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ABSTRACT 

New interleaved CG and self-scaling VM algorithm is presented in this research which combines AI Bayati's self-scaling VM algorithm 

with another new multi-step CG algorithm with inexact line searches (ILS). In an interleaving algorithm a VM-update can be initiated 

between each CG-step and the technique improves the rate of convergence of the new proposed algorithms. The new algorithms are 

tested against the standard Hestenes-Stiefel and Buckley's algorithms for a number of well-known test functions, with encouraging 

results. 

205 



New Switching Algorithm for Combining 

1 - INTRODUCTION 

Two of the most important classes of algorithms for 

function minimization are Variable Metric (VM) and 

Conjugate Gradient (CG) algorithm. It is well-known that 

VM algorithms require fewer iterations and do not require 

very accurate line searches. On the other hand, CG 

algorithms do not require matrix storage and have proved 

themselves appropriate for large problems where the matrix 

of second derivatives is not spare (see for example Fletcher, 

[1]. However, the class of interleaved algorithms which 

incorporate both a CG and a VM algorithms are 

"intermediate" in that they use only few storage locations 

and they accelerate the rate of convergence of CG 

algorithms. We now define explicitly the general VM and 

CG algorithms, and hence the new algorithms with their 

inexact line search. 

2. WELL-KNOWN RESULTS: 

Let f: Rn ~ R be a twice differentiable function defined 

on an open set E. We consider the problem of finding XEE 

such that: 

min f(x) = f (xmin) 

xeE (1) 

and vk = xk+ 1 xk (3) 

Then the Broyden [2] 9-class VM-family can be expressed 

as follows: given X 1 and an arbitrary nxn positive definite 

matrix HI' iterate for k = 1,2,3, ... with 

xk+l = xk Ak Hk gk, (4) 

where Ak is a steplength and Hk is defined by: 

(6) 

and 8k , pk are parameters .<': o. The well known BFGS 

(Broyden, Fletcher, Goldfarb and Powell) update 

corresponds to pk I; ()k = I, while the DFP (David, 

Fletcher and Powell) update arises from pk = 1; Ok = 0. In 

this research we are mainly concerned with AI Bayati's 

(1991) self-scaling VM update, for which 8k = 1, 
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ALGORITHM I (Hestenes and Stiefel): 

Now, the CO-method was originally developed by Hestenes 

and Stiefel, ( 1952) to solve systems of linear equations; it 

has been updated to solve minimization problem (l) in the 

following form given arbitrary Xp let d1=-gl' iterate for 

k = 1, 2, 3, ... with 

dk+l = -gk+l + ~k dk ' 

xk+l= xk + Ak dk • 

(7a) 

(7b) 

where Ak minimizes f in the direction dk . The scalar Ak 

is called an exact minimizer (ILS) if: 

(8) 

Different choice of the parameter ~k gives several 

different algorithms, including: 

We note that for a quadratic function the three formulae for 

~k are the same provided ELS are used (see Fletcher, 1987). 

3. MULTI-STEP CG-METHODS: 

Let f be a strictly convex quadratic function defined on Rn: 

f (x) + (X T A x) I 2 + b T X , (12) 

where A is a symmetric and strictly positive definite nxn 

matrix and beRn. A set of non-zero vectors (dpd2, ••••••••• , 

d0 ) is defined as mutually conjugate with respect to A if: 

(13) 

Now, The CG method can be looked upon as being a 

particular specialisation of the Gram-Schmidt 

orthogonalisation of a given set of vectors. The 

Gram-Schmidt process can be expressed: 

dl= -gl (14) 

and for k = 1, 2, 3, ... iterate with 

(15) 
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For the conjugacy condition to hold for the set d with 

respect to A then 

f3tk = (yJ gk+t) I (yJ di); i = 1, 1, 2, 3, ...... , k. (16) 

Particular CO-algorithms that do not require ELS have been 

introduced by Dixon (1975); Nazareth (1977); Shanno 

(1978). Nazareth-Nocedal (1978) developed, a multistep 

CG-method which does not need ELS by defining matrices 

D = (dp~ ......... , dn) 

and G = (gp g2 ......... , gn) and expressing (15) by 

-G =DB, (17) 

where B is an nxn upper triangular matrix with j3ii =1 for 

i=1, 2, ......... , k. Using ELS in (15) yields: 

yJ gk+t = 0 for i = 1, 2, ...... , k-1, 

and hence 

13;k = 0 for i = 1, 2, 3, ...... , k-1 . 

(18) 

(19) 

Hence, the conjugate search directions of the multi-step 

CG-method can be summerized as follows: 

ALGORITHM II (Nazareth-Nocedal): 

iterate for k = 1, 2, 3, ...... , with 

(20a) 

(20b) 

T T 
(ck-1 + [ ( Yk-1 gk-1) I ( Yk-1 dk-1)] dk-1 ; k >1 , 

ck = 10 k = 1 (20c) 

In the above algorithm using ILS not all the coefficients of 

the Gram-Schmidt process have to be computed at every 

iteration. For the (k+l)1
h step, when computing dk-l the 

coefficients for d1 ~ , ~ .......... , dk_2 are already known 

since (see Nazareth-Nocedall978) it is established that: 

T 
Y; Y;+k = 0 for k 2:: 2 . 

Hence 

(21) 

(22a) 

(22b) 
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and so 
T T T 

Y; gi+2 = Y; g,+3 = Y; gi+4 = .......... (22c) 

Hence, only two new coefficients have to be computed and 

only two previous search directions must be stored; the 

contribution of the components along dl' d2, ......... , dk-Z 

to the new direction dk+l can be accumulated in a single 

vector ck . Similarly, the correction vector (ek) to the 

current iterate xk can also be accumulated in a single vector 

such that for the quadratic function (12) the correction term 

is defined by: 

k ;::: 1; (23) 

and so 

(24) 

where 

ek = -A.k [ (g~+l dk) I (Y! dk)] , with e1 = 0 initially (25) 

for further details see Nazareth (1977). 

Algorithm II generates mutually conjugate search directions 

with respect to the Hessian matrix A for the system of 

equations defined in (20). For more details see Nazareth 

and Nocedal (1978). 

ALGORITHM III (NEWl): 

However, in this research we have assumed that A=I, the 

identity matrix, Eq. (20) generates !-conjugate vectors, i.e. 

they are also multually orthogonal. Based on the above idea 

we have constructed a new set of mutually orthogonal 

vectors g~. g;, ...... , g~ which are a linear combination 

of the normal gradient terms gl' g2, ...... , gn defined as 

follows: 

iterate for k = 2,3,4, ...... with 

g~=gk [(g!g~_,)/(g~_i)g~-1)] g~-1' 
* * gk = gk + ck-1 • 

{ 

(ck-2 + [ (g~ g~ -2> I (g~ J g: -2)] g~ -2; 

ck-1 = 

0 k = 1, 2 

(26a) 

(26b) 

(26c) 

k = 3,4, .. 

(26d) 

We now will prove that the set of orthogonal vectors 

defined in (26) will estimate the set of normal gradient 

vectors as follows: 

The mutually conjugate search directions for algorithm III 

can be expressed as follows: 

d, = -g~, (27a) 

iterate for k = 1, 2, 3,...... with 
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(27b) 

where 

(27c) 

and y~ = g~ +I- g~ (27d) 

where g: +I is a vector defined in (26). 

However, this algorithm also generates mutually conjugate 

directions for the quadratic function (12) and the set {g~, 

* *} . 'd . al 'th h 1 { * * *} g2, .... ,gn ts 1 enttc wt t e norma set gp g2, .... ,gn 

provided that ELS are used (see theorem 1). 

THEOREM 1: The set of orthogonal vectors {g\ :i=1, 

2, ... , n} defined in (26) coincide with the set {gi :i=l, 2, ... , 

n} in the case of the quadratic function (12) using ELS. 

Proof: Proceed by induction: 

g~ = g1 , by assumption. 

For i = 2, we have 

* T * I +T * ) ] * (28) g2=g2-[(g2gl) (gl gl gl 

since g~ = g1 and gi g1 = 0 (orthogonality property is 

satisfied for the quadratic function with ELS); hence 

* g2' = g2. 

Suppose now that the theorem is true for i, i .e. 

gi= gi, for j =I, 2, 3, ... ,1. (29) 

To complete the proof of the theorem we must show it is 

true for i+ L Consider 

(30) 

Since all the gradients are mutually conjugate with respect 

to A in the set {gi: i = 1, 2, 3, ... , n} and (29) is true, then 

clearly 

* gi+l' = gi+l' 

For ILS and for general functions, the set {g~ : i = 1, 2, 3, 

... ,} will only estimate the normal set of gradient vectors 

{g; : i = 1, 2, 3, ... , n). For the quadratic function (12) the 

search directions defined in (27) are identical to the 

standard CO-method provided that ELS are used. But for 

general functions, algorithm III restarts with the stepest 

descent direction every n interation or whenever Powell's 

(1977) restarting criterion is satisfied, i.e. if either of the 

inequalities: 

I g~+rg~ I (3la) 

or 

208 

d!+l g~+l >- 0.8 ( g~ +f g~ +I ) 

are satisfied. 

(3lb) 

4. NEW INTERLEAVING VM-CG METHOD 

ALGORITHM (IV): 

In this section we have to present another new algorithm 

which uses both VM and CO-steps. Algorithm (IV) is 

particularly suitable for cases where less than nxn storage 

locations are conveniently available to store the VM matrix, 

and they perform VM-steps and CO-steps sequentially. 

This type of algorithms was originally studied by Buckley 

(1978). 

For the outlines of the this new algorithm we consider the 

general iteration: 

d~=-Hgl. (32a) 

where g1 is arbitrary, and H is any symmetric and positive 

definite matrix, iterate for k = 1, 2, 3, ... with 

(33a) 

(33b) 

13~ = < g:+i H Y~ > 1 < d~ Y: >. (33c) 

where Ak is a steplength determined by ILS. 

The new interleaved algotrithm uses iteration (33) and 

Al-Bayati's (1991) self-scaling VM updates as follows: 

Given arbitrary x1 and matrix H1 (usually H 1 = 1), set t 

i = l initially. 

step 1: set d1 =-Hi g1 • 

step 2: for k = t, t +1, t +2, ... iterate with (33) 

step 3: check if 

I d! yk I > 0. 0015 I I Ykll ·lldk I J ~34) 
is satisfied then reset t to t~e current k. ~q b ) was gtven 

by Dixon (1985). 

Update H; by 

step 4: replace i by i+ 1 and repeat from step 1. 

For the VM-steps it is necessary that v; Y1 > 0 to ensure 

that H; +I will be positive definite. Replace this condition 

by the equivalent one: 
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(36) 

where J.lK is constant less than 1. Hence, we adopt the 

condition (36) in implementing our new algorithm but use it 

explicitly with J.1K = 0.9 which corresponds to the best value 

for ILS in this case. Buckley ( 1978b) also proved that his 

combined QN-CO algorithm and the standard CO method 

generate identical sequences of points xk, if the two 

algorithms start from the same starting point. This means 

that the change in the metric along the QN-step does not 

prevent the mixed algorithm from terminating in n steps or 

less in the case of quadratic function. provided that the 

BFOS update is used. 

For this new algorithm it is clear that Al-Bayati's (1991) 

self-scaling VM update (7) will not effect the quadratic 

termination property. 

ALGORITHM (V) BUCKLEY: 

To measure the performance of the new propsoed 

interleaving algorithm (IV) we have compared it with 

Buckley's (1978a) interleaving algorithm. Buckley's 

algorithm differes than the new algorithm in two major 

steps: 

First: Buckley's algorithm uses the BFOS update while the 

new algorithm uses AI-Bayati's self-scaling VM-update. 

Second: Buckley's switching criterion is 

(37) 

while the new algorithm uses eq (34) as new switching 

criterion. 

5. NUMERICAL COMPARISONS. 

Thirty standard test functions (see Appendix) were tried 

with a range of dimensions in order to examine the 

effectiveness of the new proposed algorithms. The 

numerical experiments were performed on the IBM-Elonex 

personal computer with double precision arithmetic with 

programs written in FORTRAN. The line search routine 

used was a cubic interpolation which uses function and 

gradient values and it is an adaptation of the routine 
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published in (12). 

The following five algorithms were tested: the first (HS) 

corresponds tot he standard Hestenes and Stiefel 

CO-method, the second (NEW 1) is the new multi-step 

CO-method, the third is Buckley's method. (BUCKLEY), 

the fourth is the second new interleaving algorithm 

(NEW2) and the fifth is Al-Bayati's self-scaling 

VM-method (BAYATI). The numerical results for these 

five algorithms are presented in four tables. The 

performance indicators employed are; total number of 

function calls (NOF), and total number of iterations (NOI) 

required to solve each test function, using the following 

stopping criterion.: 

(38) 

Finally, the computational results documented in this 

section show that the new algorithms generally performs 

more efficiently than the other algorithms, in terms of 

NOF, for most of our test functions. The new algorithms 

almost always require a lower number of iterations and 

function calls than the well-know standard HS-method with 

overall savings in the range (12-25)% for NOF and 

(11-39)% for NOl for small dimensionality test functions 

(see Table- I-). Now for moderate dimensionality test 

functions there are (10-35)% for NOF and (27-50)% for 

NOl. For large dimensionality test functions there are 

improvements in the NOF about (35-38)% and (44-66)% 

for NOl. However, the new interleaved algorithms uses 

only moderate storage and they generally accelerate the 

CO-method. However, CO-methods remain valuable for the 

very large problems since only few vector storage locations 

are required. 
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TABLE (1) 

TEST N HS NEW1 BAYAT1 BUCKLEY NEW2 

FUNCTIONS N01 (NOF) N01 (NOF) N01 (NOF) N01 (NOF) N01 (NOF) 

CUBIC 2 14 (53) 19 (52) 13 (36) 14 (47) 14 (48) 

BEALE 2 10 (26) 10 (26) 9 (23) 20 (70) 9 (30) 

EDGAR 2 6 (20) 6 (18) 7 (16) 7 (17) 5 (18) 

RECIPE 3 5 (16) 5 (16) 7 (16) 6 (16) 6 (21) 

POWLL3 3 14 (30) 10 (24) 11 (22) 10 (30) 11 (33) 

BIGGS 3 14 (42) 14 (52) 12 (30) 15 (48) 10 (40) 

HELICAL 3 32 (74) 32 (67) 20 (67) 19 (66) 19 (62) 

POWELL 4 65 (170) 46 (122) 32 (72) 17 (73) 10 (57) 

WOOD 4 26 (60) 29 (70) 22 (51) 38 (114) 22 (72) 

CANTERLL 4 25 (148) 16 (115) 14 (61) 19 (93) 16 (96) 

TOTAL NOI 211 187 147 165 128 

(NOF) (639) (562) (394) (574) (477) 

PERFORMANCE OF THE NEW ALGORITHMS IN RELATION TO STANDARD HS-CG METHOD 

HS NEWl BAYATI HOCKLEY NEW2 

NOI 100 88.6 69.6 78.1 60.6 
NOF 100 87.9 61.6 89.8 71.6 

ALL the algorithms terminate when II g* II< lxl0-5 
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TABLE (2) 

TEST N HS NEW1 BAYAT1 BUCKLEY NEW2 

FUNCTIONS N01 (NIF) N01 (NOF) N01 (NOF) N01 (NOF) N01 (NOF) 

DIXON 10 22 (50) 30 (62) 15 (31) 17 (40) 16 (49 

SHALLOW 20 8 (19) 7 (19) 8 (18) 9 (28) 8 (27) 

MIELE 20 54 (141) 38 (122) 32 (89) 25 (84) 29 (102) 

EX-CANTRL 20 20 (132) 17 (120) 15 (74) 19 (93) 16 (96) 

EX-POWELL 20 60 (162) 47 (129) 38 (79) 39 (119) 17 (60) 

PN2 30 16 (40) 18 (146) 29 (64) 38 (109) 16 (50) 

EX-MIELE 40 82 (197) 43 (141) 34 (94) 28 (90) 29 (102) 

EX-CANTRL 40 20 (132) 17 (126) 15 (74) 19 (93) 16 (96) 

EX-POWELL 40 85 (213) 47 (129) 41 (85) 66 (198) 18 (65) 

FULL 40 50 (100) 39 (79) 41 (81) 53 (107) 40 (120) 

TOTAL N01 
417 ( 1185) 303( 1073) 268 ( 689) 313(961) 205 ( 767) 

(NOF) 

PERFORMANCE OF THE NEW ALGORITHMS IN RELATION TO STANDARD HS-CG METHOD 

HS NEW1 BAYATI BOCKLEY NEW2 

N01 100 72.6 64.2 75.1 49.1 
NOF 100 90.5 58.1 81.1 64.7 

ALL the algorithms terminate when II g* ll < lxl0-5 
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TABLE (3) 

TEST N HS NEW1 BAYAT1 BUCKLEY NEW2 BFGS 

FUNCTIONS N01 (NIF) N01 (NOF) N01 (NOF) N01 (NOF) N01 (NOF) N01 (NOF) 

EX-POWELL 60 125 (303) 47 (129) 45 (96) 72 (206) 21 (70) 71 (203) 

FREUD 60 6 (18) 10 (25) 7 (28) 16 (51) 6 (22) 15 (49) 

STRAIT 70 6 (20) 6 (18) 6 (15) 5 (20) 5 (18) 5 (20) 

EX-POWELL 80 112 (303) 47 (129) 40 (83) 63 (169) 18 (63) 60 (165) 

EX-CANTRLL 80 20 (132) 18 (137) 15 (74) 19 (93) 17 (110) 22 (95) 

WOLFE 80 50 (99) 47 (95) 42 (83) 63 (127) 41 (123) 65 (130) 

EX-RECIPE 90 12 (33) 6 (18) 7 (16) 6 (16) 6 (21) 6 (16) 

PNI 90 8 (25) 10 (41) 8 (21) 10 (31) 8 (29) 10 (31) 

EX-POWELL 100 105 (276) 48 (140) 44 (91) 62 (175) 18 (63) 60 (170) 

EX-CUBIC 100 14 (40) 19 (52) 13 (36) 47 (118) 13 (43) 43 (115) 

TOTAL NOl 458 258 227 363 153 966 

(NOF) ( 1249) ( 784) ( 543) ( 1006) ( 562) ( 1010) 

PERFORMANCE OF THE NEW ALGORITHMS IN RELATION TO STANDARD HS-CG METHOD 

HS NEWl BAYATI BUCKLEY NEW2 BFGS 

NOl 100 56.3 49.5 79.2 33.4 78.4 
NOF 100 62.7 43.4 80.5 44.9 80.9 

ALL the algorithms terminate when II g* II< lxl0-5 
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TABLE (4) 

A statistical comparison between the new algorithm (NEW2) with 
[HS ; BAY ATI; and NEWl algorithm by using paired t-test. 

N ALGORITHMS N01/NOF SIGNIFICANCE LEVEL 

HS N01 0.112614 
NOF 0.214132 

NEW1 N01 0.081546 
NOF 0.243499 

2-4 

BAYATI N01 0.269737 
NOF 0.0861184 

BUCKLEY N01 0.0654013 
NOF 0.116255 

HS N01 0.0233992 
NOF 0.0428506 

NEW1 N01 0.0279254 
NOF 0.0366562 

10-40 

BAYATI N01 0.0610346 
NOF 0.241029 

BUCKLEY N01 0.0619183 
NOF 0242282 

HS N01 0.0596574 
NOF 0.9825033 

NEW1 N01 0.0262952 

60- 100 
NOF 00710468 

BAYATI N01 0.0729792 
NOF 0.802641 

BUCKLEY N01 0.011004 
NOF 0.0362787 

For the above Table one sided test is considered when the significance level is less than 0.05 and we have consideredtwo 
sided tests otherwise, conventionally the levels are (see Robert and James 1980) 

0.05 and less (significant) 
0.01 and less (highly significant) 
0.001 and less (very highly significant). 
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APPENDIX 

All the presented test functions are from the general literature: 

1- Cubic Function: 

2- Strait Function: 

3- Generalized Wood Function: 

2 2 2 (l-x4i-l) + 10.1 [(x4i_2 -1) + (x4cl)] + 19.8 (x4i_2-l) 

T x0=( -3, -1, -3, -1 ; ... ) . 

4- Generalized Powell Function: 

5- Beale Function: 

T x
0
=(3, -1, 0, I ; ... ) . 

T x0=(0, 0) . 

6- Pen 1. (Penalty Function): 

~ 2 2 2 f=.l.. [(xi-1) + exp(xi- 0.25) ], 
I= I 

T x0=(1, 2, ... ,n) . 

7- Pen 2. (Generalized PenaltyFunction): 

J), 2 2 2 
f=.l..[exp(xi-1) +(xi -0.25) ], 

l=l 

8- Dixon Function: 

T x0=(1, 2, ... ,n) . 

J), 2 2 Q;l 
f=l..[(I-x 1) + (1-xn) + l.. (x2i-xi+l )2], 

~~ ~I 
x0=(-1 ; ... )T. 

9- Generalized Ed~:er & Himmel Function: 

10- Generalized Recip Function: 

}, 

x0=(2, 5, I; ... )T. 

11- Wolfe Function: 

2 
[xn-l- xn (3-xn /2)-1] , 

T x0=(-1, ... ) . 

12- Bi~:~:s Function: 

where zi = (0.1 )i , and T 
x0=(1, 2, 1,) . 

13- Generalized Freudenstien and Roth Function: 

T x0=(30, 3; ... ) . 

14- Full Set of Distinct Ei~:en values Function: 

T x0 =(1; ... ) . 

15- Generalized Miele Function: 

T x0=(1, 2, 2, 2; ... ) . 

16- Generalized Helical Valley. Function: 

f = ~ { 100[(x3i- 10)
2 

+ (r-d] + x3i } 
I= I 

E = [ 1/2 arctan (x2i I xi) for xi> 0 

112 + 1/2 arctan (x2i I Xj) for X< oi 
2 2 1/2 

r= (Xj + X2i ) ' 
T x0=(-l, 0, 0; ... ) . 

17- Generalized Powell3. (Powell Three Variable function): 

n/3 { I 1t x2i x3i xi+ x3i 
f=:L 3-[ l -sin ( ) -exp[-( 

i=l 1 +(xi-x2i 2 x2i 

-2)21 } , Xo=(O, I, 2; .]. 

18- Generalized Cantreal Function: 
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T x0=(1, 2, 2,2; ... ) . 




