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ABSTRACT 

A numerical scheme using Sine functions is developed to approximate the solution of a 2 x 2 system of first order differ­

ential equations. The error in the approximate solution is shown to converge exponentially. 
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1. INTRODUCTION 

Systems of first order differential equations of the form 

dUJ- F ( ) dt- I U!, U2, t 
duz _ F ( ) ([(- 2 UJ, U2, t 

(1.1) 

are often encountered in many mathematical models, as in 

Neutron flow, electrical networks, residential segregation, and 

more (see, [2]). It is well known that the system (1.1) has a 

unique solution satisfying some boundary conditions u1(a) = 

<X1, and U2(a) = <X2. 

Consider a system of two linear first order differential equa­

tion: 

d :!t' = bu (t)UJ + b12u2 + fi (t) 
d:!tz = bz1 (t)UJ + b22u2 + fz (t) 

on the invergal [a, T] with bondary values 

Ui (a)= uP 
uz (a)= ug 

We write (1.2) in the vector form: 

di1 = B<tYu (t) + t(t) 
dt 

where B is the matric [b,,(t)]2x2,i,j = 1, 2 and 

-+ T-+ T 
U = (UJ,Uz) , f =if,/) . 

(1.2) 

(1.3) 

(1.4) 

Generally we solve system (1.4) subject to (1.3) in terms of 

matrices and eigenvalues, or, using Laplace transformation. 

To solve this system exactly, sometimes, we are concountered 

to put some assumption on the entries of the matrix B. In this 

paper we shall instead look at a new method for solving (1.4) 

via the use of Sine functions to find an approximate solution 

of system (1.4) and (1.3). The main idea is to replace integral 

equation by its discrete Sine approximations. There are sever­

al reasons to approximate by Sine functions. First they are 

easily implemented and give good accuracy for problems 

with singularities. Further, approximations by Sine functions 

are typified by errors of the form 0 (exp(--c/h)) where c, h > 

0. The paper is organized as follows: in section 2 we give the 

relevant properties of Sine functions, assumptions, and basic 

techniques. In section 3 we present and verify our approxi­

mation. 
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2. THE SINC FUNCTION 

A general review of Sine functions and their uses has 

recently been given by Stenger in [6]. We therefore only out­

line properties important to our present goals, and refer to [6] 

for further references. 

The term Sinc(x) which is defined by 

S . ( ) sin(nx) mcx =---
nx 

is an entire function over JR. We shall a dopt a more powerful 

notation for the Sine function. Namely, if h > 0 and k is an 

integer, we define the kth Sine function S(k, h) by 

S(k, h) (x) =sin [n (x- kh) I h] (2.1) 
n (x- kh) I h 

Approximations on [a, T] are obtained from corresponding 

· approximations on IR = (- oo, oo) via a conformal map. To be 

approximable on IR, u E Coo (IR) must obey certain analyticity 

and boundedness conditions in a strip in the complex plane C. 

With this in mind we first list properties over JR. To approxi­

mate functions via Sine method we make an assumption on 

the growth of the function in some domain. 

Definition 2.1 for d > 0 define the domain D, = { z : z = x + iy, 

lYI < d}. 

Let us introduce the following definition which are funda­

mentals to the development of Sine method. 

Definition 2.2 Let D be a simply connected domain and a, b 

E 'dD be such that a ::f. b, and let r be defined by r = {z E X 

: z = ff
1 (u), u E IR}. Then there exists a conformal map o: D 

---7 Ds satisfying ff 1 (IR) =rand such that for z E r, limHa+ o(z) 

=- oo, limz_,b- o(z) = 00, 

Given o and its inverse ff 1 and a constant number h, let us set 

Zk = Zk(h) = n-1 (kh), k = 0, ± 1, ± 2, .... Of particular interest 

for the present study is the class of functions La (D.) that char­

acterized in the definition 

Definition 2.3 Let a and f3 denote positive numbers, and let 

La,/3 (Ds) denote the family of/unctions f analytic in D,, and 

such that for some constant c > 0, and all z E D., we have 

lf(z)l::;; c lexp(az)l a+ 

(1 + iexp (z)i] f3 
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We simply write La(D,) for La.a (D,). For the same of simplic­

ity of representation of the material, we shall present our 

approximating formulas for the space La (D,) instead of for 

the more complicated space La.b (D,). 

Let us next decribe Sine definite integration formula over an 

interval, i.e., give general formula for approximating: [ 

F(u)du, v E r. At the outset, we define the numbers (Jk and 

c5k-l) by (Jk = (Sine (x) dx, k E Z and ;t1> = Ok + 112. 

We define a Toeplitz matrix I( -1) of order m by 

(2.2) 

with c5i-j denoting the (i, J) the element of Jl·'l m· We can thus 

state the following theorem, the result of which enables us to 

collocate (linear or nonlinear) initial value problems over an 

interval. 

Theorem 2.1 (see, [6, p. 219]) Let F I t:l E Lu(D,) with a> 0, 

d > 0, let&,; be defined as above, and h = --/nd I (aN). Then 

there exits a constant K which is independent of N, such that 

lfg F(t) dt- h -~ &~}l ~(z~) 1~ K exp (-Y ndaN) (2.3) 
J=-N l3 (zJ) 

3. DESCRIPTION OF SINC APPROXIMATION 

It is convenient for deriving an approximate solution for 

the system (1.4) by Sinc-Galerkin method to start with the 

scalar first order differential equation 

with 

du = B (t) u (t) + f(t), t E (a, T) 
dt 

u(a) = u0 

Integrating with respecting with respect to t, we get 

u(t) = [ [B ('r) u (r) + f(r)] dr + u0 

(3.1) 

(3.2) 

(3.3) 

To obtain approximations over (a, T), we make the use of the 

functions La (D,). If B is matrix this shall imply that all the 

components of B I o' (or, f as a vector) are in the class La (D.). 

Now, in equation (3.3) we collocate via the use of the indefi­

nite integration formula (2.3). Using the notation D(llo'(t,)) = 

diag[llo'(t-N), ... , llo'(tN)], then equation (3.3) can be written 

as a system of m = 2N + 1 linear equations 

U = H Jl·'lm D(Bio')U+H Jl·'lm D(llo'F+ U' (3.4) 

where U = [u-N, ... , UN]T, F = [/(2-N), ... , f (zN)]T with the 

nodes t, = o·'(ih) fori= -N, ... , N where h =--IndiaN, and Jl·'lm 

as defined in section 2. And where U' denotes the vector of 

2N + 1 constants values UO = [u0 (z-N), ... , d'(zN)]T. Define the 

matrices A and E by A = h JHlm D(Bio'), E = hJl-'lm D(llo'). 

Equation (3.4) can be written in the form 

U=AU+ EF+ U' (3.5) 

To prove convergence of the method. Evaluate the integral in 

(3.3) at the notes tt where i = -N, ... , N, to get 

u(t;) = [ [B(r) u (r) dr + f (r)] dr + u 0 

with the same matrices A, E and U' as mentioned above, and 

using the approximation in (2.3) we get, in matrix form, the 

approximation 

U= AU+ EF + CJl + K exp (---/ndaN) 

where the constant K is a vector such that each entry is bound­

ed by the constant Kin equation (2.3). So, the error ERR can 

be bounded as 

II ERR II~ II U -(AU+ EF + U') II~ K exp (---/ndaN) 

i.e., the discretization error that arises when a differential 

equation is replaced by a discrete system of algebraic equa­

tions is exponentially small. With the notation as above, we 

just proved the following Theorem. 

Theorem 3.1 Let B I o', f E La (D.), let the function u(t) be 

defined as in (3.3), and let the matrix U be defined as in (3.5). 

The for h = --/nd!(aN) there exists a constant K independent 

of N such that 

sup II [u(t,)]- U II~ K exp(---lndaN) 

conformal map: o(z) = log ((z- a) I (T- z)). For any d such Now, we may attempt to solve the linear systems of equation 

that 0 < d ~ n/2, fJ maps the region D, = {z: arg ((z- a) I (T- s(3.5) by sussive approximations, that is, by means of the iter-

z)) < d} onto D, where D, is as defined in section 2. The mesh ative scheme. 

size h represent the mesh size in the infinite strip D, for 

the uniform grid {ih},- oo < i < oo. The Sine grid points 

t, E (a, 1) in D., are the inverse images of the equispaced grid 

points; that is tt = o·' (ih) = (exp(ih) +a) I (1 + exp(ih)). We 

shall assume that both B I o' and f belongs to the class of 
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(3.6) 

The idea is to produce a sequence of iteration that converges 

to the solution of the problem, as noted in the following 

theorem 



Theory and Computations for Systems Modeled by First Order Differential Equations 

Theorem 3.2 The sequence U(n) defined in (3. 6) converges for 

all N sufficient large, to the exact solution provided that 

(T- a)< 11/(10 // B //=) 
Proof: Recall the definition of (J·Ilj as defined in section 2 sat­

isfies the inequality (see [6, p. 477]) ICJ-Il;/ :$ Il!IO, we have 

II A II oo= II hf<·Ilm D(Bio')ll= . 

= mF j=t I 8;~1) B(zj) I !II' (Zj)l 

:$tifT I B(t) I dt 
IO a 

:$ il (T -a) sup IB(t)l IO te(a,I) 

:$ il (T -a) liB II= 
10 

where in the third inequality we used Theorem 2.I, with the 

fact that B I o' E La (D.). For the iteration scheme to converge 

we require that II A II oo < I. Therefore we can always achieve 
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convergence of the scheme (3.6) by choosing (T- a)< _I_o_ 
ll/JB II= 
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