N.m
2.00 r------------~=-----,

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

Fig. 13 Actuator torque of Joint no. 2

SUMMARY AND CONCLUSIONS

Two computer programs for evaluating the performance of robot manipulators
on personal computers are presented. The first program has several modules. One
module creates wireframe and solid model of robot manipulators based on
user-defined kinematic parameters. The other modules solve the direct kinematic
problem to evaluate reachable surfaces and volumes, and solve the inverse
kinematic problem to evaluate the capability of the end-effector to achieve a

154

Microcomputer Aided Selection of Robot Manipulators

specified position and orientation. The second program computes joint torques or
forces required to move the end-effector along a specific trajectory.

The two programs can be used · to evaluate the kinematic and dynamic
characteristics of many manipulators to select the right one suitable for performing
a range of tasks. Program sizes can be easily accommodated by recently provided
Interpreters and Compilers. Several computer runs for robot simulations revealed
execution times (using compiled versions supported by a mathematical cop­
rocessor) in the order of 1 second and 10 seconds for one cycle of the solution of
direct and inverse kinematic problems respectively. Also solid modeling was found
to take several multiples of the time needed for creating simplified wireframe
models. Thus it would ·be reasonable to adopt simplified wireframe models in robot
simulation on personal computers unless there is a particular need for creating solid
models. The computation time of the direct and inverse kinematic problem show
that the current technology of microcomputer is appropriate for off-line computa­
tions. In on-line applications that use the inverse kinematics approach the need
may rise for using a floating-point accelerator or a central processor with high clock
speed. The need depends on the number of joints of the manipulator.

On-line computations that use inverse kinematics in a closed loop system will be
subjected to much stringent computation speed conditions that cannot be
determined without knowing the structure of the controller, the sensor and the
robot to be controlled.

ACKNOWLEDGEMENT

The authors acknowledge the contribution of Mr. Mohamed S. Takriti in
developing the computer module for the generation of the solid modeling of the
robot.

REFERENCES

1. Szeto, K.W., 1985, "Simulation of Parameterized Robots with Solid Model­
ing", Proceedings of the lASTED International Symposium on R9botics
and Automation, Lugano, June 24-26.

2. Szeto, K.W., 1985, "An Approach to Modeling Robots in Workcells for
Graphical Simulation", Masters Thesis, UCLA Manuf. Engr. Program.

3. Szeto, K.W. et al., "Parameterization of Robots for Simulation", UCLA
Manuf. Engr. Program Report 8501.

155

Tarek M. Abdel-Rahman and Nabeel H. Salem

4. Derby, S.J. 1982, "General Robot Arm Simulation Program (GRASP): Part
1, A Program to Evaluate the Performance of Industrial Robots in their
Working Environment", Proc. 2nd Inti. Comp. Engr. Conf., ASME.

5. Derby, S.J., 1982, "General Robot Arm Simulation Program (GRASP): Part
2, Methods of Joint Solutions and the Reachable Volume", Proc. 2nd Inti.
Comp. Engr. Conf., ASME.

6. Stauffer, R., 1984, "Robot System Simulation", Robotics Today.

7. Ahmed, S.V., 1985, "Microcomputer for Simulations and Graphics: A
Comparison with Mainframes and Minicomputers", Proceedings of
IECON'85, the 1985 conference on Industrial Electronics, Control, and
Instrumentation, Nov. 18-22, pp. 588-592. '

8. Paul, R.P. 1981, Robot Manipulators, MIT Press.

9. Coiffet, P., 1981, Robot Technology: Modelling and Control, Prentice Hall.

10. Klema, V.C. and Laub, A.L., 1980, "Singular Value Decomposition: Its
Computation and Some Applications", IEEE Trans. on Automatic
Control, Vol. AC-25, No. 2, pp. 164-176.

156

