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ABSTRACT 

The paper presents a method for estimating long-term deflections of reinforced 
concrete beams by considering creep and shrinkage effects separately. Based on 
equilibrium and compatibility conditions a method is developed for investigating 
the properties of a cracked transformed section under sustained load. The concept 
of effective moment of inertia is extended to predict initial-plus-creep deflections. 
Long-term deflections computed by the proposed method are compared with the 
experimental results available in the literature and with the values obtained by the 
ACI Code method. This comparison shows that for beams having span/thickness 
ratio greater than 25, the ACI Code method underestimates long-term deflections 
while the proposed method gives a better estimate with computed to measured 
deflections ratio equal to 1.0. 
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NOMENCLATURE 

Area of tension steel 
Area of compression steel 
Width of beam section 
Creep coefficient (multiplier) for concrete strain at an uncracked 
section at time t 
Creep coefficient (multiplier) for concrete strain at a cracked 
section at time t 
Creep coefficient for plain concrete at time t 
Ultimate creep coefficient for plain concrete 
Effective depth ofbeam section 
Compression steel depth factor 
Modulus of elasticity 
Modulus of elasticity of concrete under short-term loading 
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Reduced or sustained modulus of elasticity of concrete at time t 
= Modulus of elasticity of steel 

Compressive strength of concrete under short-term loading 
Modulus of rupture 
Extreme fibre compressive stresses in concrete at a cracked section, 
immediately after loading and at time t, respectively 

= Stresses in tension steel at a cracked section, immediately after 
loading and at time t respectively 
Stresses in compression steel at a cracked section, immediately 
after loading and at time t, respectively 
Extreme fibre compressive stresses in concrete at an uncracked 
section, immediately after loading and at time t, respectively 
Total thickness ofbeam section 
Moment of inertia 
Moments of inertia of cracked transformed sections immediately 
after loading and at time t, respectively 
Effective moments of inertia for calculating beam deflections 
immediately after loading and at timet, respectively 
Moment of inertia of gross concrete section ignoring reinforcement 
Moments of inertia of uncracked transformed sections immediately 
after loading and at time t, respectively 
Neutral axis depth factors for cracked transformed section 
immediately after loading and at time t, respectively 
Span length 
Bending moment 
Maximum span moment 
Cracking moment of a section 
Beam constant (Sec Eq. 17) 
Modular ratio for short-term/immediate loading 
Increased modular ratio at time t 
Transformed area multiplier for tension steel at a cracked 
transformed section at time t 
Tension steel ratio= Aslbd 
Compression steel ratio= As'lbd 
Section moduli for cracked transformed sections with respect to 
extreme compression fibre, immediately after loading and at time t 
respectively 
Section moduli for uncracked transformed sections with respect to 
extreme compression fibre, immediately after loading and at timet 
respectively 
time under sustained loading 
Short-term/immediate (initial) deflection after loading 
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Initial-plus-creep deflection at timet 
== Shrinkage deflection at time t 

Total long-term deflection at timet 
(Second subscripts M, A and P with vo and Vt stand for measured 
deflection, deflection computed by the ACI Code method and 
deflection computed by the proposed method respectively) 
Ratios of neutral axis depth to total depth (thickness) ofuncracked 
transformed sections immediately after loading and at time t, 
respectively 
Extreme fibre compressive strains at cracked sections immediately 
after loading and at time t respectively 
Shrinkage strain for plain concrete at time t 
Ultimate shrinkage strain for concrete 
Extreme fibre compressive strains at uncracked sections 
immediately after loading and at time t respectively 
Long-term deflection multiplier (ACI Code method) 

INTRODUCTION 

The use of higher strength materials and the strength method of design, 
resulting in shallower members, has increased the importance of serviceability 
checks in the design of reinforced concrete structures. For flexural members 
immediate or short-term deflections as well as time-dependant or long-term 
deflections, under service loads, need to be checked. 

Immediate deflections are influenced by the magnitude and distribution of 
loads, span and conditions of restraint, section properties, material properties and 
the amount and extent of flexural cracks [ 1]. Taking into account most of these 
factors the ACI Code 318-89 [2] recommends that immediate deflection of a 
reinforced concrete flexural member under service loads be computed by using the 
formulas of elastic deflection with flexural rigidity equal to Ecle, where Ec is the 
short -term modulus of elasticity of concrete and Ie is the effective moment of inertia 
for the member. A comparison of deflections calculated by the ACI Code method 
with experimental results shows that the method gives excellent prediction of 
immediate deflections [3,4]. 

Long-term deflections are mainly due to the effect of creep and shrinkage and 
are influenced by a number of factors including stresses in the concrete, amount of 
tension and compression reinforcement, size of member, curing conditions, 
temperature, relative humidity, age of concrete at time of loading, and duration of 
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loading [1]. The ACI Code [2] suggest that additional long-term deflection resulting 
from the combined effect of creep and shrinkage under sustained load be obtained 
by multiplying the corresponding immediate deflection by a factor A. that depends 
only on the duration of loading and compression reinforcement ratio. The 
application of this method to a large set of experimental results indicates a 
variability of± 62 percent in the estimation of long-term deflections [ 4]. There may 
be, therefore, instances when the simple method suggested by the ACI Code may not 
be applicable and it may become essential to estimate long-term deflection by 
considering creep and shrinkage effects separately. 

This paper proposes a method for calculating long-term deflections of 
reinforced concrete beams by considering creep and shrinkage effects separately. 
Deflections due to creep are generally much greater than deflections resulting from 
all other time-dependent effects combined and are of primary interest [ 1]. The aim 
of this paper is to develop a method for predicting flexural rigidity and deflection 
due to creep under sustained loading. Giving due consideration to the effect of 
creep, compatibility and equilibrium, the paper develops expressions for some basic 
properties of a cracked transformed section which will facilitate the calculation of 
its moments of inertia at any time t. The concept of effective moment of inertia is 
extended to estimate member flexural rigidity and initial-plus-creep deflection under 
sustained load. Separate calculations for shrinkage defection are proposed to be 
carried out by Branson's method [5]. To establish the suitability of the method, 
deflection predictions using the proposed method are compared with experimentally 
measured long-term deflections as well as with the values obtained by the ACI Code 
[2] procedure. 

LONG-TERM DEFLECTIONS 

Total long-term deflection vt at any time t under sustained load can be 
expressed as a sum of initial-plus-creep deflection Vcp and shrinkage deflection Vsh, 
t.e., 

Vt = Vcp + Vsh (1) 

Considering service loads, Vcp can be computed by using the formulas of 
elastic deflection employed for calculating immediate deflection with Ecle, the 
flexural rigidity of the member immediately after loading, replaced by Ectlet, the 
flexural rigidity at time t under sustained loading. Here Ect is the reduced modulus 
of elasticity of concrete and let is the effective moment of inertia of the member at 
time t. A method for calculating let is developed later in the paper. 
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Deflections due to shrinkage are independent of the applied loading but are in 
the same direction as those caused by gravity loading. A number of methods have 
been suggested for estimating shrinkage deflections. In the method proposed in this 
paper, Branson's method [5] is used for estimating shrinkage deflections. 

EFFECTIVE MOMENT OF INERTIA 

For calculating immediate deflections under service loads the ACI Code [2] 
recommends formulas for Ec and Ie. The formula for the effective moment of inertia 
Ie is: 

(2) 

where Mer is the cracking moment, Ma is the maximum span moment, Ig is the 
moment of inertia of the gross concrete section ignoring reinforcement, and Ic is the 
moment of inertia ofthe cracked transformed section. 

In order to include the effect of reinforcement on the properties of uncracked 
section, lg in Eq. (2) can be replaced by lu, the moment of inertia ofthe uncracked 
transformed section to yield the following equation for Ie: 

(3) 

The use oflu in place oflg has already been recommended by Branson [5]. lu 
may be more accurately used for estimating Ie for heavily reinforced members and 
lightweight concrete members. Obviously, the cracking moment Mer for use in Eq. 
(3) should also be determined by using the uncracked transformed section. If the 
modulus of rupture, fr is evaluated correctly, the accuracy in determining the first 
cracking point will be improved using lu [5]-

Using Eq. (3), the flexural rigidity Ecle for a member immediately on loading 
can be expressed as follows: 

(4) 
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As already indicated, the flexural rigidity for predicting initial-plus-creep 
deflection can be expressed as Ect let· The reduced or sustained modulus of 
elasticity for concrete Ect can be taken equal to Ecf(1 +Ct.), where Ct is the creep 
coefficient and is a function of relative humidity, concrete quality, duration of 
applied loading, and age of concrete when loaded [ 1]. The following relationship is 
suggested [5] between Ct, ultimate creep coefficient Cu and duration ofloading t 
(days) for concrete having "standard conditions", i.e., 4 in (100 mm) slump or less, 
40 percent relative humidity, moist cured and loaded at an age of 7 days: 

Ct = 10+ t0.60 Cu 
(5) 

Correction factors for Ct have also been suggested [5] when the conditions are 
different from the above-mentioned standard conditions. 

For initially cracked simply supported beams (being considered in this study), 
the values of Ma and McriMa will remain constant under sustained load. Effective 
moment of inertia let, and flexural rigidity Ect let at time t can then be expressed by 
the following equations which are similar to Eqs. (3) and (4) respectively: 

ra (~:)' ru,{- (~)' },, (6) 

Ectla ~ [(~:r +- (~:n I,,IIut] IutEot (7) 

Here lut and let are the moments of inertia ofuncracked and cracked transformed 
sections respectively at time t. 

While discussing the development of Eq. (2) it has been stated [5] that the 
equation is not sensitive to the power ofMcriMa with values of2.8 or 3.2. Noting 
this discussion and the limited data presently available on time-dependent 
deflections the power of3 has been retained in Eqs. (6) and (7). 

In continuous members some redistribution of moments may occur under 
sustained load. Ignoring this redistribution the values of let for the critical positive 
and negative moment sections of a continuous member can be calculated with the 
respective values ofMa and Mcr!Ma used in computing Ie for those sections. 
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TRANSFORMED SECTIONS 

The properties of uncracked and cracked transformed sections immediately on 
loading are obtained by applying the concept of the modular ratio, n = EsiEc, where 
Es is the modulus of elasticity of steel [ 6]. The modular ratio concept assumes equal 
strains in the reinforcing steel and the surrounding concrete, i.e., perfect bond. 

For reinforced concrete beams under sustained load an "increased" modular 
ratio nt = EsiEct can be defined. Noting the basic assumption of modular ratio 
concept, nt may be used for calculating the transformed areas of tension and 
compression reinforcement, and hence lut, for an uncracked section. Similarly, nt 
may be used for calculating the transformed area of compression reinforcement at a 
cracked section. However, this simple increased modular ratio approach does not 
seem to be valid for computing the transformed area of tension reinforcement at a 
cracked section under sustained load. The creep of concrete will increase bond 
deterioration and slip between steel and concrete which occur adjacent to cracks. 
The quasi-elastic method based on increased modular ratio will thus overestimate 
the tension steel area transformed to equivalent concrete area. The transformed area 
of tension reinforcement and other properties of a cracked transformed section under 
sustained load need to be obtained by considering strain compatibility and 
equilibrium conditions. Simultaneously, it is important to consider any relationship 
that may exist between the properties of uncracked and cracked transformed 
sections immediately after loading and under sustained load. The following 
equations for the properties of the two types of sections have been developed by 
assuming that the stresses are within linear elastic range. This assumption generally 
implies that the steel stress is below yield point and the concrete stress is not greater 
than 0.5 fc', where fc' is the cylinder compressive strength [6]. 

Uncracked Section 

For an uncracked section subjected to a bending moment M, Fig. 1 shows 
transformed ~ections, strain distributions and stress distributions immediately after 
loading (t = 0) and at time t under sustained load. Since the stresses and strains arc 
within the elastic range, the extreme fibre strains, Eu immediately after loading and 
Eut = (1 +C) Eu, at timet, can be expressed as follows: 

fu MY h 
(8) = 

Ec Eclu 

and 
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or (1 +C) &u (9) 

where h is the total depth (thickness) of the section, fu and fut are the extreme fibre 
compression stresses in concrete, y and Yt are the ratios of neutral axis depth to the 
total depth (thickness), and lu and lut are the moments of inertia ofuncracked 
transformed sections immediately after loading and at timet, respectively. Cis the 
creep coefficient (multiplier) for concrete strain at the uncracked section under 
consideration. Because of the influence of section properties, the value of C may be 
less than Ct, the creep coefficient obtained from tests on plain concrete. 

h d 

ACTUAL SECTION 

, 
A a 

.As • • • 
'-- . .__ ____ _, 

TRANSFORMED 
SECTION 

STR.AIN 
DISTRIBUTION 

(a) IMMEDIATELY AFTER LOADING (t:O) 

STRESS 
OISTRIBUT ION 

fut = (l+(.)C.u 

(b) UNDER SUSTAINED LOAD AT TIME t 

Fig. 1: Uncracked section 
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From Eqs. (8) and (9) the following relationship between C, Ct and the 
properties of uncracked transformed sections is obtained: 

1+C Eclu Yt = 
Ectlut Y 

(10) 

Substituting Ec 
Ect = (1 + Ct) 

in Eq. (10), 

1+C (1 + Ct) 
lu Yt (1+Ct)~ = -- = 
lut Y Sut 

(11) 

where Su = lu/y.h and Sut = lutfYt·h are the section moduli for the uncracked 
transformed sections, with respect to the extreme compression fibre, immediately 
after loading and at time t under sustained load. 

Cracked Section 

Figure 2 shows transformed sections, strain distributions and stress 
distributions for a cracked section immediately after loading and at time t under 
sustained load with bending moment M. For the transformed section immediately 
after loading, the modular ratio n has been used to define the transformed areas of 
tension and compression steels. For the transformed section at t, nt has been used to 
define the transformed area of compression steel only. In keeping with the previous 
discussion, the transformed area for tension steel at time t has been taken equal to 
ntt As, where ntt is defined as the transformed area multiplier for tension steel at 
time t. C' is the creep coefficient for concrete strain at the cracked section under 
consideration. At this stage it may be assumed that C' is not equal to C. It is to be 
noted that with the cracked transformed section modeled by using ntt, the value at 
the level of tension steel in the strain distribution (Fig. 2b) does not represent the 
steel strain at time t. However, the strain in tension steel can be obtained from the 
corresponding stress once its value has been determined. 

Following the procedure used for uncracked section, a relationship between C', 
Ct and the properties of cracked transformed section can be obtained: 

1+ C' = Eclc kt 

Ectlct k 
(12) 
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or 

l+C' (13) 

where k and kt are the neutral axis depth factors and Ic and let are the moments of 
inertia of the cracked transformed sections immediately after loading and at time t 
under sustained load, respectively. Sc taken as Icfkd and Set taken as Ictlkt.d are the 
section moduli for cracked transformed sections immediately after loading and at 
time t. d is the effective depth of the section. 

(a) IMMEDIATELY AFTER LOADING (t:O) 

' I 
I 

; : 
n tt A5 , 

L----- ---- .J 

1st 

(b) UNDER SUSTAINED LOAD AT TIME t 

Fig. 2: Cracked section 
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From Eqs.(ll) and (13) the following expressions are obtained: 

Set = Sc (1 +C) 
Sut Su (1 + C') 

Iu let Yt k (1+C') ---- = 1.0 
lut Ic Y kt (1 + C) 

(14) 

(15) 

Eqs. (14) and (15) represent relationships between the uncracked and cracked 
sections. These equations can be used to check the validity of any procedure used 
for calculating the properties of the two types of sections. 

For the cracked transformed section at timet, the value ofkt can be determined 
by considering equilibrium conditions immediately after loading and under sustained 
load. 

Taking moments about the tension steel, for the stresses immediately after 
loading (Fig. 2a): 

(16) 

or 

= 
3k - k2 k-d' 

6 
+ p' (n -1) k (1- d') = m (constant) (17) 

M 

Similarly, from the stress distribution at timet (Fig. 2b): 

(18) 

and 

M = [3kt-kt +p'(n- 1)kt-d'(l-d')][l+C') (1 9) 
fc bd2 6 kt 1 + Ct 

Here fc and fct are the stresses at the extreme fibre in compression, immediately 
after loading and at time t, p' is the compression steel ratio, b is the width, and d' is 

111 



K.M. Mahmood, S.A. Ashour and S.I. Al-Noury 

a factor which defines the depth of the compression steel As' with respect to the 
effective depth d. 

Equating the right hand sides ofEqs. (17) and (19), and rearranging: 

1+C' 

1+Ct 
(20) 

Trial and error solution of Eq. (20) will provide the value ofkt. In the case of a 
singly reinforced rectangular section, Eq. (20) reduces to a quadratic equation, 
whose solution yields the following expression for kt: 

( 
1 + CtJ ( 2) kt = 1.5 ±) 2.25- 1 + C' 3k - k (21) 

Once the value of kt has been determined, ntt is obtained by taking moments of 
areas of the transformed section at timet (Fig. 2), about the neutral axis. The final 
expression for ntt is: 

ntt = kr + 2 Cncl) p' Ckcd') 
2p (1-kt) 

(22) 

In the case of a singly reinforced rectangular section, Eq. (22) reduces to the 
following form: 

lltt 
2p (1- kt) 

(23) 

Having calculated the values of kt and ntt, the moment of inertia let for the cracked 
transformed section at time t (Fig. 2b) can be worked out. 

If all the properties for uncracked and cracked sections are correctly calculated, 
Eqs. (14) and (15) will be satisfied. 

Stresses in Concrete and Steel 

Stresses in concrete at different fibres of uncracked or cracked section can be 
calculated directly by using the properties of corresponding transformed section and 
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the bending equation of elastic homogeneous beams. Stress in reinforcing steel will 
be a product of the appropriate value of modular ratio/transformed area multiplier 
and the stress in the transformed section at the level of the reinforcement. The value 
of n will, therefore, be used for calculating stresses in tension and compression 
steels at uncracked and cracked sections immediately after loading. Under sustained 
load, nt will be used for calculating stresses in tension and compression steels at 
uncracked sections as well as in compression steel at a cracked section, while ntt 
will be used for calculating stress in tension steel at a cracked section. 

COMPUTATION PROCEDURE AND SIMPLIFIED 
EQUATIONS 

For a gtven section and material parameters, the properties of uncracked 
transformed sections (y, lu, Yt and lut) immediately after loading and under 
sustained loading (Fig. 1) and those of a cracked transformed section (k and lc) 
immediately after loading (Fig. 2) can be readily computed. The value of C can then 
be calculated from Eq. ( 11). For the determination of C' the following procedure 
can be adopted: 

a) Assume a value ofkt 

b) Calculate ntt from Eq. (22) 

c) Calculate let for the cracked transformed section using nt for compression 
steel and ntt for tension steel (Fig. 2) 

d) Calculate (1 + C') from Eq. (13) 

e) Substitute all the relevant values in Eqs. (20) and (15) to see whether these 
equations are satisfied 

f) Repeat the above steps to obtain a value ofkt and the corresponding values of 
ntt, let and C' which satisfy Eqs. (20) and (15). 

The above procedure was used to develop a computer program to analyze a 
large number of rectangular beam sections with different combinations of 
practically possible section and material parameters. The results of this parametric 
study indicate that Eqs. (20) and (15) are satisfied only when C' = C, i.e., the creep 
coefficients (multipliers) for concrete strains in uncracked and cracked transformed 
sections at any time under sustained loading, are equal. This is a logical finding 
because the same value of the creep coefficient, Ct for plain concrete has been used 
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in the derivation of equations for the two types of transformed sections and that Eqs. 
(11) and (13), for C and C', respectively, are independent of the bending moment 
and the stresses being induced. 

and 

By substituting C' = C, Eqs. (14) and (15) take the following simplified form: 

Set = Sc 
Sut Su 

_h_lctYt~ = l.O 
lut lc Y kt 

(24) 

(25) 

Eq. (24) shows that if all the values are correctly substituted, the ratio of 
section moduli with respect to extreme compression fibre for the two types of 
sections under sustained load, with stresses within elastic range, will remain 
constant and will be equal to the ratio for the sections immediately after loading. 

The substitution of C' = C simplifies the above-mentioned iterative procedure 
for determining the properties (kt, ntt and let) ofthe cracked transformed section 
under sustained load. In the case of singly reinforced beams, kt can be computed 
directly from Eq. (21). 

The results of this study also indicate that Eqs. (15) and (25) are not satisfied 
when the properties {kt, let and C') of the cracked transformed section, based on a 
simple increased modular ratio approach (ntt = nt), are substituted in these 
equations with all other terms remaining unchanged. 

Figures. 3-6 present typical results to show the influence of different 
parameters on flexural rigidities of uncracked and cracked transformed sections 
computed by the proposed method. For two different sets of section and material 
parameters, Fig. 3 shows the influence of tension steel ratio on the flexural rigidities 
of singly reinforced uncracked and cracked transformed sections, immediately after 
loading and under sustained load. Keeping all other section and material parameters 
constant, Fig. 4 shows the influence of effective depth d on ntt and flexural 
rigidities. Fig. 5 shows the beneficial effect of compression reinforcement on 
increasing flexural rigidities and therefore reducing deflections under sustained 
loads. The effect of compressive strength of concrete on flexural rigidities is shown 
in Fig. 6. Compressive strength of concrete influences the modulus of elasticity Ec, 
modular ratio n and the ultimate creep coefficient Cu. The graphs in Fig. 6 have 
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been drawn for different values of fc' by using the appropriate values of Ec and Cu 
based on the study at Cornell University [6]. The results in Figs. 3-6 show that 
besides compression steel ratio p', effective depth d, tension steel ratio p and 
compressive strength of concrete fc' may have appreciable effect on flexural 
rigidities. These factors should, therefore, be considered in predicting deflections of 
reinforced concrete beams under sustained loads. 

The results of parametric study show that in some cases a difference as high as 
15 percent in the values ofEct Ictflc Ic and Ect lutiEc lu may occur. One typical set 
of results showing the difference in flexural rigidities of uncracked and cracked 
sections is presented in Fig. 4. In Figs. 5 and 6 only the graphs for Ect lctiEc 
Ic have been shown as the values for Ect lutiEc lu were very close to these values. 
The study, therefore, indicates that for most sections: 

Ectlct = Ectlut 
Eclc Eclu 

or 

let = lc (26) 
lut lu 

Replacing lctllut by Icllu and Ect by Ec(l + Ct) in Eq.(7), therefore, yields: 

(27) 

In other words, the initial-plus-creep deflection Vcp at any time t under 
sustained loading can be predicted for most cases by multiplying the 
corresponding immediate deflection with ( 1 +Ct) lullut· 
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Fig. 6: Influence of compressive strength of concrete on flexural 

rigidities and Ott for singly reinforced rectangular sections 

COMPARISON OF MEASURED AND COMPUTED 
LONG-TERM DEFECTIONS 

Using the data reported in different laboratory studies [7-11], immediate and 
long-term deflections of a number of simply supported beams were computed by the 
proposed method and were compared with the measured values and the values 
estimated by the ACI Code method. Table 1 shows the necessary data, measured 
and computed deflections and the results of statistical analysis for all the beams. In 
Table 1, VOM and VtM are the measured immediate and long-term deflections 
respectively, voA and vtA are the immediate and long-term deflections computed by 
using the ACI Code method, while vop and VtP are the immediate and long-term 
deflections computed hy the proposed method. VtP is the sum of the initial-plus­
creep deflection Vcp ana the shrinkage deflection Vsh (Eq. 1). 

For rectangular beams in Table 1, initial-plus-creep deflections Vcp were 
computed using Ect let with let determined by the already stated iterative procedure. 
For the T -beams ofYu and Winter the values of vcp were calculated by adopting 
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Table 1: Comparison of Measured and Computed Deflections for Simply Supported Beams 

Measured Computed Deflections++ 
Deflections 

ACI Code Method Proposed Method 
Beam 
NO.+ L/h p' 

VQt1 vtii VOA vOA vtA vtA vOP vOP v vsh vtP co 
(mm) (mml (mm) VOM (mml vtr-1 (mm) vOM (mln) (mml (mm) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Rectangular Beams -- Washa and Fluck7 : t=30 months, Cu=2.5, e:sh,u =0.00075 

A1,A4 20 0.0163 13.46 23.62 15.34 1.14 29.88 1. 26 13.80 1. 02 28.12 0 28.12 
A2,AS 20 0. 0077 15.75 32.26 15.77 1. 00 35.38 1.10 14.52 0.92 32.84 5.35 38.19 
A3,A6 20 0 17.02 44.70 16.26 0.96 44.23 0.99 15.30 0.90 39.68 9.07 48.75 
81,84 30 0.0167 23.37 51.05 25.64 1.10 49.69 0.97 23.22 0.99 51.47 0 51.47 
82,85 30 0.0083 24.89 65.02 25.88 1. 04 57.29 0.88 23.87 0.96 58.03 7.69 65.72 
83,86 30 0 26.42 86.36 26.18 0.99 71.21 0.83 24.63 0.93 69.31 13.71 83.02 
C1,C4 so 0.0167 40.13 80.01 43.63 1. 09 84.57 1. 06 39.76 0.99 84.37 0 84.37 
C2,CS so 0.0083 43.43 100.58 44.38 1. 02 98.26 0.98 41.19 0.95 95.83 13.35 109.18 
C3,C6 so 0 47.75 140.72 45.35 0.95 123.35 0.88 42.92 0.90 116.93 23.79 140.72 
D1,D4 30 0.0167 11.94 27.69 15.83 1. 33 30.68 1.11 14.46 1.21 30.64 0 30.64 
D2,DS 30 0.0083 14.22 33.02 16.11 1.13 35.66 1. 08 14.97 1. OS 34.80 4.81 39.61 
D3,D6 30 0 17.78 48.51 16.46 0.93 44.77 0.92 15.60 0.88 42.49 8.56 51. OS 
E1,E4 70 0.0159 59.44 123.95 52.72 0.89 103.28 0.83 47.57 0.80 106.53 0 105.92 
E2,ES 70 0.008 55.88 128.78 53.11 0.95 118. so 0.92 48.82 0.87 120.36 15.45 135.81 
E3,E6 70 0 62.99 184.91 53.59 0.85 145.76 0.79 50.26 0.80 142.34 27.52 169.87 

Tee Beams-- Yu and Winter8 : t=6 months, Cu=2.0, e:sh,u =0. 000625 

A 20 0 34.04 67.31 29.97 0.88 66.29 0.98 28.96 0.85 61.72 4.57 66.29 
B 20 0.0051 31.49 56.64 29.46 0.94 52.83 0.90 28.45 0.90 58.42 2.54 60.96 
c 20 0.01 30.23 56.89 29.72 0.98 49.53 0.87 28.70 0.95 56.90 0 56.90 
D 20 0 32.26 67.06 32.77 1. 02 72.14 1. 08 32.26 1.00 65.02 4.57 69.60 
E 14 0 12.95 29.21 14.22 1.10 31.24 1. 07 13.72 1.06 28.46 2.29 31.75 
F 30 0 55.88 100.30 53.59 0.96 118.90 1.17 52.58 0.94 113.28 7.87 121.20 

-- ---- ---- ---·- L_ -- -- -- --

Table 1 continued on the next page ...... . 
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Table 1 continued 

1 f2l_3_]C-4=r-·sJI-~ 7 1 8 I7lllDTD-T72u_I_13 1- 14 ]15 

Rectangular Beams -- Corley and Sozen9 : 

C1 12 0 3.05 7.37 2.95 0.92 
C3 17 0 7.87 17.27 7.62 0.97 
C4 17 0 6.10 15.49 5.84 0.96 
-- - --

Rectangular Beams -- Bakoss et allO : 

1B1 
1B2 

Rectangular Beams** -- Clarke et a~l : 

B1 1410.012 4.78 
8 .1~11 4.91 1.031 

B2 14 0.012 4.30 7.93 4.72 1.10 

s For all beams: 
T A 
AN Mean 1.012 
TA 
I L Standard deviation 0.101 
s y 
T S For beams with L/h 25: 
I I 
c s Mean 1.022 
A 
L Standard deviation 0.122 

t=23 months, Cu=3.0, e: sh,u=0.0003 

7.37 1. 00 2.79 0.92 7.11 0.51 7.62 1. 03 
20.32 1.18 7.37 0.94 20.83 1. 02 21.84 1. 26 
15.75 1. 02 5.84 0.96 15.75 1. 02 16.76 1. 08 

- --

t=500 days, Ct=2.4*, e:sh =0.00065* 

0.99 
1.16 

t=6 months, <=t=2.26* 

8.5911.0511 4.50,0.941 9.64 0 9.64 1.18 
8.26 1.04 4.31 1.00 9.26 0 9.26 1.17 

0.974 0.946 1. 069 

0.173 0.083 0.098 

0.915 0.942 1.044 

0.20 0.104 0.098 

+ For beam description, loading and other properties see the original reference. 
++ In computing deflections by the ACI Code method and the proposed method, Ec and ~ were 

calculated by the ACI Code formulas and the values of f~at the time of loading. 

* Measured values at time t. 
**Data on shrinkage deformations not given in the reference. Therefore, beams having p'=p 

(zero shrinkage deflection) have been included from that reference in this table. 
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Effective Moment oflnertia and Deflections ofRC Beams Under Long-Term Loading 

the simple approach of multiplying the computed immediate deflections by the 
corresponding factor (1 + Ct)lullut· 

Table 1 indicates that the use of Iu in place of Ig in the proposed method 
results in a slight decrease in the estimation of immediate deflections when 
compared with the ACI Code method. The mean and standard deviation of the ratio 
of computed to measured immediate deflections vop/voM by the proposed method 
are 0.946 and 0.083 respectively compared with 1.012 and 0.101 for voAivoM by 
the ACI Code method. Nevertheless, the mean and standard deviation of the ratio of 
computed to measured long-term deflections VtPIVtM by the proposed method are 
1.069 and 0.098 respectively compared with the corresponding values of 0.974 and 
0.173 for vtAIVtM by the ACI Code method. 

The results in Table 1 show that the ACI Code method generally 
underestimates long-term deflections of beams having span to thickness ratio, Llh, 
greater than 25. The mean and standard deviation of computed to measured long­
term deflections for beams with L/h > 25 (Table 1) are 0.915 and 0.20 respectively 
by the ACI Code method compared with 1.044 and 0.098 by the proposed method. 
For these beams the proposed method therefore gives a better estimate by 
considering creep and shrinkage components of deflections separately as well as by 
employing a detailed procedure for the computation of flexural rigidity under 
sustained load. The same is further true for beam 1B1 ofBakoss et al [10], in which 
loading produces Ma <Mer· For this beam vtAIVtM is 0.33 and vtplvtM is 0.99. 

Since the main objective of this study was to develop a method for estimating 
effective moment of inertia and flexural rigidity of beams under sustained loads, a 
comparison of measured and computed initial-plus-creep deflections was made, as 
shown in Table 2. This Table includes those beams from Table 1 for which 
compression and tension steel ratios are equal (p' = p) and therefore theoretical 
values of shrinkage deflection Vsh are zero. Table 2 also includes the beams from 
Table 1 for which it was possible to deduct the shrinkage deflection component from 
the measured long-term deflection VtM at time t by using the data of companion 
specimens made and tested to study the shrinkage behaviour. The mean value and 
standard deviation of the ratios of computed to measured deflections for the sample 
of 16 beams in Table 2 are 1.09 and 0.11, respectively. This comparison in Table 2 
shows that the proposed method, based on the calculation of flexural rigidity under 
sustained loads, gives a good estimate of initial-plus-creep deflection. 
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Table 2: Comparison of Measured and Computed 
Initial-Plus-Creep Deflections 

Beam Measured Computed Ratio* 
No.+ (mm) _imm) 

Al. A4 23.62 28.12 1.19 

Bl. B4 51.05 51.48 1.01 

Cl. C4 80.00 84.37 1.05 

C2. C5 87.88 95.83 1.09 

C3. C6 110.22 116.93 1.06 

Dl.D4 27.69 30.64 1.11 

D2.D5 27.92 34.80 1.25 

D3.D6 39.62 42.49 1.07 

El. E4 123.95 106.53 0.86 

E2.E5 117.37 120.36 1.03 

E3.E6 154.42 142.34 0.92 

c 56.89 56.90 1.00 

C1 6.00 7.11 1.18 

1B1 18.12 22.55 1.24 

B1 8.15 9.64 1.18 

B2 7.93 9.26 1.17 

Mean 1.09 
Standard Deviation 0.11 

+ 

* 
Beam Nos. are same as given in Table 1 from different references. 

Ratio of computed to measured initial-plus-creep deflections. 

Table 3 shows the computed values, immediately after loading and at t = 30 
months under sustained load, of the neutral axis depth factor, concrete stress at the 
extreme compression fibre and stresses in compression as well as tension steels for 
the maximum moment (mid-span) cracked sections of the beams tested by Washa 
and Fluck [7]. These values were computed using the elastic bending equation and 
the properties of cracked transformed sections determined by the proposed method. 
The results in Table 3 show that due to the effect of creep, the neural axis depth 
increases, concrete stress decreases and stresses in compression and tension steels 
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Beam 
No. 

A1, A4 

A2,A5 

A3, A6 
B1, B4 

B2, B5 

B3,B6 

C1, C4 

C2, C5 

C3,C6 

D1, D4 

D2,D5 

D3,D6 

E1, E4 

E2,E5 

E3,E6 

Table 3: Computed Neutral Axis Depth Factors and Stresses in Concrete and Steel at the 
Maximum Moment Cracked Section of Beams Tested by Washa and Fluck 

k kt fc fct fs fst fs 
(MPa) (MPa) (MPa) (MPa) (MPa) 

0.364 0.361 9.17 5.86 37.92 76.05 135.69 

0.384 0.396 9.96 7.45 43.51 104.94 135.42 

0.405 0.450 10.89 10.00 - - 135.35 

0.397 0.411 9.72 7.03 23.72 59.16 136.87 

0.408 0.427 10.14 8.21 26.61 75.02 135.69 

0.422 0.447 10.62 10.14 - - 134.25 

0.390 0.396 9.24 6.34 31.17 68.67 136.04 

0.405 0.422 9.80 7.59 35.30 90.67 135.07 

0.424 0.458 10.52 9.86 - - 133.97 

0.390 0.396 9.31 6.34 31.44 69.23 136.80 

0.405 0.422 9.86 7.57 35.58 91.43 135.83 

0.424 0.458 10.55 9.93 - - 134.73 

0.393 0.410 9.72 7.17 21.79 56.95 140.04 

0.403 0.422 10.07 8.27 24.34 70.74 138.88 

0.416 0.438 10.50 10.07 - - 137.49 
- -

fst 
(MPa) 

138.52 

137.83 

137.69 

143.97 

140.80 

153.56 

141.55 

139.42 

135.76 

142.31 

140.18 

136.52 

147.48 

144.11 

138.66 

ti:I 
~ 
~ 
~· 

( 
g, 

[ 
~ 

~ 
~ 
§. 
~ 
0 ...., 
p; 
tti 

~ 
f 
i 
i. 

(JQ 



K.M. Mahmood, S.A. Ashour and S.I. Al-Noury 

increase with time. All these changes are in line with the usual description of 
reinforced concrete beam behaviour under creep effect [1,6]. 

CONCLUSIONS 

1. The method proposed in this paper considers separately the effects of creep and 
shrinkage in estimating long-term deflections of reinforced concrete beams. For 
estimating initial-plus-creep deflection the concept of effective moment of 
inertia has been extended by considering the properties of uncracked and 
cracked transformed sections under sustained loads. For calculating shrinkage 
deflections Branson's method has been used. A comparison of the computed 
deflections with the test results from different sources confirms the suitability of 
the proposed method. 

2. The quasi-elastic approach using increased modular ratio may not give correct 
properties of cracked transformed section for members subjected to sustained 
load. A better estimate of the properties of cracked transformed section can be 
obtained by giving due consideration to compatibility and equilibrium 
conditions. The properties of cracked section thus determined can be used for 
predicting not only initial-plus-creep deflections but also stresses (and strains) 
in concrete and steel reinforcement. 

3. A comparison of computed and measured long-term deflections in the paper 
indicates that the ACI Code method underestimates these deflections for 
members with L/h greater than 25. The proposed method gives a better estimate 
oflong-term deflections for beams with L/h greater than 25. 

4. The results of parametric study show that for any type/grade of concrete the 
material properties (Ec, Ct) have appreciable affect on flexural rigidities of 
reinforced concrete members under sustained loads. An improvement in the 
determination of these properties will, therefore, lead to a better estimation of 
long-term deformations. 
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