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ABSTRACT

The time-dependent, double diffusive stability problem for a horizontal layer of
salty water bounded by two rigid isothermal surfaces is analyzed using a linear
perturbation technique. Initially, the layer is subjected to zero temperature and salinity
gradients. At time t = O, uniform step increases in both temperature and salinity are
imposed at the bottom surface while the top surface is impermeable to diffusion of
salt. Stability results defined by the critical thermal Grashof number as a function of
system parameters namely: solute Grashof number, Prandtl number, Schmidt number,
time and wave size are presented graphically.

INTRODUCTION

The convection process in a horizontal fluid layer with steady-state
temperature and salinity distributions has been studied extensively for both the
linear and non-linear profiles [1—8]. Recently, the effect of vertical motion on
the linear stability of a horizontal layer for both finger and diffusive regimes, was
investigated theoretically [9]. Very little work has been done to handle the
situations in which the fluid layer is heated in a time-dependent manner, however.

The time of the onset of convection in a layer initially stably stratified and
then heated from below in a transient manner has been recently considered by
Kaviany [10] and Kaviany and Vogel [11]. In these studies, the stability in the
diffusive regime, was examined both experimentally and theoretically, for the
transient case with initial uniform salinity gradient and zero temperature gradient.
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The effect of the presence of a thin mixed layer at either the bottom or the top
of the fluid layer on the delay in the onset of convection was examined. In the
former case, it was observed that the salinity gradient becomes ineffective if the
mixed layer thickness exceeds 25 percent of the fluid layer. In the latter case, it
was observed that stability is enhanced provided the heat flux at the bottom is
higher than that at the top.

In this paper, the onset of convection in a horizontal layer bounded by two
rigid surfaces for the situation in which the time dependent temperature and
salinity gradients are initially zero is considered. This situation, finds applications
in solar energy systems such as the filling of a salt gradient solar pond and water
desalination in a solar still.

FORMULATION
Analysis:

Consider a horizontal fluid layer of Boussinesq fluid of thickness h with the
z axis in the opposite direction of gravity confined by two rigid surfaces as shown
in Figure (1). The fluid layer is initially at a uniform temperature T, and uniform
salinity c;. At time t = O, heating is initiated at the bottom surface by a step
increase in the wall temperature to a uniform value T,. At the same time, the
salinity at the bottom is raised to a uniform value Cs, to neutralize the destabilizing
effect of heating. The top surface is maintained at temperature T, with zero salt
flux. '

z‘

h Ty,dc/dz=0 rigid surface
t :O T‘, . C“

0

T2 , ¢ rigid surface

Fig. (1) : Schematic diagram of the fluid layer.
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Stability Analysis:

The onset of convection in the stratified layer governed by the following
stability problem given in non-dimensional form is given as:

3 2 2

2, o2
(- -7V V = GV T - GV C 1)
3 1 52 z
(57 -5z V1T= - DV | @
=2- - L 92y ¢c. - (pé)v @)
aT  Sc

The perturbed boundary conditions are:

DV =T =0 at YA

vV o= =0, 1
) C =0 at Z =0, @)
DC= 0 at Z=1

The initial temperature and salinity gradients, (DT and DC) appearing in Egs. ‘
(2 & 3) are to be obtained from the solution of the diffusion equations for heat
and mass given in the dimensionless form as:

N A | 22 1 ()
dt Pr azz .
and *
ele 1 3¢
= (6)
oT Se 322

The boundary and initial conditions are:

T=0 , T(2)=C(Z) =0

in

T>0 , T(0)-1 = C(0)-1 = T(1) =DC(1) =0 (7)
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where, Pr = Prandtl number, Sc = Schmidt number.

Applying the separation of variables technique, the solutions to equations (5)
and (6) subject to conditions (7) are given by:

w -alt/er ®)
T = (1-2) -2 ¢ -& sina 2
m=1 Cm m
- -Blt/sc
€ = 1-2 z —e—-g—— sinB 2z
m=1 m
where
Gp = MT Bp=(m-1/2)7 9)

Typical mean temperature and mean salinity distributions are plotted in
Figures (2) and (3) as functions oftime. The thermal profile grows very fast such
that it covers the whole layer in a time = 0.16 and reaches the steady state ¢
at T = 1.0, while the salinity profile grows very slowly reaching the top
surface at T = 7.0 and maintains its steady state at T = 500.

1
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Fig. (2) : T vs. layer thickness Z at different time values,
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Fig. (3) : C vs. layer thickness Z for different values of time, T .

Considering, the three-dimensional disturbances to be periodic in XY plane,
perturbed quantities are written as:

F = F*(Z,7) exp [1(a3X + 83Y) ] (10)

yvhere F =V, Tor C, a; and a, are the wave numbers in X and Y directions
respectively, and F* (Z, T) is the amplitude of the perturbed quantity.

Introducing Eq. (10) in the stability equations Egs. (1—3), gives:

d 2

(7 - (0% - a2) 1 (02 - a?) v* - Gralr" - csalc” (11)
. .
e 1,'%; (DZ— azl '1'* = - (DT) V*‘ (12)
2 -1 p2_ 2y ¢* .
37 ~ §c (D"- 871 C = - (DC) V (13)
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V¥ = DV¥ = T* = C* = 0 at Z =0

(14)
V¥ = DV* = T* = DC* = 0 : at Z =1
where a2 = azl + a22 D" =23"/3Z", Gt = thermal Grashof number and

Gs = solute Grashof nufnber.
Method of Solution:

The system of Eqs. (11—14) is solved numerically using Galerkin’s method.
In this method, the perturbed quantities. (V*, T* & C*) are constructed as a
series of trial functions in such a way to satisfy their boundary conditions. These
functions take the form:

* N
= 15
RN eI ¢ (15)

x N
T = I B (T) 8in (mm2) (16)

‘m=1

* N
C = L Cm('l') sin {(m-1/2) wZ] 17)

m=1

The eigenvectors V_ (Z) together with their eigenvalues are given in Reference [9].

Substituting the above approximate solutions into Eqs. (11—-13), utilizing the
orthogonality conditions, a set of linear algebraic equations is obtained in the
form:

o
>+

R .
= [H]1 X (18)

|

Q.
-~

—
where X = (A, B, Cm)T , and [H] is a matrix of order 3Nx3N.
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Eq. (18) is solved numerically to determine the critical conditions over the

transient period characterized by the thermal Grashof number, Gt and the

corresponding frequency, p; and wave number, a for wide range of Gs, for a NaCl

solution having Pr = 3.35 and Sc = 175 (at 60 ° and 10% salinity). The number

of terms N needed for an error less than 2% was found to vary from 4 to 12 as

Gs was increased from O to 108. A sample of the results are discussed in the next
section.

RESULTS AND DISCUSSION

The effects of a developing salinity gradient on the stability criteria expressed
by the critical thermal Grashof number Gt, and the corresponding wavelength
(2 7/ a) and frequency (p;) are presented in Figures (4—6) respectively for an
aqueous solution having Pr=3.35 and Sc=175.

10
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Fig. (4) : Thermal Grashof number, Gtc vs. time, 1T , for different Gs values.
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CONCLUSION

The stability of the horizontal fluid layer initially subjected to a step increase in
both temperature and salinity at its bottom surface is summarized as follows:

(1) When the heating begins, the salinity profile isvery weak in comparison
with the thermal profile, thus the stability of the layer is thermally
dominated. For values of time greater than 0.16, the growth of salinity profile
acts to neutrailize the destabilizing thermal effect reaching its maximum at
T =30.For 7 > 30 the effect delays and the problem becomes thermally
dominated at T =500.

(2) The wave spectrum as defined by wave number and frequency at the onset
of convection is greatly influenced by time changes. For small values of time,
T < 1.5 instability is initiated as - stationary cells while for T = 1.5
the instability sets in as travelling waves.
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NOMENCLATURE
a : wave number
ap, a, : wave numbersin x, y directions respectively
c,c : mean and perturbed salinities, % weight
cq : initial salinity
Cy : salinity at bottom surface
C : mean dimensionlesss salinity, (c — ¢;) / (c,— cy)
D : 90/9Z
D, : solute diffusivity
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DC : mean salinity gradient

DT : meantemperature gradient

g : gravitational acceleration

h : thickness of horizontal layer

Gs : solute Grashof number, g 3(c, — ;) h3/w 2
Gt : thermal Grashof number, gy (T, — T,) h3/v 2
P; : frequency

Pr : Prandtlnumber, v / «

Sc : Schmidtnumber, v /D,

t : time

T, : initial temperature, temperature at top surface
T, : temperature atbottom surface

v : perturbed vertical velocity

\Y : non-dimensional perturbed velocity, v.h/v
X,Y,2, : cartesian coordinates

XY, Z : (x,¥,z)/h

Superscript

* perturbed quantities as a functioninZ and T

Greek Letters

: thermal diffusivity
: coefficient of solute expansion
: coefficient of thermal expansion
: kinematic viscosity
. Fourier number, vt/h?
2 . 92/3X2 +3%/3Y?
2 : 32/0X2 +3%/3Y?% + 3% /972

4q 9 2 R ™ g
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