عرض بسيط للتسجيلة

المؤلفAl-Muraikhy, Shamma
المؤلفSellami, Maha
المؤلفDomling, Alexander S
المؤلفRizwana, Najeha
المؤلفAgouni, Abdelali
المؤلفAl-Khelaifi, Fatima
المؤلفDonati, Francesco
المؤلفBotre, Francesco
المؤلفDiboun, Ilhame
المؤلفElrayess, Mohamed A
تاريخ الإتاحة2022-01-23T06:58:16Z
تاريخ النشر2021
اسم المنشورFrontiers in Molecular Biosciences
المعرّفhttp://dx.doi.org/10.3389/fmolb.2021.727144
الاقتباسAl-Muraikhy S, Sellami M, Domling AS, Rizwana N, Agouni A, Al-Khelaifi F, Donati F, Botre F, Diboun I and Elrayess MA (2021) Metabolic Signature of Leukocyte Telomere Length in Elite Male Soccer Players. Front. Mol. Biosci. 8:727144. doi: 10.3389/fmolb.2021.727144
معرّف المصادر الموحدhttp://hdl.handle.net/10576/25697
الملخصBiological aging is associated with changes in the metabolic pathways. Leukocyte telomere length (LTL) is a predictive marker of biological aging; however, the underlying metabolic pathways remain largely unknown. The aim of this study was to investigate the metabolic alterations and identify the metabolic predictors of LTL in elite male soccer players. Levels of 837 blood metabolites and LTL were measured in 126 young elite male soccer players who tested negative for doping abuse at anti-doping laboratory in Italy. Multivariate analysis using orthogonal partial least squares (OPLS), univariate linear models and enrichment analyses were conducted to identify metabolites and metabolic pathways associated with LTL. Generalized linear model followed by receiver operating characteristic (ROC) analysis were conducted to identify top metabolites predictive of LTL. Sixty-seven metabolites and seven metabolic pathways showed significant associations with LTL. Among enriched pathways, lysophospholipids, benzoate metabolites, and glycine/serine/threonine metabolites were elevated with longer LTL. Conversely, monoacylglycerols, sphingolipid metabolites, long chain fatty acids and polyunsaturated fatty acids were enriched with shorter telomeres. ROC analysis revealed eight metabolites that best predict LTL, including glutamine, N-acetylglutamine, xanthine, beta-sitosterol, N2-acetyllysine, stearoyl-arachidonoyl-glycerol (18:0/20:4), N-acetylserine and 3-7-dimethylurate with AUC of 0.75 (0.64-0.87, < 0.0001). This study characterized the metabolic activity in relation to telomere length in elite soccer players. Investigating the functional relevance of these associations could provide a better understanding of exercise physiology and pathophysiology of elite athletes.
اللغةen
الناشرFrontiers Media
الموضوعaging
elite athletes
metabolomics
soccer
telomere length
العنوانMetabolic Signature of Leukocyte Telomere Length in Elite Male Soccer Players
النوعArticle
رقم المجلد8


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة