ON A MIXED BOUNDARY VALUE PROBLEM FOR ELLIPTIC EQUATIONS

BY

A.R.M.EL - NAMOURY
Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt

Key words: Elliptic, differential equations, mixed boundary conditions

Abstract

In this work, a general form of linear and quasilinear elliptic equations is considered. In the presence of boundary singularities, some estimations for the error, according to the net method, are obtained.

INTRODUCTION

In different fields of mechanics and physics, it is necessary to solve mixed problems for elliptic equations in its general form [4]. At first, the net method has been applied and the error in the approximate solution is estimated as O (h) (h is the distance between two vertical or horizontal points), assuming the boundedness of the derivatives up to the third order of the exact solution. However, such assumption is not valid in some practical significant cases; for example, in domains with piecewise smooth boundaries, the behaviour of the solution at the corner points depends on the angles at these points [7], [8], [9], [10], [11], [12]. In [3] and [6], singular boundaries are considered for studying the net method for Laplace and Poisson's equations.

Let G be a simply bounded connected domain with piecewise analytic boundary

$$
\Gamma:=\Gamma^{1} \cup \Gamma^{2}, \text { where } \Gamma^{1}=\bigcup_{i} \bigcup_{1} \Gamma_{i}^{1} \text { and } \Gamma^{2}=\bigcup_{i}^{m_{2}} \Gamma_{1}^{2} . \text { Let } Z_{1}, z_{2}, \ldots, z_{m}
$$

$m=m_{1}+m_{2}$ are the corner points of G and $n \alpha_{j} .>0$ is the interior angle at z_{j}. We shall call the arcs $\Gamma^{1}{ }_{i}$ and $\Gamma^{2}{ }_{i}$ Dirichlet and Neumann arcs, respectively. The corner z_{j} is called a Dirichlet corner (a mixed corner) if it lies on both neighbouring arcs of Dirichlet type (different type).

The case of linear elliptic equations:

Consider the following mixed boundary problem:
$L u \equiv \Delta u+a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u=f(x, y),(x, y) \in G$,
$u(x, y)=\varnothing(x, y),(x, y) \in \Gamma^{1}$,
$\ell \mathbf{u}=\frac{\partial}{\partial_{n}^{\prime}} \mathbf{u}(\mathrm{x}, \mathrm{y})+\mathrm{g}(\mathrm{x}, \mathrm{y}) \mathbf{u}=\varnothing(\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{y}) \in \Gamma^{2}$
where \triangle is the Laplacian and $\varnothing(x, y)$ is a given C^{3} function on every arc; $\frac{\partial^{\prime}}{\partial n} \quad$ is the external normal derivative; a, b, c, g and f are given continuous functions; $|a| \leqslant$ M
$|\mathbf{b}| \leqslant \mathbf{M}, \mathbf{M}<\infty$ is constant, $\mathbf{c} \leqslant 0, \mathbf{g} \geqslant 0$.
Let $z_{1}=x_{1}+i y_{1}$ be a corner point of the boundary Γ and denote $\left|z-z_{1}\right|=r$. If z_{1} is a Dirichlet corner, then for $0 \leqslant n \leqslant 3,0 \leqslant k \leqslant n$ it has been shown that $[5]$:

$$
\begin{equation*}
\frac{\partial n}{\partial x^{k} y^{-i-k}} u(x, y)=O\left(r^{-1}\right) \tag{4}
\end{equation*}
$$

while if z_{1} is a mixed corner, then for all $\lambda \leqslant \frac{1}{2 \alpha_{1}}$

$$
\begin{equation*}
\frac{\partial^{\mathrm{n}}}{\partial \mathrm{x}_{\mathrm{x}} \partial_{y^{n-k}}} \mathbf{u}(x, y)=O\left(r^{\lambda-n}+1\right) \tag{5}
\end{equation*}
$$

The corner points of Γ will be the singular points of the solution $u(x, y)$ in $G \cup \Gamma$.
Construction of the difference problem for problem (1) - (3):
Let G_{h} denotes the set of interior mesh points, where equation (1) is to be approximated, and $\Gamma_{h}{ }^{1}, \Gamma_{h}{ }^{2}$ denote the two sets of the boundary mesh points for which the conditions (2), (3) are applied [1].

For all $\left(x_{i}, y_{j}\right) \in G_{h}$, we define

$$
\begin{aligned}
& L_{h} U_{i j}=\frac{1}{h^{2}}\left[U_{i-1 j}+U_{i+1 j}+U_{i, j-1}+U_{i+1 j} 4 U_{i j}\right] \\
& +a_{i j} \frac{U_{i j}-U_{i-1, j}}{h}+a^{+}+\frac{U_{i+1, j}-U_{i j}}{h}+b_{i j}^{-} \frac{u_{i j}-U_{i j-1}}{h} \\
& +b_{i j}^{+} \frac{U_{i j}+1-U_{i j}}{h}+c_{i j} u_{i j},
\end{aligned}
$$

Where $U_{i, j}=\ldots$ and similarly $a_{i j} \ldots$ are defined; and $a_{i j}^{-}=\frac{a_{i j}-\left|a_{i j}\right|}{2} a^{+}{ }_{i j}=\frac{a_{i, j}+\left|a_{i, j}\right|}{2}$,

$$
b_{i j}^{-}=\frac{b_{i j}-\left|b_{i j},\right|}{2} b_{i j}^{+}=\frac{b_{i j}+\left|b_{i j}\right|}{2}
$$

If $P_{1} \in \Gamma_{h}{ }^{1}$ and $q_{1} \in \Gamma^{1}$, where q_{1} close to P_{1}, then we can write $U\left(P_{1}\right)=\varnothing\left(q_{1}\right)$; while if $p \in \Gamma_{h}^{2}$, hence we proceed as follows [1]:
$\ell_{\mathrm{h}} \mathrm{U}(\mathrm{p})=\frac{\mathrm{U}(\mathrm{p})-\mu_{1} \mathrm{U}\left(\mathrm{R}^{(2)}\right)-\mu 2 \mathrm{U}\left(\mathrm{R}^{(1)}\right.}{\mu \mathrm{h}}+\mathrm{g}(\mathrm{p}) \mathrm{U}(\mathrm{p})=\varnothing(\mathrm{q})$,
$\mu_{1} \geqslant 0, \mu_{2} \geqslant 0$
Where $\mu_{1}, \mu_{2} \geqslant 0$ and $\mu>0$ are certain numbers such that $\mu_{1}+\mu_{2}=1$, $\mu \leqslant \sqrt{2 ;}$ and $R^{(1)}, \mathbf{R}^{(2)} \in G_{h} \cup \Gamma_{h}{ }^{1}, q \in \Gamma^{2}$.

The associated difference problem for problem (1) - (3) is as follows:
Find a function U which is defined in \bar{G}_{h} and satisfies the set of difference equations:

The uniqueness of the solution for problem (7) follows from the following lemma. give a number; better

Lemma* (The maximum principle) [4]
If the function $V \neq$ const. is defined in \bar{G}_{h} and satisfies either of the two sets of inequalities:
$L_{h} V \geqslant 0$ in $G_{h}, \quad \rho_{h} \quad V \leqslant 0$ on Γ_{h}^{2}
or
$\mathrm{L}_{\mathrm{h}} \mathrm{V} \leqslant 0$ in $\mathrm{G}_{\mathrm{h}}, \quad \rho_{\mathrm{h}} \mathrm{V} \geqslant 0$ on $\Gamma^{2}{ }_{\mathrm{h}}$.
Then V takes the greatest positive or the least negative value only on $\Gamma^{1} \mathrm{~h}$, respectively.

Estimating the error $\varepsilon_{h}=\mathbf{U}-\mathbf{u}$:
For any function $\psi(x, y) \in C^{3}(\bar{G})$ we have
$L_{h} \psi_{(x, y)}=L \psi_{(x, y)}+h_{2}(\psi)+M_{3}(\psi)$,
where $\mathbf{M}_{\mathrm{i}}(\psi)(\mathrm{i}=2,3)$ denotes a linear combinations of the i th derivatives of ψ, and are taken in a square of side $2 h$ around the point (x, y). If $p \in \Gamma_{h}^{2}$, then from (6) it follows that

$$
\rho_{h} \psi(p)=P_{h} \psi(q)+h M_{2}(\psi)
$$

If z_{1} is a Dirichlet corner, then in its neighbourhood we have
$L_{h} \quad \varepsilon_{h}=h O\left(r^{-3}\right)+h 0\left(r^{-2}\right)$,
and if z_{1} is a mixed corner, then
$L_{h} \varepsilon_{h}=h O\left(r^{\lambda-3}+1\right)+h 0\left(r^{\lambda-2}+1\right)$,
hence,
$\mathrm{L}_{\mathrm{h}} \quad \varepsilon_{\mathrm{h}}=\mathrm{h} O\left(\mathrm{r}^{\lambda-2}+1\right)$.
Finally, if $p \in \Gamma_{h}^{1}$, and $q \in \Gamma^{1}$ is a point which corresponds to the point p in the difference problem (7), then

$$
\begin{align*}
\varepsilon_{h}(p) & =U(p)-u(p)=\varnothing(q)-u(p)=u(q)-u(p) \\
=h M_{1}(u) & =h O\left(r^{-1}\right) . \tag{11}
\end{align*}
$$

Let $z_{1}=x_{1}+i y_{1}$ be a mixed corner of the boundary Γ, where $\pi \alpha_{1}$ is its angle. Introducing polar coordinates $z-z_{1}=r e^{i f}$ in the neighbourhood $r \leqslant r_{1}$ (r_{1} is a small positive constant), we assume that the radius r corresponding to $\theta=0$ is a tangent of Γ^{2} at z_{1} and the radius r corresponding to $\theta=\pi \alpha_{1}$ is a tangent of Γ^{2}.

Let $\alpha(r, 0)$ be an angle such that:
$\mathrm{t}_{\mathrm{g}} \alpha(\mathrm{r}, \theta)=\frac{\mathrm{b}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)}{\mathrm{a}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)}$
and satisfies in the neighbourhood $r \leqslant r_{1}$ the following inequality $0 \leqslant \alpha(r, 0)-0 \leqslant \pi / 2$.

Now, consider the function
$\mathrm{g}_{1}(\mathrm{x}, \mathrm{y})=\mathrm{r} \dagger \lambda(\mathrm{A} \cos \lambda \theta-\sin \lambda \theta-1)$,
where $0<\lambda<1 / 2 \alpha_{1}, \leqslant 1$ and A is a sufficiently large positive number.
The function $g_{1}(x, y)$ is positive and satisfies the inequality
$\mathrm{g}_{1}(\mathrm{x}, \mathrm{y}) \geqslant \mathrm{dr}^{\lambda}, \mathrm{d}>0$.
In virtue of (12) - (14), for the points $r \geqslant k_{1} h\left(k_{1}>O\right)$, the following inequalities hold:

$$
\begin{gather*}
L_{h} g_{1}(x, y) \leqslant-d_{1} \lambda^{2} r^{\lambda-2}-d_{2} \lambda r \lambda-1,(x, y) \in G_{h}, \tag{15}\\
P_{h} g_{1}(x, y) \geqslant r^{2},(x, y) \in \Gamma_{h}^{2}, \tag{16}
\end{gather*}
$$

where d_{1}, d_{2} are positive constants independent upon h.
According to (9) - (11), (14) - (16) and for sufficiently large positive number K_{1}, the following inequalities hold:
$L_{h}\left(K_{1} h^{\lambda} g_{1} \pm e_{h}\right)<0,(x, y) \in ?$

$$
\begin{equation*}
P_{h}\left(K_{1} h^{\lambda} g_{1} \pm \varepsilon_{h}\right)>0,(x, y) \in ? \tag{18}
\end{equation*}
$$

The Maximum Principal then yields
$\left(K_{1} h^{\lambda} g_{1} \pm \varepsilon_{h}\right)>0$.
Let z_{1} be a Dirichlet corner and $0<\lambda<1 / 2 \alpha_{1}, \lambda \leqslant 1, A$ and ξ are sufficiently large and small positive numbers, respectively. Further, let $\alpha(r, \theta)$ be an angle such that

$$
\mathrm{t}_{\mathrm{g}} \alpha(\mathrm{r}, 0)=\frac{\mathrm{b}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)}{\mathrm{a}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)}
$$

and in the neighbourhood $r \leqslant r_{1}$ satisfies the inequality:
$0<\theta+2 \lambda(\theta+\xi)-\alpha(r, \theta)<\pi$.
Now, let us consider the positive function
$\mathrm{g}_{1}(\mathrm{x}, \mathrm{y})=\mathrm{r}^{-2 \lambda}[\mathrm{~A} \sin 2 \lambda(0+\xi)-1]$.
It can be shown that $g_{1}(x, y)$ satisfies the inequality
$\mathrm{g}_{1}(\mathrm{x}, \mathrm{y}) \geqslant \mathrm{dr}^{-2} \lambda, \mathrm{~d}>0$.
In view of (20) - (22), there exists a number $k_{1}>0$ such that for the points $r \quad k_{1}$ h, the following inequality holds
$L_{h} g_{1}(x, y) \leqslant-d_{3} \lambda^{2} r^{-2} \lambda^{-2}-d_{4} \lambda r^{2} \lambda{ }^{-1},(x, y) \quad G_{h}$,
Where d_{3} and d_{4} are positive constants and independent upon h.
Taking into consideration the relations (8), (11), (22) and (23), then for sufficiently large positive number K_{1} we have
$L_{h}\left(K_{1} h^{2 \lambda} g_{1} \pm E_{h}\right)<0$,
$\left(K_{1} h^{2} \lambda g_{1} \pm \varepsilon_{h}\right)>0$.
If we continue the process of constructing majorant functions, we can suppose that the function $\gamma_{O}(x, y)$ is a continuous solution in \bar{G} for the problem
$\mathrm{L} \boldsymbol{\gamma}(\mathrm{x}, \mathrm{y})=-1,(\mathrm{x}, \mathrm{y}) \in \mathrm{G}$,
$\gamma(\mathrm{x}, \mathrm{y})=1,(\mathrm{x}, \mathrm{y}) \in \Gamma^{1}$,
$\ell_{\gamma}(x, y)=1,(x, y) \in \Gamma^{2}$.
It is noticable that $\gamma_{0}(x, y)>O$ in \bar{G} (by lemma and the behaviour of its derivatives near the corners is the same as that of the derivatives of $u(x, y)$.

Now, consider the function
$S_{h}(x, y)=\sum_{i=1}^{m_{1}} \sum_{i}^{m_{2}} K_{i} h_{i} g_{i}(x, y)+K_{0} h^{s} \quad \gamma_{0}(x, y)$,
where $v_{i}=\lambda$ or 2λ depending on the type of the corner z_{i}, the number K_{O} is taken sufficiently large such that for every i and $\left|z-z_{i}\right| \geqslant k_{i} h$, the function
$S_{h}(x, y)-K_{i} h_{i}^{v} g_{i}(x, y)>0$ in \bar{G}_{h} and has discrete negative operators L_{h} and ρ_{h} in G_{h} and on Γ_{h}^{2}, respectively.

Let $G_{h}{ }^{*}$ denotes the set of points $p \in G_{h}$ which lie outside the neighbourhood $\mid z$ $z_{i} \mid<k_{i} h$ of the corners, Hence according to the construction of $S_{h}(x, y)$ we have $L_{h}\left[s_{h}(p) \pm \varepsilon_{h}(p)\right] \leqslant 0$.

Therefore, $\left[S_{h}(p) \pm \varepsilon_{h}(p)\right]$ takes its minimum value on the boundary of $G_{h}{ }^{*}$.
This value can not be attained at a point $\mathrm{p} \in \Gamma_{\mathrm{h}}{ }^{2}$, since on $\Gamma_{\mathrm{h}}{ }^{2}$: $\rho_{\mathrm{h}}\left[\mathrm{S}_{\mathrm{h}}(\mathrm{p}) \pm \mathrm{e}_{\mathrm{h}}(\mathrm{p})\right] \geqslant 0$.

If the minimum value is attained at a point $p \in \Gamma_{h}{ }^{1}$, then
$S_{h}(p) \pm \varepsilon_{h}(p) \geqslant 0$.
and consequently
$\left|\boldsymbol{\varepsilon}_{\mathrm{h}}(\mathrm{q})\right| \leqslant \mathrm{S}_{\mathrm{h}}(\mathrm{q}), \quad \forall \mathrm{q} \in \overline{\mathrm{G}}_{\mathrm{h}}{ }^{*}$.
The above results can be formulated in the following theorem.
Theorem Let $U(p)$ is the solution of the difference problem (7) and $u(x, y)$ is the solution of the differential problem (1) - (3). Further, let $G^{\prime} \subseteq G$ such that \bar{G} does not contain any corner points of G. Then $\forall p \in \overline{\mathbf{G}} \cap \overline{\mathbf{G}}_{\mathrm{h}}$ we have
$\mathrm{U}(\mathrm{p})-\mathrm{u}(\mathrm{p})=\mathbf{O}\left(\mathrm{h}^{\mathrm{s}}\right)$,
where s is a number satisfying the following conditions:
$\mathrm{s} \leqslant 1$;
$s<1 / 2 \alpha_{j}$, if z_{j} is a mixed corner;
$s<1 / \alpha_{j}$, if z_{j} is a Dirichlet corner.
Corollary 1. If all the mixed corners are acute and the Dirichlet corners are convex, then
$\mathrm{U}(\mathrm{p})-\mathrm{u}(\mathrm{p})=\mathrm{O}(\mathrm{h})$.
The case of quasilinear elliptic equations:
Let $f(x, y, z, v, \omega)$ be a given continuous function defined $\forall(x, y) \in \bar{G}$
and \vdash_{z}, v, ω. Assume that the partial derivatives f_{z}, f_{v} and $f \omega$ exist and satisfy the following inequalities
$\mathbf{f}_{\mathrm{z}} \geqslant \bar{\eta}>0,\left|\mathrm{f}_{\mathrm{v}}\right|,|\mathrm{f} \omega| \leqslant \overline{\mathbf{M}}<\infty, \overline{\mathbf{M}}=$ const.
Let $\mathrm{Lu}=\Delta \mathrm{u}-\mathrm{f}\left(\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}\right) ; \varnothing(\mathrm{x}, \mathrm{y})$ and $\mathrm{g}(\mathrm{x}, \mathrm{y}) \geqslant 0$ are continuous functions. Now, the problem is to find a continuous function $u(x, y)$ in \bar{G}, twice continuously differentiable in G and satisfies both the equation $\mathbf{L u}=\mathbf{O},(x, y) \in G$,
and the boundary conditions

$$
\begin{align*}
& u(x, y)=\varnothing(x, y),(x, y) \in \Gamma^{1} \tag{27}\\
& P_{u}=\frac{\partial}{\partial \mathrm{n}} u(x, y)+g(x, y) u=\varnothing(x, y),(x, y) \in \Gamma^{2} \tag{28}
\end{align*}
$$

Suppose that the point $P_{o}\left(x_{0}, y_{0}\right) \in G$. Denote the points $\left(x_{0}+h, y_{0}\right)$ $\left(x_{o}, y_{o}+h\right),\left(x_{o}-h, y_{o}\right),\left(x_{o}, y_{o}-h\right)$ by $P_{o 1}, P_{o 2}, P_{o 3}, P_{o 4}$, respectively. The points $P_{o 1}, P_{o 2}, P_{o 3}, P_{o 4}$ we shall call neighbouring points of P_{o}.
Denote the set of mesh points $P_{1}, P_{2}, P_{3}, \ldots \ldots, P_{N 1} \in G$ for which $P_{i k} \in \bar{G}$ $\left(i=\overline{1,} \bar{N}_{1} ; k=\overline{1,4}\right)$ by G_{h}. The set of mesh points $P_{N 1}+1, P_{N 1}+2, \ldots \ldots$, $P_{N_{2}} \in G$, where the distances from Γ^{2} are less than $\sqrt{2} \mathrm{~h}$, is denoted by $\Gamma_{h}{ }^{2}$. The set of points $\mathrm{P}_{\mathrm{N} 2}+1, \mathrm{P}_{\mathrm{N} 2}+2, \ldots \ldots, \mathrm{P}_{\mathrm{N}}$ which are neighbouring points of the points of $G_{h} \cup \Gamma_{h}{ }^{2}$ is denoted by $\Gamma_{h}{ }^{1}$.

Construction of the difference problem for problem (26) - (28):
If $\forall P_{j}\left(j=\bar{N}_{1}+1, \mathbf{N}_{2}\right)$, we can find the points $R_{j}{ }^{(1)}$ and $\mathbf{R}_{j}{ }^{(2)}$ such that the condition (28) can be approximated as follows

$$
\begin{aligned}
\rho_{\mathrm{h}} \mathrm{U}\left(\mathrm{P}_{\mathrm{j}}\right) & \equiv \frac{\mathrm{U}\left(\mathrm{p}_{\mathrm{j}}\right)-\mathbf{n}_{\mathrm{j}}^{(1)} \mathrm{U}\left(\mathrm{R}_{\mathrm{j}}^{(2)}\right)-\mathrm{n}_{\mathrm{j}}^{(2)} \mathrm{U}\left(\mathrm{R}_{\mathrm{j}}^{(1)}\right)}{\mu_{\mathrm{j}} \mathrm{~h}}+\mathrm{g}\left(\mathrm{P}_{\mathrm{j}}\right) \mathrm{U}\left(\mathrm{P}_{\mathrm{j}}\right) \\
& =\varnothing(\mathrm{q}), \quad
\end{aligned}
$$

where $q \in \Gamma^{2}, O<\mu_{j} \leqslant \sqrt{2}$ and $\eta_{j}{ }^{(1)}, \eta_{j}^{(2)} \geqslant 0$ where $\eta_{j}^{(1)}+\eta_{j}^{(2)}=1$, then we approximate L and ℓ by the following operators:

$$
\begin{align*}
& L_{h} u_{j}=\triangle h u_{j}-f\left[x_{j}, y_{j}, u_{j}, D_{h, x o}\left(u_{j}\right), D_{h, y o}\left(u_{j}\right)\right], j=\overline{1, N}_{1}, \tag{29}\\
& \tilde{\rho}_{\mathrm{h}} u_{j}=\left(1+g_{j} \mu_{j} h\right) u_{j}-\eta_{j}^{(1)} \mathbf{u (R}\left(R_{j}^{(2)}\right)-\eta_{j}^{(2)} \mathbf{u}\left(R_{j}^{(1)}\right), j=\bar{N}_{1}+1, N_{2}, \tag{30}
\end{align*}
$$

where
$\Delta_{h} \quad u_{j}=1_{h 2}\left(\quad \sum_{i}^{4} \quad u j k-4 u_{j}\right), D_{h, x o}\left(u_{j}\right)=\frac{1}{2 h}\left(u_{j 1}-u_{j 3}\right)$,
$D_{h, y o}(u j)=\frac{1}{2 h}\left(u_{j 2}^{1}-u_{j 4}\right), \tilde{\rho}_{h} u_{j}=\mu_{j} h \quad \rho_{h} u_{j}$.
Since one of the two points $\mathbf{R}_{j}{ }^{(1)}, \mathbf{R}_{j}{ }^{(2)}$ is an interior point, then without loss of generality we can take $R_{j}{ }^{(1)}$ as an interior point, and therefore $\eta_{j}{ }^{(2)} \neq 0, \forall j=\overline{\mathbf{N}_{1}+}$ $\overline{1, N_{2}}$.

The associated difference problem for the problem (26) - (28) is as follows: Find a function U_{j} is defined in \bar{G}_{h} and satisfies the problem:

$$
\begin{align*}
& L_{h} U_{j}=O, j=\overline{1, N_{1}}, \\
& U_{j}=\varnothing_{j}, j=\overline{N_{2}+1, N}, \tag{3}\\
& \quad \tilde{l}_{\mathrm{h}} U_{j}=\bar{\varnothing}_{j}, j=\overline{N_{1}+1, N_{2}},
\end{align*}
$$

where $\bar{\varnothing}_{\mathrm{j}}=\mu_{\mathrm{j}} \mathrm{h} \varnothing(\mathrm{q})$ and $\mathrm{q} \in \Gamma^{2}$ is the point of intersection of Γ^{2} with the normal passing through $\mathbf{P}_{\mathbf{j}} \in \Gamma_{\mathrm{h}}^{2}$.

Following the approach given in [2], we can prove that the solution U_{j} of the difference problem (31), can be obtained as the limit of Seidel successive approximations:

$$
\begin{aligned}
& \stackrel{(m+m)}{U}_{\mathrm{m}_{j}}=\stackrel{(\mathrm{m})}{\mathrm{U}}_{\mathrm{j}}=\varnothing_{\mathrm{j}}, \mathrm{j}=\overline{\mathbf{N}_{2}+1, \mathrm{~N}}, \mathrm{~m}=\mathrm{o}, 1, \ldots .,
\end{aligned}
$$

where $S_{j}\left(\omega \mid{ }_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right), j=1, N_{1}$ are continuous functions according to its arguments. Further, the rate of convergence can be estimated by:

$$
\frac{\max _{h}}{G_{h}} \quad\left|\frac{(m-1)}{U_{j}}-U_{j}\right| \leq p^{m}\left|U_{j}^{(o)}-U_{j}\right|,
$$

where $\mathrm{O}<\mathrm{p}<1$ is the ratio factor and $\mathrm{U}_{\mathrm{j}}^{(\mathrm{o})}$ are the intial approximations.
Estimating the error $\boldsymbol{\delta}_{\mathrm{h}}=\mathrm{U}-\mathrm{u}$:
Making use of equation (29), we have
$L_{h} U=\Delta_{h} U-f\left(x, y, U, D_{h, x o}(U), D_{h, y o}(U)\right)$,
$L_{h} \mathbf{u}=\Delta_{h} U-f\left(x, y, u, D_{h, x o}(U), D_{h, y o}(U)\right)$
$=\Delta u-f\left(x, y, u, u_{x}, u_{y}\right)+h M_{3}(u)+h M_{2}(u)$,
consequently,

$$
\begin{align*}
& \left.\mathcal{L}_{h} \delta_{h} \equiv L_{h} U-L_{h} u=\Delta_{h} \delta_{h} \tilde{f}_{z} \delta_{h}-\tilde{f}_{v} D_{h, x 0} \delta_{h}\right)- \\
& -\tilde{f} \omega D_{h, y o}\left(\delta_{h}\right)=h M_{3}(u)+h M_{2}(u) . \tag{32}
\end{align*}
$$

let z_{1} be a corner point. As in $\oint 2$, let $\alpha a(r, \theta)$ be an angle such that $\mathrm{t}_{\mathrm{g}} \boldsymbol{\alpha}(\mathrm{r}, \theta)=\frac{\mathrm{b}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)}{\mathrm{a}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)}$
$\mathrm{b}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)=-\mathrm{f} \omega(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta, \mathrm{z}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)$, $\mathrm{v}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta), \omega(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta))$.
$\mathrm{a}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)=-\mathrm{f}_{\mathrm{v}}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta, \mathrm{z}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)$, $\mathrm{v}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta), \omega(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta))$.

Assume that

$\mathrm{c}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)=-\mathrm{f}_{\mathrm{z}}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta, \mathrm{z}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)$, $\mathrm{v}(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta), \omega(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta))$.
If z_{1} is a Dirichlet corner and inequality (20) is satisfied, then using (4), (32) we have

$$
\mathcal{L}_{h} \quad \delta_{h}=h O\left(r^{-3}\right)+h O\left(r^{-1}\right)
$$

Finally, if z_{1} is a mixed corner and inequality (12) is satisfied, then taking into account (5), (32) we obtain.

$$
\mathscr{L}_{\mathrm{h}} \delta_{\mathrm{h}}=\mathrm{h} O\left(\mathrm{r}^{\lambda-3}+1\right)+\mathrm{h} O\left(\mathrm{r}^{\lambda-1}+1\right)
$$

Corollary 2. The computations for the operator \mathscr{L}_{h} is a straight forward extension to that used in the proof of Theorem.

REFERENCES

[1] Batschelet E. 1952, Uber die numerische Auflosung von Randwert problemen bei elliptischen partiellen Differential gleichungen, ZAMP, 3, PP. 165 193.
[2] Bers L. 1953, On mildly nonlinear partial differential equations of elliptic type, J. Res. Nat. Bur. Standards, 51, pp. 229-236.
[3] Laasonen p. 1957, On the degree of convergence of discrete approximations for the solutions of Dirichlet problem, Ann. Acad. Sci. Fenn. Ser. AI, pp. 246.
[4] Samarsky A.A. and Andreiv V.B. 1978, The difference methods for elliptic equations (Moscow: Nauka, (in Russian).
[5] Wigley N.M. 1964. Asymptotic expansions at a corner of solutions of mixed boundary value problems, J. Math, Mech., 13, pp. 549.
[6] Wigley N.M. 1966, On the convergence of discrete approximations to solutions of mixed boundary value problems. SIAM J. Numer. Analys. 3, pp. 372 382.
[7] Wigley N.M. 1970, Mixed boundary value problems in plane domains with corners, Math. Z., 115, pp. 33-52.
[8] Azzam A. 1980, Smoothness properties of bounded solutions of Dirichlet's problem for elliptic equations in regions with corners on the boundary, Canadian Math. Bull, 23 (2), 213 - 226.
[9] Babuska I. Kellogg R.B. and Pitkaranta J. 1979, Direct and inverse error estimates for finite elements with mesh refinements, Numerical math., 33, 447-471.
[10] Grisvard P. 1984, Singular solutions of elliptic boundary value problems in polyhedra, Portugaliae mathematica, 41, 4.
[11],Mazya V.G. and Plamenevskii V.A. 1978. Lp estimates of solutions of elliptic boundary value problems in domains with edges, Trudy Moskov. Mat. Ob. 37, and Transactions of the Moskow Mathematical Society 1980, Issue no. 1, 49-97
[12] Sadallah B.K. 1977, Régularité de la solution de léquation de la chaleur dans un domaine plan sans condition de corne, Note C.R.A.S. Paris, 284, 599 602.

