Strong and Weak n-Homogeneous Spaces

Adnan Al-Bsoul*, Ali Fora** and Abdalla Tallafha*
*Mathematics Department, Qatar University, P.O. Box 2713, Doha, Qatar
**Mathematics Department, Yarmouk University, Irbid, Jordan

> فضاءات n- متجانس القويـة والضعيفة
> عدنان البصول* و علي فوره*** وعبد الله طالفحـهـ

$$
\begin{aligned}
& \text { **قسم الرياضيات، جامعة اليرموك، اربد، الأردن }
\end{aligned}
$$

ٌِِ هذا البحتث سوف نستحدث أنواعاً جديدة من n- متجانس، والتي سوف ندعوها n-متجانس من النوع r، والنوع r، وسوف نرمز لها
 ץ- متجانس قوي. سوف ندرس بعض العالاقات الممكنة بـين الفضاءات والفضاءات المعرفة سابقاً مثلـــ متجانس

Keywords: Homogeneous, bihomogeneous, n-homogeneous.

Abstract

In this paper we introduce new types of n-homogeneity, we call them n-homogeneous of type 2 and type 3 , denoted by $\mathrm{nH}_{2}, \mathrm{nH}_{3}$ respectively. We show that every $3 \mathrm{H}_{3}$-space is bihomogeneous space. Also, every finite nH_{3}-space has the trivial topology (discrete or indiscrete). We show that every $3 \mathrm{H}_{3}$-space is strong 2-homogeneous. We study the implications between these spaces with the well known spaces, strongly n homogeneous spaces and weakly n-homogeneous spaces.

1. Introduction

A space X is called homogeneous if for every x, y in X there exists a homeomorphism $h: X \rightarrow X$ such that $h(\mathrm{x})=y$. Several authors studied the n-homogeneity spaces, for instance [1], [2] and [4]. In this section we shall give the definitions besides with the obvious implications between these definitions. For a set X, by $|X|$ we mean the cardinality of X. Let us start with the following definition, one may consult [1].

Definition 1.1. A space X is called bihomogeneous provided every two points in X can be interchanged by means of an autohomeomorphism on X.

Although every bihomogeneous space is homogeneous, the converse is not true. In fact the reals R with the left ray topology is homogeneous but not bihomogeneous. For the next definition one may see [2]. For a positive integer n we have the following definitions.

Definition 1.2. A space X is n-homogeneous of type 1 , denoted by $n H_{i}$, if for every two subsets of X each having exactly n elements $A=\left\{x_{1}, \ldots, x_{n}\right\}$ and $B=\left\{y_{l}, \ldots, y_{n}\right\}$, there exists a homeomorphism h of X onto itself such that $h(A)=B$.

Definition 1.3. A space X is called n-homogeneous of type 2 , denoted by $n H_{2}$, if for every two subsets of X each having exactly n elements $A=\left\{x_{p}, \ldots, x_{n}\right\}$ and $B=\left\{y_{p}, \ldots, y_{n}\right\}$, there exists a homeomorphism h of X onto itself such that $h(A)=B$ and, $h(z)=z$ for all $z \in A \cap B$.

Definition 1.4. A space X is called n-homogeneous of type 3 , denoted by $n H_{3}$, if for every two subsets of X each having exactly n elements $A=\left\{x_{p}, \ldots, x_{n}\right\}$ and $B=\left\{y_{l}, \ldots, y_{n}\right\}$, there exists a homeomorphism h of X onto itself such that $h(A)=B$ and $h\left(x_{l}\right)=y_{l}$.

Definition 1.5 [4]. A space X is called n-homogeneous of type 4, denoted by $n H_{4}$, if for every two subsets of X each having exactly n elements $A=\left\{x_{1}, \ldots, x_{n}\right\}$ and $B=\left\{y_{1}, \ldots, y_{n}\right\}$, there exists a homeomorphism h of X onto itself such that $h\left(x_{i}\right)=y_{i}$ for all $i=1, \ldots, n$.

Notice that n-homogeneous spaces of type 4 were introduced before, and in [4] such spaces are called strongly n-homogeneous. It is obvious that every $n H_{4}$-space is an (n - 1) H_{4}-space, and hence every $n H_{4}$ space is homogeneous provided that $|X|>n$.

2. 1- and 2-Homogeneous Spaces of all Types

In this section we shall study all implications between 1-, and 2-homogeneous spaces of type 1 , type 2 , type 3, and type 4. Also, we shall give a characterization of n-homogeneous spaces of type 4 . Besides we have the following results.

Theorem 2.1. Every $2 \mathrm{H}_{3}$-space ($2 \mathrm{H}_{2}$-space) is homogeneous provided that $|X| \geq 3$.

Proof. Let $x, y \in X$. Let $z \in X \mid\{x, y\}$ and consider the sets $\{x, z\}$ and $\{y, z\}$. So, there exists a homeomorphism $h: X \rightarrow X$ with $h(x)=y$.

Remark. In the proof of Theorem 2.1 we assumed that $|X| \geq 3$. In fact, if $|X|=2$ and X is $2 \mathrm{H}_{3}\left(2 \mathrm{H}_{2}\right)$, then the topology on X is trivial (discrete or indiscrete) and hence it is homogeneous. Also, one can notice that if $|X| \leq n$, then X is $n H_{m}$-space for $m=1,2,3,4$.

Theorem 2.2. Let X be a finite space with $|X|>n$, then X is an $n H_{3}$-space iff X has the trivial topology (discrete or indiscrete).

Proof. Suppose on the contrary, that is, X is finite and τ is not the trivial topology. Hence, there exists a proper open subset U of X. Let $x_{0} \in U$, and let $k=\mid \cap\left\{V \in \tau: x_{0} \in V\right\}$, since τ is not trivial then $k>$ 1 . Since X is homogeneous, and $\cap\left\{V \in \tau: x_{0} \in V\right\}$ is the smallest open set containing x_{0}, then for $x \in X$, there exists a unique open set U_{x} containing x of cardinality k, in fact such an open set U_{x} is the smallest open set containing x.

Let $x_{1} \in X$, fix the unique open set $U_{x_{1}}$ containing x_{1} with $\left|U_{x_{1}}\right|=k$. Since τ is not trivial, then there exists $x_{2} \in X \backslash U_{x_{1}}$. Consider the unique open set $U_{x_{2}}$ containing x_{2} with $\left|U_{x_{2}}\right|=k$. Hence $U_{x_{1}} \cap U_{x_{2}}=\varnothing$. If $X \backslash\left(U_{x_{1}} \cap U_{x_{2}}\right)$ is not empty continue in this process. Finally, we get $X=\cup_{\mathrm{i}=1}^{\mathrm{n}} U_{x_{i}}$, each $U_{x_{i}}$ is open with cardinality k. We have the following cases:
I. $n \leq k$. Choose disjoint open sets U_{1}, U_{2} with $\left|U_{1}\right|=\left|U_{2}\right|=k$, and then take $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq U_{1}$ and $y \in U_{2}$. Since X is $n H_{3}$, there exists a homeomorphism $h: X \rightarrow X$ such that $h\left(\left\{x_{2}, \ldots, x_{n}\right\}\right)=\left\{x_{2}, \ldots, x_{n}\right\}$ and $h\left(x_{1}\right)=y$. Hence $h\left(U_{I}\right) \cap U_{2}$ is an open set containing y of cardinality less than k, a contradiction.
II. $n>k$. Let $A=\left\{x_{1}, \ldots, x_{n}\right\}$, so there exist open sets U_{1}, U_{2} of size k with $x_{n} \in U_{1}$ and $x_{n} \in U_{2}$. Hence, there exists a homeomorphism $h: X \rightarrow X$ such that $h\left(\left\{x_{2}, \ldots, x_{n}\right\}\right)=\left\{x_{1}, \ldots, x_{n-1}\right\}$ and $h\left(x_{1}\right)=x_{n}$. So, $h\left(U_{1}\right) \cap U_{2}$ is an open set containing x_{n} with $\left|h\left(U_{1}\right) \cap U_{2}\right|<k$ since $x_{1} \in h\left(U_{1}\right)$ and $x_{1} \notin U_{2}$. This contradiction completes the proof.

Theorem 2.3. If $|X|>2$ and X is a $2 H_{I}$-space, then X is homogeneous.

Proof. Let $x, y \in X$. Let $z \in X \backslash\{x, y\}$. Then there exists a homeomorphism $h: X \rightarrow X$ such that $h(\{x, z\})=\{y, z\}$. If $h(x)=y$ we are done. If $h(x)=z$ then $h o h$ is the required homeomorphism.

Theorem 2.4. Every $2 \mathrm{H}_{2}$-space is $2 \mathrm{H}_{4}$-space provided that $|X| \geq 5$.

Proof. Take $\{x, y\}$ and $\{u, v\}$ in X. We shall find a homeomorphism $h: X \rightarrow X$ such that $h(x)=u$ and
$h(y)=v$. Consider the sets $\{x, y\}$ and $\{x, z\}$ where $z \in X \backslash\{x, y, u, v\}$. Hence there exists a homeomorphism $h_{1}: X \rightarrow X$ such that $h_{1}(y)=z$ and $h_{1}(x)=x$. Consider the sets $\{x, z\}$ and $\{u, z\}$, hence there exists a homeomorphism $h_{2}: X \rightarrow X$ such that $h_{2}(x)=u$ and $h_{2}(z)=z$. Finally, consider the sets $\{u, z\}$ and $\{u, v\}$. So, there exists a homeomorphism $h_{3}: X \rightarrow X$ such that $h_{3}(z)=v$ and $h_{3}(u)=u$. Therefore, $h_{3} o h_{2} o h_{1}$ is the required homeomorphism.

The condition that $|\mathrm{X}| \geq 5$ is necessary, because; Sierpenski space is $2 \mathrm{H}_{2}$ which is neither $2 \mathrm{H}_{3}$ nor homogeneous. The next example is also $2 \mathrm{H}_{2}$-space which is not $2 \mathrm{H}_{3}$-space although it is homogeneous.

Example 2.5. Let $X=\{1,2,3,4\}$ be topologized by the base $\beta=\{\{1,2\},\{3,4\}\}$. Hence $(X, \tau(\beta))$ is a homogeneous space which is not $2 \mathrm{H}_{3}$-space.

It is easy to see that every $2 \mathrm{H}_{2}$-space with cardinality 3 has the trivial topology (discrete or indiscrete), and hence it is $2 \mathrm{H}_{3}$-space.

Since every $2 \mathrm{H}_{4}$-space is $2 \mathrm{H}_{3}$-space, hence every $2 \mathrm{H}_{2}$-space is $2 \mathrm{H}_{3}$-space. Also, the real R with the left ray topology is $2 \mathrm{H}_{1}$ which is not $2 \mathrm{H}_{2}$. Hence we have the following diagram:
diagram:

3. 3H3-Spaces

In this section we shall study the implications of 3-homogeneous spaces of type 3 . We shall see that such spaces are bihomogeneous and are 2-homogeneous spaces of type 4. Let us start with the following result.

Theorem 3.1. Every $3 H_{3}$-space is bihomogeneous provided that $|X| \geq 4$.

Proof. Let $x, y \in X$ with $x \neq y$. We shall show that there exists a homeomorphism $h: X \rightarrow X$ such that $h(x)=y$ and $h(y)=x$. Since $|\mathrm{X}| \geq 4$, there are two distinct points u, v in $X \backslash\{x, y\}$. Consider the triple
$C_{1}=\{u, x, y\}$, so there exists a homeomorphism $h_{1}: X \rightarrow X$ such that $h_{1}\left(C_{1}\right)=C_{1}$ with $h_{1}(x)=y$. If $h_{1}(y)=x$ we are done. If $h_{1}(y)=u$, consider the triples C_{1} and $C_{2}=\{v, x, y\}$. Hence there exists a homeomorphism $h_{2}: X \rightarrow X$ such that $h_{2}\left(C_{1}\right)=C_{2}$ and $h_{2}(y)=y$. If $h_{2}(x)=v$, then $h_{2} o h_{1}$ is the required homeomorphism. If $h_{2}(x)=x$, consider the triples C_{2} and $C_{3}=\{u, v, y\}$, hence there exists a homeomorphism $h_{3}: X \rightarrow X$ such that $h_{3}\left(C_{3}\right)=C_{2}$ and $h_{3}(y)=y$. So we have two cases:

Case 1: $h_{3}(u)=v$ and $h_{3}(v)=x$, in this case the homeomorphism $h=h_{3} o h_{2} o h_{1}$ is the required homeomorphism.

Case 2: If $h_{3}(u)=x$ and $h_{3}(v)=v$, consider the homeomorphism $h=h_{3} o h_{i}$.

Another consequence of $3 \mathrm{H}_{3}$-spaces is the following.

Theorem 3.2. If X is an $3 H_{3}$-space then for every $x, y, z \in X$ there exists a homeomorphism $h: X \rightarrow X$ such that $h(x)=y$ and $h(z)=z$ provided that $|X| \geq 4$.

Proof. Let x, y, z be any three points in X. Fix $u \in X \backslash\{x, y, z\}$, if $x \neq y$, consider the triples $C_{1}=\{u, x, z\}$ and $C_{2}=\{x, y, z\}$. Hence there exists a homeomorphism $h_{1}: X \rightarrow X$ such that $h_{1}\left(C_{1}\right)=C_{2}$ with $h_{l}(z)=z$. If $h_{l}(x)=y$ we are done. If $h_{l}(x)=x$, consider the triples C_{2} and $C_{3}=\{y, u, z\}$. So, there exists a homeomorphism $h_{2}: X \rightarrow X$ such that $h_{2}\left(C_{2}\right)=C_{3}$ with $h_{2}(z)=z$. If $h_{2}(x)=y$, then h_{2} is the required homeomorphism. If $h_{2}(x)=u$, then $h=h_{1} o h_{2}$ is the required homeomorphism.

Now, we shall give the main result in this section.
Theorem 3.3. Every $3 H_{3}$-space is $2 H_{3}$-space provided that $|X| \geq 6$.

Proof. Let $A=\left\{x_{1}, x_{2}\right\}$ and $B=\left\{y_{1}, y_{2}\right\}$ be any two doubletons. So, we have the following cases:
I. $\boldsymbol{A} \cap \boldsymbol{B}=\varnothing$. Consider the triples $C_{1}=\left\{y_{1}, x_{1}, x_{2}\right\}$ and $C_{2}=\left\{x_{1}, y_{1}, y_{2}\right\}$. Hence, there exists a homeomorphism $h_{1}: X \rightarrow X$ such that $h_{1}\left(C_{1}\right)=C_{2}$ and $h_{1}\left(x_{2}\right)=y_{2}$. If $h_{1}\left(x_{1}\right)=y_{l}$, we are done. If not, that is, $h_{1}\left(x_{1}\right)$ $=x_{1}$, consider the triples C_{2} and $C_{3}=\left\{u, y_{1}, y_{2}\right\}$ where $u \in X \backslash\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. So, there exists a homeomorphism $h_{2}: X \rightarrow X$ such that $h_{2}\left(C_{2}\right)=C_{3}$ and $h_{2}\left(y_{2}\right)=y_{2}$. If $h_{2}\left(x_{1}\right)=y_{1}$ then $h_{2} o h_{1}$ is the required homeomorphism. If $h_{1}\left(x_{1}\right)=u$, consider the triples $C_{4}=\left\{u, v, y_{2}\right\}$ and $C_{5}=\left\{v, y_{1}, y_{2}\right\}$ where $v \in X \backslash\left\{u, x_{1}, x_{2}\right.$, $\left.y_{1}, y_{2}\right\}$. Hence, there exists a homeomorphism $h_{3}: X \rightarrow X$ such that $h_{3}\left(C_{4}\right)=C_{5}$ and $h_{3}\left(y_{2}\right)=y_{2}$. If $h_{3}(u)=y_{l}$, then $h_{3} o h_{3} o h_{2} o h_{1}$ is the required homeomorphism. If $h_{3}(u)=\mathrm{v}$, then $h_{3} o h_{3} o h_{2} o h_{1}$ is the required homeomorphism.
II. $\boldsymbol{A}=\boldsymbol{B}$, in this case, assume $A=\{x, y\}$, this case follows from Theorem 3.1.
III. $|\boldsymbol{A} \cap \boldsymbol{B}|=\mathbf{1}$. If $A=\{x, z\}$ and $B=\{y, z\}$, then by Theorem 3.2, we are done. If $A=\{x, z\}$ and $B=$ $\{z, y\}$, choose $u \in X \backslash\{x, y, z\}$. Consider the triple $C_{6}=\{x, y, z\}$. Hence there exists a homeomorphism $h_{4}: X \rightarrow X$ such that $h_{4}\left(C_{6}\right)=C_{6}$ and $h_{4}(z)=y$. If $h_{4}(x)=z$, then we are done. If $h_{4}(x)=x$, then by Theorem
3.2, there exists a homeomorphism $h_{5}: X \rightarrow X$ such that $h_{5}(x)=z$ and $h_{5}(y)=y$, so $h_{5} o h_{4}$ is the required homeomorphism.

Corollary 3.4. Every $3 \mathrm{H}_{3}$-space is $2 \mathrm{H}_{4}$-space.

4. The \mathbf{N}-Homogeneity of Type I and their Consequences

In this section we give a characterization of $n \mathrm{H}_{4}$-spaces. Also, we shall draw the main lines for possible implications between these kinds of n-homogeneity spaces. It is obvious that every $n H_{4}$-space is $k H_{i}$-space for all $1 \leq k \leq n$ and $i=1,2,3,4$. We also saw in Section 3 that, every $3 H_{3}$-space is $k H_{i}$-space where $k=1,2$ and $i=1,2,3,4$. Before continuing this study let us give the following characterization.

Theorem 4.1. Let n be a positive integer. A space X is $n H_{3}$ if and only if X satisfies the property that for any two subsets $A=\left\{x_{1}, \ldots, x_{n-1}\right\}$ and $B=\left\{y_{p}, \ldots, y_{n-1}\right\}$ of X both of $(n-1)$ elements, and for any $z \in X \backslash(A$ $\cup B)$, there exists a homeomorphism $h: X \rightarrow X$ such that $h\left(x_{i}\right)=y_{i} ; i=1, \ldots, n-1$ and $h(z)=z$.

Proof. (\Leftarrow) Let $A=\left\{x_{p}, \ldots, x_{n}\right\}$ and $B=\left\{y_{P}, \ldots, y_{n}\right\}$. We shall show that there exists a homeomorphism $h: X \rightarrow X$ such that $h\left(x_{i}\right)=y_{i}$ for all $i=1, \ldots, n$. By assumption, there are homeomorphisms $h_{p}, h_{2}: X \rightarrow X$ such that
$h_{l}\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, n-1$; and $h_{l}\left(x_{n}\right)=x_{n}$,
$h_{2}\left(y_{j}\right)=y_{j}$ for $j=1, \ldots, n-1$; and $h_{2}\left(x_{n}\right)=y_{n}$.
Hence, $h=h_{2} o h_{1}: X \rightarrow X$ is the required homeomorphism. The converse is obvious.

Theorem 4.2. If X is $2 \mathrm{H}_{3}$-space then $X \backslash\{u\}$ is homogeneous for every $u \in X$.

For a finite space X of cardinality n we have the following result for homogeneous space of type 1 .

Theorem 4.3. Let X be a space of cardinality n. Then X is a $k H_{1}$-space if and only if X is $(n-k) H_{l}$, where $1 \leq k \leq n-1$.

Question 4.4. Is every $n H_{1}$-space an ($n-1$) H_{1}-space? $(n \geq 3)$

The following typical example solves Question 4.4 partially.

Example 4.5. Let $X=\left\{x_{p}, \ldots, x_{n}\right\}$ be topologized as follows

$$
\tau=\left\{\varnothing,\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{p^{\prime}}, \ldots, x_{n-1}\right\}, X\right\} .
$$

Then, X is $n H_{1}$, but it is not $k H_{l}$ for all $k=1,2, \ldots, n-1$.

Moreover, in Example 2.5, X is $3 H_{1}$-space with $|X|=4$ but it is not $2 H_{I}$. We guess that if X is infinite then every $n H_{l}$-space is also a $k H_{l}$-space for all positive integers $k \leq n$.

It is easy to see that every $n H_{2}$-space is an $n H_{1}$-space, but the converse is not true. In fact R with the left ray topology is an $n H_{1}$ for all n positive integer, but is not $n H_{2}$-space for all $n \geq 2$.

For $n H_{1}$-space we have the following results.
Theorem 4.6. If X is $n H_{1}$ and $|X| \geq n+1$, then X is homogeneous.
Proof. Let $x, y \in X$, since $|X| \geq n+1$, there exists a set of distinct points $\left\{x_{1}, \ldots, x_{n-1}\right\} \subseteq X \backslash\{x, y\}$. Since X is an $n H_{1}$-space, there exists a homeomorphism $h: X \rightarrow X$ such that $h\left(\left\{x_{p}, \ldots, x_{n-p}, x\right\}\right)=\left\{x_{1}, \ldots, x_{n-p}, y\right\}$. If $h(x)=y$, we are done, if not, without loss of generality, assume that $h(x)=x_{1}$. If $h\left(x_{1}\right)=y$, then $h(h(x))=h\left(x_{1}\right)=y$, and hence the composition hoh is a homeomorphism from X onto itself and takes x into y. If $h\left(x_{l}\right) \neq y$, then $h\left(x_{l}\right)=x_{j \text {. }}$. Continuing this process, there exists $k \leq n$, such that $h^{k}(x)=y$, where $h^{k}=$ hoho...oh; k times.

Corollary 4.7. If X is $n H_{2}$ and $|X| \geq n+1$, then X is homogeneous.
Proof. Since every $n H_{2}$-space is $n H_{1}$-space and $|\mathrm{X}| \geq n+1$, then by Theorem 4.6, X is homogeneous.

Theorem 4.8. If X is $n H_{2}$ and $|\mathrm{X}| \geq 2 n-1$, then X is an (n-1) H_{2}-space, and hence $k H_{2}$ for all positive integers $k<n$.

Proof. Let $A=\left\{x_{1}, \ldots, x_{n-1}\right\}$ and $B=\left\{y_{1}, \ldots, y_{n-1}\right\}$. Hence there exists $z \in X \backslash(A \cup B)$. Since X is an $n H_{2}-$ space, there exists a homeomorphism $h: X \rightarrow X$ such that $\left.h\left\{x_{p}, \ldots, x_{n-1}, z\right\}\right)=\left\{y_{p}, \ldots, y_{n-1}, z\right\}$ and, $h(z)=z$ and $h(u)=u$ for all $u \in A \cap B$. Hence $h(A)=B$ and $h(u)=u$ for all $u \in A \cap B$. Therefore, X is $(n-1) H_{2}$.

REFERENCES

[1] J. V. Mill and G. M. Reed (Editors), Open Problems in Topology, Elsevier Science Publishers B. V., 1990.
[2] J. K. Phelps, A condition under which 2-homogeneity and representability are the same in continua, Fund. Math. XXXI(1984), pp. 89-98.
[3] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Springer-Verlag, 1978.
[4] G. S. Ungar, Countable dense homogeneity and n-homogeneity, Fund. Math. XCIX (1978), pp. 155160.

