A machine learning approach of load balance routing to support next-generation wireless networks
المؤلف | Yao, Haipeng |
المؤلف | Yuan, Xin |
المؤلف | Zhang, Peiying |
المؤلف | Wang, Jingjing |
المؤلف | Jiang, Chunxiao |
المؤلف | Guizani, Mohsen |
تاريخ الإتاحة | 2020-06-02T08:17:30Z |
تاريخ النشر | 2019 |
اسم المنشور | 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019 |
المصدر | Scopus |
الملخص | With the development of Next-generation Wireless Networks (NWNs), delay-sensitive traffic triggered by mobile applications (such as video stream and online games) will become an important part of the NWNs. With the increasing demand for massive video content transmission and good quality of users' experience, NWNs have to face up to some serious challenges. As a remedy, efficient routing schemes are capable of achieving load balance. In this article, we propose a load balance routing based on machine learning. First, a dimension-reduced vector matrix can be obtained from the original adjacency matrix of the network topology by Principal Component Analysis (PCA). Then, a neural network is used for the prediction of the network queue status, which can be used as a metric for making intelligent routing decisions. Finally, a load balance routing algorithm considering Queue Utilization (QU) is designed accordingly. Simulation results show the performance of our proposed machine learning-based routing scheme compared to the shortest path algorithm (Bellman-Ford (BF)) and its variant (QUBF) in terms of the packet loss ratio, the throughput and the delay. - 2019 IEEE. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Load balance routing Machine learning Next-generation Wireless Networks Principal component analysis Queue utilization |
النوع | Conference Paper |
الصفحات | 1317-1322 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2342 items ]