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ABSTRACT 

We review some results in problems of estimating a finite population total (mean) through a sample sur
vey. Section 2 considers inference under a fixed population model and Section 3 addresses the same prob
lem when the finite population is looked upon as a sample from a superpopulation and technique of theo
ry of prediction are used. Since the probability density function of data obtained from a sample survey 
equals the selection probability of the sample, thus making the likelihood function 'flat', use of the likeli
hood, when a prior is assumed for the finite population parameters, restricts one to model-based inference, 
in case a non-informative sampling design (s.d.) is used for the survey. The data obtained through a set 
(sample) are minimal sufficient (though not complete sufficient) for inference and hence the use ofRao
Blackwellization provide improved estimators. Noting the non-existence of a uniformly minimum vari
ance unbiased estimator for population total in general, review is made of the results on admissibility of 
estimators for a fixed s.d. in the relevant classes. If, however, the survey population is looked upon as a 
sample from a superpopulation ~' optimum strategies are available in certain classes. Under the prediction
theoretic approach, a purposive sampling design becomes an optimal one under a wide class of superpop
ulation models. This is in direct conflict with the classical probability sampling-based theory. However, 
these model-dependent optimal strategies fail (invoke large bias or large mean square error ( mse)) if the 
assumed models tum out to be wrong. Use of probability sampling salvages the situation. A class of strate
gies, which depend both on superpopulation model and sampling design, have been suggested. Finally, the 
problem of asymptotic unbiased estimation of design variance of these strategies under multiple regres
sion superpopulation models have been reviewed. 
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Some Inferential Problems in Finite Population Sampling 

1. Introduction 

Let P = {1, ... , i .. . , N} denote a finite population ofN (a known number) identifiable units labelled 1, 

2, ... , N. Associated with each i are two real quantities (yi, x), the value of the main variable 'y' and a 

closely related auxiliary variable 'x' respectively, y = (yl' ... , yN); x = (xl' ... , xN) are points in RN. The quan

tity P; =xi I X; where X= LN;~J xi, is often called the size-measure of unit i. The problem is that of esti

mating a parametric function 8 (y), often the population total Y ='IN;~ I yJpopulation meanjl =YIN), pop

ulation variance S
2 

= I.Ni~I (yi- y)
2 
IN, through survey sampling, for which a sample is selected from P 

according to a sampling design (s.d.) p. 

LetS= {i1, ... , in(SJ},(l ::{it::{N, t= 1, ... ,N),denoteasample(sequence)ofunits,obtainedbyn(S)draws 

from P, it denoting the unit selected at the tth draw, it not necessarily unequal to i1/ even if t -:f. t' (which 

happens in a with replacement (wr) sampling). We denote by s = (jl' ... , J), a sample (set) of n units, 1 ::; 

} 1 < }2 ••• ::{jn ::;N. The following concepts are equally valid for Sands. A s.d. is a combination (S, p), where 

S = {s}; p(s) denoting the probability of selecting s, p(s) 2: 0, LseSp(s) = 1. 

Let n. = L .p(s), 1t .. = L . . p(s) denote the first order and second order inclusion probabilities, respec-
' Scl IJ Scl,j 

tively. A s.d. with ni a pi is often called a 7t-ps design. Let pn = {p: p(s) > 0):::::} v (s) = n}, the class of 

all fixed effective size (number of distinct units, v (s)) [F.S.] (n) designs. Data obtained through S are d' = 

{ (k, Yk), k E S} and through s are d = { (k, Yk), k E s}. Clearly any d/ can be summarized to d by obtaining 

s corresponding to S. 

An estimator e (s, y) is a function defined on S x RN such that for a givens, its value depends on y only 

through those i for which i E s. A combination (p, e) is called a sampling strategy. e is unbiased for 8 if E 

(e (s, y) = 8 (y) V y E RN(E denoting expectation with respect to (wrt) s.d. p). The variance of e is V (e)= 

E(' e- 8 (y))2 provided e is unbiased for 8 (y). We shall denote the Horvitz-Thompson estimator (HTE) as 

eHT = L. y.ln .. The customary estimator in probability proportional to size wr (ppswr) sampling design 
l"'-S l l 

would be denoted as epps = k ~iE sY ilp i · 

A sampling strategy (a design, estimator pair) H (p, e) is said to be better than a sampling strategy H 
(p', e') in the sense of variance (H H) if 

V { H (p, e)} ::; V { H (p', e')} V y E RN, 

with strict inequality holding for at least one y. If p is kept fixed, an unbiased estimator e is better than 

another estimator e' if V (e') < V (e') with strict inequality holding for at least one y. For a fixedp, an esti-P - p 

mator e* is uniformly minimum variance unbiased estimator (UMVUE) in a class of unbiased estimators 

11 = { e} if it is better than any other estimator in 17. 

2. Inference Under A Fixed Population Set-up 

We review in this section some inferential aspects in sampling under a fixed population model, i.e. when 

the population P along with the associated y, x values are considered as fixed entities and no probability 

distribution is assumed. Subsection 2.1 deals with the probability density function of data, the likelihood 

function of y for a given d ( d') and use of the likelihood function in making inference. The concept of suf-
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ficiency and Rao-Blackwellization is considered in the next subsection. Uniformly minimum variance 

unbiased estimation, admissibility of estimators and average variance of estimators under superpopulation 

models are considered subsequently. 

2.1 The p.d.f of Data and the Likelihood Function of y 

Let D' (D) be a random variable corresponding to data d' (d). Let also 'lf'('l') be a random variable hav

ing values S(s) inS. A data point d'(d) is said to be consistent with a chosen parameter vector y if d' (d) 

can be obtained from y. 

For exampled'= {(1, 8), (3, 7), (4, 9)} is consistent withy= {8, 11, 7, 9, 11}. 

Let for a given d' (d), Q d,(Qd) be the set ofy for which d' (d) is consistent. 

The probability density function (pdf) of D' is 

JD' (d/; y) = p [ {(k,yk),k E S} = d~·y 

= P[lfl'= S]P[D/=d/jlfl'= S;y] 

= p (S) 8 (d'; y), 

where 8 (d/; y) = 1(0) if d/ is consistent (inconsistent) withy. Thus 

fu(d'; y) = p (S) (0) for y E Qd, (otherwise) 

Similarly, pdf of D is 

JD(d; y) = p (s) (0) for y E Qd (otherwise) 

2.1.1 Likelihood Function of y 

Given the data D' = d', the likelihood function of parameter vector y is 

L(y I d)= JD,(d/; y) = p (S) (0) ify E Qa (otherwise) 

Similarly, the likelihood function of y given D = d is 

L(y I d)= JD(d; y) = p (s) (0) ify E Qd (otherwise) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The likelihood functions are, therefore, 'flat', taking values p(S)(p(s)) for y E 0/ Ed') and zero else

where. There does not exist any unique maximum of the likelihood and hence no maximum likelihood 

solution of any parametric function () (y) exists. The likelihood functions (2.3) and (2.4) only tell us that 

all y E OJOd,) are equi-probable and tell nothing about the unobserved components of the y-vector. The 

likelihood functions (2.3) and (2.4), first considered by Godambe (1966), are therefore, non-informative. 

However, if a superpopulaton model ~ is postulated for the population vector y, the likelihood function 

becomes informative (see Royall (1976); Brecking and Chambers (1990), for example). 

2.2 Sufficiency, Rao-Blackwellization 

The concept of sufficiency and Rao-Blackwellisation in survey sampling in connection with resolving 

the problem - whether one is required to consider the whole body of data available through a sequence 

sample or the data obtained from a set sample is enough for making inference was first considered by Basu 

(1958). As in the traditional statistical theory, if a sufficient statistic is available, any estimator can be 

improved upon by Rao-Blackwellization. 

Definition 2.1 A statistic u (D') is a sufficient statistic for y if the conditional distribution of D' given 
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u(D') = u
0 

is independent ofy, provided the conditional distribution is well-defined. Let z (D') be a statis

tic defined over the range space of D' such that z (D') = d, i.e., z reduces d' obtained through a sequence 

samples to the data d for the corresponding set. As an example, if d' = {(2, 5), (4, 7), (2, 5)}, z (d') = {(2, 

5), (4, 7)}. 

Theorem 2.1 (Basu and Ghosh, 1967) For any ordered designp, the statistic z (D') is sufficient for y. 

Thus, one need not consider the sequence sample and look at the sequenced data d'. The set sample s 

and the corresponding data d should be sufficient for making inference. It follows that z (D') is minimal 

sufficient for y. 

For any estimator e (D') fore define e (d)= E {e (D') I z (D') = d}. Since z (D') is sufficient for y, e (d) 

is independent of any unknown parameter, and depends on D' only through z (D') and as such can be taken 

as an estimator of e. Since Dis a sufficient statistic e (D) will be a better estimator thane (D'). 

Theorem 2.2 (Basu and Ghosh, 1967) Let e (D') be an estimator of e. The estimator e/d) = E {e (D') 

I z (D') = d} has the properties: 

• (i) E(e) = E(eJ 

• (ii) MSE(eJ :S MSE(e) with strict inequality V y E RN iff P {e i= e1 : y} > 0. 

2.3 Uniformly Minimum Variance Unbiased Estimation 

Godambe (1955) first observed that in survey sampling no UMV-estimator in the class of all linear unbi

ased estimators of population total exists for any p in general. The proof was subsequently improved by 

Hege (1965), Hanurav (1966), Ericson (1974) and Lanke (1974). 

Definition 2.2 A s.d. p is said to be a unicluster design if for any two samples sl' s
2 

{ p (s
1
) > 0, p (s

2
) > 0; s

1 
i= s

2
} :::::} s

1 
n s

2 
= cp, 

i.e. either two samples are identical or disjoint. 

Theorem 2.3 (Lanke, 1974) A s.d. p admits a UMVU-estimator in the class of all linear unbiased esti

mators iff p is a unicluster design with n; > 0 V i. 

Theorem 2.4 (Basu, 1971) For any non-census design p (with n; > 0 V i), there does not exist any 

UMVUE of Yin the class of all unbiased estimators. 

Thus, in general, there does not exist any UMVU-estimator for any s.d.p. Hence, there does not exist 

any UMVU sampling strategy in general. 

2.4 Admissibility Of Estimators 

Definition 2.3 For a fixed s.d. p, an estimator e is said to be an admissible estimator of Y within a class 

C of estimators iff there does not exist any estimator inC which is uniformly better than e. 

Clearly, within the same class C there may exist more than one admissible estimator. Admissibility 

ensures that an estimator is uniquely best in C at least at some point y in the parametric space. In the 

absence of a UMVU-estimator, one should choose an estimator within the class of all admissible estima

tors. However, a slightly inadmissible estimator may sometimes possess some practical advantages over 

an admissible estimator and may be used in preference to the later. An important theorem is stated below 

without proof. 
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Theorem 2.5 (Cassel, Sarndal and Wretman, 1977) For any s.d. p, with n. > 0 (Vi), the generalized dif-
' 

ference estimator eGnCa) = .L,iE/; ;, a; +A (A= i;=
1
a) is admissible in the class of all unbiased estimators 

of Y (Here, ai are some known constants). 

A corollary to this theorem is that the Horvitz-Theorem estimator is admissible in the class of all unbi

ased estimators of Y. 

2.5 Average Variance Of A Strategy Under A Superpopulation Model 

Assume that the value of y on i is a realization of a random variable r; ( i = 1, ... , N ). Hence the value 

y of a survey population P may be looked upon as a particular realization of a random vector 

y = (YI' .. . , YN) having a superpopulation distribution ~e' indexed by a parameter vector e, e E 8 (the para

meter space). The class of priors {~8 , 8 E 8} is called a superpopulation model. 

A good deal of inference in survey sampling emerges from the postulation of a suitable prior ~ for Y 

and methodologies have been developed to produce optimal sampling strategies based on ~· Some of these 

will be reviewed in the next section. 

2.5.1 Average Variance under~ 

Since in most cases the expression for variances of different strategies are complicated in nature and are 

not amenable for comparison, one may take the average values of variance under an assumed appropriate 

superpopulation model ~ and compare their average variances. In this section we shall consider ~ only for 

getting the average variance of a strategy. 

The average variance (AV) of an unbiased strategy (p, e) under~ is given by cV/e). A strategy H
1 

will 

be better than an unbiased strategy H
2
(H

1
T H) if AV (H)< AV (H). 

We recall a very important result due to Godambe and Joshi (1965). The following theorem shows that 

there exists a lower bound to the average variance of p-unbiased strategies under a very general super

population model ~· 

Theorem 2.6 (Godambe and Joshi, 1965) Consider model~: Y
1

, ..• , YN are independent with E(r;) = Jl;, 

v Cr;) = cr2
i (i = 1, ... , N). For any unbiased sampling strategy (p, e), with the value of first order inclusion 

probability ni, 
N 

EV (p, e) 2: I~-(~ -1) 
i= I l z 

(2.5) 

Corollary 2.1 The lower bound (2.5) is attained by eHr applied to a FS(n)-design with 

n; a E(r;); i = 1, ... , N. In particular, if f.l; = f3x;(f3, a constant), any FS-n- ps design applied to eHr attains 

the lower bound in (2.5). 

3 Inference Under Superpopulation Based Approach 

Brewer (1963), Royall (1970, 1976), Royall and Herson (1973) and their coworkers considered the sur

vey population as a random sample from a superpopulation and attempted to draw inference about the pop

ulation parameter from a prediction-theorist's viewpoint. 

27 



Some Inferential Problems in Finite Population Sampling 

3.1 Principles Of Inference Based On Theory Of Prediction 

We assume that the value Y; on i is a realization of a random variable ~ (i = 1, ... , N). For simplicity, 

we shall, henceforth, use the same symboly. to denote the population value as well as the random variable 
l 

of which it is a particular realization, the actual meaning being clear from the context. 

We assume throughout that there is a superpopulation distribution~ ofy. 

Let fs denote a predictor of Y or .Y based on s (the specific one being clear from the context). Note that 

population total Y (mean .Y) are now random variables and not fixed quantities. 

Definition 3.1 f sis model-unbiased or ~-unbiased or m-unbiased predictor of .Y if 

E(f
8

) = E(y) = ~(say)\:.7' (}E 0andVs:p(s)>O (3.1) 

Definition 3.2 A predictor f sis design-model unbiased (or p~-unbiased or pm-unbiased) predictor of Y 

if 

E £( T s) = ~ \:.7' 8 E e 
Clearly, a m-unbiased predictor is necessarily pm-unbiased. 

(3.2) 

For a non-informative design where p(s) does not depend on they-values, order of operation E, £can 

always be interchanged. 

Two types of mean square errors (mse's) of a sampling strategy (p, fs) for predicting Yhas been pro-

posed in the literature: 

(a)£ MSE (p,T) = £ E ( f - T)2 = M (p,T) (say) 

(b) EMS c (p,T) = E c ( f - !1)2 where !l = L!lk = c(T) = M1 (p,T) (say) 

It has been recommended that if one's main interest is in predicting the total of the current population 

from which the sample has been drawn, one should use Mas the measure of uncertainty of (p, f). If one's 

interest is in predicting the population total for some future population, which is of the same type as the 

present survey population (having the same f.l.), one is really concerned with f.l, and here M 1 should be used 

(Sarndal, 1980 a). In finding an optimal predictor, one minimizes M or M1 in the class of predictors of 

interest. 

For a givens, the optimal m-unbiased predictor ofT (in the minimum£ ( f - T)2-sense), as derived by 

Royall (1970) is, 

where 

(3.3) 

(3.4.1) 

(3.4.2) 

for any D's satisfying (3.4.1), where s = P- s. It is clear that t+s' when it exists, does not depend on the 
+ 

sampling design. An optimal design-predictor pair ( p, T
8

) in the class (p, t) is, therefore, one for which 

for any p E p a class of sampling designs and t', any other m-unbiased predictor E 't. 
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Example 3.1 

Consider the polynomial regression model: 

2 
v (yk I xk) = cr v(xk), k = 1, ... , N, 

C (yk'y; I xk, x:) = 0, k* k' = 1, ... , N, 

(3.5) 

(3.6) 

2 
where x/s are assumed fixed (non-stochastic) quantities, ~- (j = 1, ... , J); cr are unknown quantities, v(xk) 

. J 

is a known function ofxk, ~ = 1(0) if the term :ik is present (absent) in f.lk. The model (3.5), (3.6) has been 

denoted as~ ( 8
0

, 81' ... , 8
1

; v(x)) by Royall and Herson (1973). The best linear unbiased predictor (BLUP) 

of Y under this model is 

A* J A 

Ts (80, ... , 8J) =~yk +~8,~:~x
1

., (3.7) 

where ~·is the BLUP of ~j under~ (8
0

, ••• , 8
1
; v(x)) as obtainable from Gauss-Markofftheorem. 

1 

3.1.1 Special Cases 

Under model~ (0, 1, v(x)), 

A* 2 -1 T8 (0, 1; v(x))=Lyk+ {(Lxkyklv(xk))(Thk lv(xk)) } LXk 
s s s 

(3.8) 

It follows, therefore, that if 

• v(xk) is monotonically non-decreasing function of x, 

• v(x) I>! is monotonically non-increasing function of x, 

the strategy ( p*, t *) will have minimum average variance in the class of all strategies (p, t ), p E p , 
n 

T E Lm, the class of all linear m-unbiased predictors under~' where the sampling design p* is such that 

p*(s) = 1(0) for s = s* (otherwise) (3.10) 

s* having the property 

(3.11) 

where 

S ={s:v(s)=n}, 
n 

(3.12) 

Considering the particular case, v(x) = xgk and writing t* (0, 1; i) as t·g, 

(3.13) 
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Example 3.2 

Consider now prediction under multiple regression models as follows. Assume that apart from main 

variable y we have (r + 1) closely related auxiliary variables x. ( j = 0, 1, ... , r) with known values 
J 

xkJVk= 1, ... , N: The variablesy1, ... ,yNare assumed to have ajoint distribution~ such that 

E (yk I xk) = ~oxko + ~rXkJ + ... + ~fkr' 
v (yk 1 x) = a2vk, (3.14) 

v (yk, y: I xk, x:) = 0, 

where xk = (xkO' xkJ' ... , xkr)' ~0, ~1' ... ~r; and 8
2 

(> 0) are unknown parameters, vk is a known function 

of xk. If xko = 1 Vk, the model has an intercept term ~0. Assuming without loss of generality that 

s = (1, ... , n), we shall write 

Y = (ys y)', f3 = ({30, ... , f3J, 

X= (3.15) 

XNO X Nl 

v=[Vs OJ 
0 vs ' 

X, being a n X (r + 1) submatrix of X corresponding to k E s; ex; defined similarly) vs (Vs) being a 

n x n((N- n) x (N- n)) submatrix of V corresponding tokE s (k E s). The multiple regression model 

(3 .15) is, therefore, 

E (y) =XJ3, D (y) = a2
V, 

where D(.) denoting model-dispersion matrix of(.). We shall denote 

/ ) / - /- - )/ xs = lxos' ... , xr ' xs = lxos' ... , xrs ' 
and x

18
, x

1
r x8 , x8 similarly. The model (3 .16) will be denoted as ~ (X, v ). 

For a given s, the BLUP ofT is 

A* ~ 'll* 
Ts (X, v) = ~Y +X s 1-'s 

s k 

where S; is the generalized least square predictor of ~' 

Hence (Royall, 1971) 

where 1/ = (1, ... , IY 
q qxl 

M(p,f*) = E[v(x.J3 *) + v(~Yk)] 
s 

=a 2 E [{x;(x; Vs-l Xs)-l Xg} + ~ vl 
30 
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3.2 Robustness Of Model-Dependent Optimal Strategies 

The model-dependent optimal predictor f(~) will, in gen,eral, be biased and not optimal under an alter

native model~'. Suppose from practical considerations we assume that the model is~ (8
0

, ••• ; 8j; v(x)) and 

use the predictor t (~) which is BLUE under ~· The bias of this predictor under a different model ~' for a 

particular sample s is 

A* A* 
£~, { T s (~) - T } = B { Ts (~), ~'} 

= BB'o' ... 'BJ;v' (x) fs*(8o' ... '8 J; v (x)), 

~'-bias oft*(~) for a particular sampling design p is 

A* 
~E~' { Ts - T} p (s). 

(3.21) 

(3.22) 

To preserve the property of unbiasedness ofT(~) even when the true model is ~', we may choose the 

sampling design in such a way that T(~) remains also unbiased under~'. With this end in view, Royall and 

Herson (1973) introduced the concept ofbalanced sampling design. 

Another way to deal with the situation may be as follows. Of all the predictors belonging to a subclass 

t (~)say, we may choose one f\~), which is least subject to bias even when the model is~'. Thus, for a 

givens, we should use T\~) such that 

Vt (~) e t (~),the choice of subclass t (~)being made from other considerations, e.g. from the point of 

view ofmse, etc. 

3.2.1 Bias ofT: 

We have 

A* I 

B {Tg , ~' (80, ... , 8.J; v (x))} 

='to8~Hg (},s) ~ 1 , 

where 

which is independent of the form of the variance function in~'. Note that H (1, s) = 0. 
g 

(3.23) 

(3.24) 

Definition 3.3 (Royall and Herson, 1973). A sampling design p (L) is a balanced s.d. of order L (if it 

exists) if p (s) = 1 (0) for s = s b (L) (otherwise), where s b (L ), called a balanced sample of order L is such 

that 
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where 
X (h) = L X (h) I X (h) = L X (h) I (N- ) 

s ·' k n, s ·' k n · (3.25) 

-1 
If there are K such samples (3 .25), p chooses each such sample with probability K . 

p 
It follows that the ratio predictor t; = t (0, 1; 1) which is optimal under the model ~ (0, 1; x) remains 

unbiased under alternative class of models~ (8
0

, •.. , 8J; v (x)), when used along with a balanced sampling 

design- L" 

In general, consider the bias of t*(O, 1; v(x)) under~ (8
0

, ••• , 8J; V(x)), which is 

(3.26) 

Hence, if a sample s*(J) satisfies 

(~xi ) I~ xk = ('f xki + 1 I v (xk)) I(~ xf I v (xk )), (3.27) 

j=O, 1, ... ,J, 

the predictors t * (0, 1; v (x)) remains unbiased under~ (8
0

, ••• , 8J; v (x)), on s*(J) for any V (x). 

Samples s*(J) satisfying (3.27) may be called generalized balanced samples of order J (Mukhopadhyay, 

1996). 

For v (x) = >!-, (3.27) reduces to 

n-1 I, xt =(I, x:) I (I, xk),j = 0, ... , J (3.28) 
s s s 

Samples satisfying these conditions have been termed 'over-balanced samples' s0(J) by Scott et al 

(1978). 

The following theorem shows that r*(O, 1; v (x)) becomes BLUP under~ (8
0

, ••• , 8J; v (x)) for s = s*(J) 

when V (x) is of a particular form. 

Theorem 3.1 (Scott, Brewer and Ho, 1978) For s = s*(J), r* (0, 1; v (x)) is BLUP under~ (80, ••• , 8J; 

v (x)) provided 

V (x) = v(x)!, 8.a.xj-I, (3.29) 
0 J J 

where a.'s are arbitrary non-negative constants. 
J 

It is obvious that all types of balanced samples are rarely available in practice. Royall and Herson 

(1973), Royall and Pfeffermann (1982) recommended simple random samples as approximately balanced 

samples sb(J). Mukhopadhyay (1985a) showed that simple random sampling and pps -h sampling are 

asymptotically equivalent to balanced sampling designs p (J) for using the ratio predictor. Mukhopadhyay 

(1985b ) suggested a post-sample predictor which remains almost unbiased under alternative polynomial 

regression models. For further details on the robustness of the model-dependent optimal predictors the 

reader may refer to Mukhopadhyay (1977, 1996), among others. 

3.3 Projection Predictors 

In (3 .4) we have considered predicting I, Yk only, since the part I, y k of Y is completely known when the 
kES kes 

data are given and found optimal strategies that minimize M (p, t ). However, in predicting the total of a 
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finite population of the same type as the current survey population, one's primary interest is in estimating 

the superpopulation total J.1 =I ~k· For a givens, am-unbiased predictor ofT will, therefore, be 
k ~ 

r=Iy~ 
k' 

where 

c ({> = J.lk' k = 1, ... , N. 

The predictors (3.30) are called projection predictors 

Under~ (0
0

, ••• , OJ; v (x)), BLU-projection predictor ofT is 
* N J * j 

f (00, .•• ,OJ; v (x)) =I I 0.~. xk' 
IFJ 0 J J 

where f3 *.is as defined in (3.7). Under~ (X, v), 
1 

" / * * T(X, v) = x0 ~ s = 1' X~ s• 
* 

where x'
0 

= (x00, xOI' ... , x0); x0
i = IXki, ~sis given in (3.18). 

4 Generalised Predictors Under Model~ (X, v) 
~ ~* 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

Samdal ( 1980 b) considered different choices of B under ~ (x, v ). Considering ~ in (3 .19) (dropping the 

suffix s), we note that a predictor /3 of {3 is of the form 

~ = cz'xy1z'x (3.35) 
s s s s 

where z's is an x (r + 1) matrix of weight zkJ to be suitably chosen such that a predictor /3 of {3 has some 

desirable properties. z' X is of full rank. Different choices of Z are: 
s s s 

(a) n-1 
weighted. Zs and the corresponding~ may be called n-1 

weighted if 

(3.36) 

i.e. if 

(3.37) 

C (Z) denoting the column space of Zs, A= (A
0

, AI' ... , Ar)', a vector of constants \- Here II = Diag 

(nk, k = 1, ... , N), ITs= Diag (nk, k E s). 

-1 
If Z =II X s s s 

(3.38) 

-1 
(b) BLU- weighted. Here Zs = v; ~ when 

-"'-* -1 

{3 = {3 = {3 (V )(say) 
(3.39) 

(c) weighted by an arbitrary matrix Q. Here Z = Q X, where Q is an arbitrary N X N diagonal matrix s s s 
of weights and Qs is a submatrix of Q corresponding to units k E s. Therefore, 

, -1 , 

/3 = (~ Qs~) (Xs Qsy) = /3 (Q) (say). (3.40) 

For~ (X, v), Cassel, Samdal and Wretman (1976), Samdal (1980 b) suggested a generalised predictor 

ofT, 
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Yk r "" X~g ~ * L -1t + L (X]. - k.J -1t ) ~ j ' 
s k j= 0 s k 

' -1 ' -1 

=Inns Ys + (IX- Is ns ~) ~·, 
-I 

= TGR (V ) = f' GR (say), (3.4I) 

where {3* is the BLUP of [3. obtained from thejth element of /J. given in (3.I8). 
1 J J 

For arbitrary weights Q in /3 (Q), generalided regression estimator ofT is 

T GR (Q) = ~ YJ/1tk + ~ s /Q)(Xj- ~ xkj/1tk) = I~ II-/ Y s + ( f' X-1; I15-
1 
Xs) ~ (Q). (3.42) 

Wright ( I983) considered a ( p, Q,R) strategy for predicting T as a combination of sampling design p and 

a predictor 

(3.43) 

where R = Diag (riCk= I, ... , N), Rs = Diag (riC' k E s), rk being a suitable weight. For different choic-
-I -1 -1 

es of Q, R one gets different predictors. Some choices of Q are, as before, V , n , (Vll) and of R are 0, 

I, and ll-
1

. The choiceR= 0 gives projection predictors of the type (3.30); R = ll-
1 

gives the class of gen

eralised regression predictors considered by Cassel, et al (1976, I977), Samdal (1980 b). 

We shall now address the problem of asymptotic unbiased estimation of design -variance of 

TGR (ll-
1
V-

1
) under ~ (X, v). Consider a more general problem of estimation of A linear functions 

F = (FI' F2, ... , FA)'= C'y, where Fq = Ca' y, ca =(Cia' ... , CNq)', caN X Q matrix ((Ckq)), ckq being 

known constants. Consider the following estimates of Fa: 

t = c n-l (y-y) + c·y- (3.44) 
q qs s s s a ' 

where cqs is the row vector (Ckq' k E s) andyk = x'k ~s with 

f3 = f3 (V-
1
ll-

1
) =(X: Vs-1 ll-1 XJ-1 x: ~-1 ll-

1 
Ys· (3.45) 

s s s 

- -1 -1 
The estimator (3.44) 1s an extension of generalized regressiOn estimator T

0
R (V n ) of T. Let 

T= (TI' ... , f)': Then - ' -] ' 
T = C n (y- y) + Cy, 

s s s s 
(3.46) 

where Cs is the part of C corresponding tokE s. Now - ' -] 
T=Gll y, s s s 

(3.47) 

where 

a· c -M's-lx·v-1 

s s s s s s' 
I -1 I 

M' C n X-CX, 
s s s s 

H = x'v-]n-1x (3.48) 
s s s s s' 

Thus Ta = L gskayk I 1tk, gska being the (k, a) th component of G
8

• The following two methods have been 

suggested by Samdal (I982) for estimating the dispersion matrix D (T) = (cov/Ta, Tb)) 

(a) Taylor expansion method: An estimate of Cov/ ta, Tb) is approximately the Yates-Grundy estima

tor of covariance, 
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(3.49) 

= vr (a,b) (say,) 

where 
(3.50) 

Writing 

(3.51) 

as the YO-transformation of (dka' dkb), k E s, we have 

vr (a,b) = YGs (zka' zkb), (3.52) 

(b) Model method. Here an approximate estimate of Cov (T, Tb) is 
p a 

vM (a,b) = YGs (z;a' z;b), (3.53) 

where 
* 

zka = gskaek" (3.54) 
For further details on inferential problems in survey sampling the reader may refer to Mukhopadhyay 

(1996, 1998, 2000). 

REFERENCES 

[1] Basu, D. (1958): On sampling with and without replacement. Sankhya 20, 287-294. 

[2] Basu, D. (1971): An essay on the logical foundation of survey sampling. Part one. In Foundations of 

Statistical Iriference, Ed. V.P. Godambe and D.A.Sprott, New York:Holt, Rinehart and Winson. 

[3] Basu,D. and Ghosh, J.K. (1967): Sufficient statistics in sampling from a finite universe. Bull. Int. 

Statist. Inst. 42 (2), 850-859. 

[4] Brecking, J. and Chambers, R.L.(1990): Design adjusted estimation with longitudinal survey data. 

Canberra Statistical Tech. Rep. 001-90. 

[5] Brewer, K.R.W. (1963): Ratio estimation in finite populations: some results deducible from the 

assumptions of an underlying stochastic process. Australian J. Stat., 5, 93- 105. 

[6] Cassel, C.M., Sarndal, C.E. and Wretman, J.H. (1976): Some results on generalized difference 

estimator and generalized regression estimator for finite population. Biometrics, 63, 614-620. 

[7] Cassel, C.M., Sarndal, C.E. and Wretman, J.H. (1977): Foundations of Iriference in Survey 

Sampling, Wiley, N.Y. 

(8] Ericson,W.A. (1974): A note on non-existence ofminimum variance unbiased estimation for a finite 

population total. Sankhya, 38, 181-184. 

[9] Godambe, V.P. (1955): A unified theory of sampling from finite populations. J. Roy. Stat. Soc. B 17, 

269-278. 

[10] Godambe, V.P. (1966): A new approach to sampling from finite populations. I,II, J. Roy. Stat. Soc., 

B 28,310-328. 

35 



Some Inferential Problems in Finite Population Sampling 

[11] Godambe, V.P. and Joshi, V.M. (1965): Admissibility and Bayes estimation in sampling from finite 

populations I. Ann. Math. Statist., 36, 1707- 1722. 

[12] Hanurav, T.V. (1966): Some aspects of unified sampling theory. Sankhya A 28, 175-203. 

[13] Hege, V.S. (1965): Sampling dsigns which admit uniformly minimum variance unbiased estimates. 

Cal. Stat. Assoc. Bull., 14, 160-162. 

[14] Lanke, J. (1974): On UMV estimators in survey sampling. Metrika 20, 196-202. 

[15] Mukhopadhyay, P. (1977): Robust estimation of finite population total under certain linear regres

sion models. Sankhya C, 39, 71-87. 

[16] Mukhopadhyay, P. (1985 a): Asymptotic properties of some BLU-estimators. Orissa Math. Science 

J. 4, 105-113. 

[17] Mukhopadhyay, P. (1985 b): Estimation under linear regression models. Metrika 32, 339-349. 

[18] Mukhopadhyay, P. (1996): Inferential Problems in Survey Sampling, New Age International, New 

Delhi and London. 

[19] Mukhopadhyay, P. (1998): Theory and Methods of Survey Sampling Prentice- Hall of India, New 
Delhi. 

[20] Mukhopadhyay, P. (2000): Topics in Survey Sampling, L.N.Ser., 153, Springer Verlag, N.Y. 

[21] Royall,R.M. (1970): On finite population sampling theory under certain linear regression models. 

Biometrika, 57, 377-387. 

[22] Royall, R.M. (1976): The linear least square prediction approach in twostage sampling. J. Amer. Stat. 

Assoc., 71, 657-64. 

[23] Royall, R.M. and Herson, J.(1973): Robust estimation in finite populations I. J. Amer. Stat. Assoc., 
68, 880-889. 

[24] Royall, R.M. and Pfe(r)ermann, D. (1982): Balanced samples and robust Bayesian inference in 

finite population samling. Biometrika, 69, 241- 249. 

[25] Sarndal,C.E. (1980 a): Two model-based inference argument in survey sampling. Australian J. Stat., 
22,314-318. 

[26] Sarndal, C.E. (1980 b): On 1/4-inverse weighting versus best linear weighting in probability sam

pling. Biometrika, 67(3), 639-650. 

[27] Sarndal, C.E. (1982): Implications of survey designs for estimation of linear functions. J.Stat.Pl.Inf., 
7, 155-170. 

[28] Scott, A.J., Brewer, K., Ho, E.W.H. (1978): Finite population sampling and robust estimation. J. 
Amer. Stat. Assoc., 73, 359-361. 

[29] Wright, R.L. (1983): Sampling designs with multivariate auxiliary information. J. Amer. Stat. 
Assoc., 78, 879-884. 

36 


