Show simple item record

AuthorAhmed M.
AuthorHussein I.A.
AuthorOnawole A.T.
AuthorSaad M.A.
AuthorKhaled M.
Available date2022-04-25T10:59:41Z
Publication Date2021
Publication NameScientific Reports
ResourceScopus
Identifierhttp://dx.doi.org/10.1038/s41598-021-84195-9
URIhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85101779167&doi=10.1038%2fs41598-021-84195-9&partnerID=40&md5=01258362276f90b14c191b67aa507bb3
URIhttp://hdl.handle.net/10576/30368
AbstractPyrite scale formation is a critical problem in the hydrocarbon production industry; it affects the flow of hydrocarbon within the reservoir and the surface facilities. Treatments with inorganic acids, such as HCl, results in generation toxic hydrogen sulfide, high corrosion rates, and low dissolving power. In this work, the dissolution of pyrite scale is enhanced by the introduction of electrical current to aid the chemical dissolution. The electrolytes used in this study are chemical formulations mainly composed of diethylenetriamine-pentaacetic acid?potassium (DTPAK5) with potassium carbonate; diethylenetriamine pentaacetic acid sodium-based (DTPANa5), and l-glutamic acid-N, N-diacetic acid (GLDA). DTPA and GLDA have shown some ability to dissolve iron sulfide without generating hydrogen sulfide. The effect of these chemical formulations, disc rotational rate and current density on the electro-assisted dissolution of pyrite are investigated using Galvanostatic experiments at room temperature. The total iron dissolved of pyrite using the electrochemical process is more than 400 times higher than the chemical dissolution using the same chelating agent-based formulation and under the same conditions. The dissolution rate increased by 12-folds with the increase of current density from 5 to 50 mA/cm2. Acid and neutral formulations had better dissolution capacities than basic ones. In addition, doubling the rotational rate did not yield a significant increase in electro-assisted pyrite scale dissolution. XPS analysis confirmed the electrochemical dissolution is mainly due to oxidation of Fe2+ on pyrite surface lattice to Fe3+. The results obtained in this study suggest that electro-assisted dissolution is a promising technique for scale removal.
SponsorThis work was supported by funding # NPRP9-084-2-041 from Qatar National Research Fund. The outcomes attained herein are exclusively the responsibility of the authors. Qatar University and the Gas Processing Center are acknowledged for their support. Analysis of iron concentrations were done in the Central Laboratories Unit, Qatar University. The authors also would like to acknowledge AkzoNobel for supplying the chelating agent used in this work, and Mr. Ahmed Gamal from Gas Processing Center, Qatar University, and Mr. Mostafa Hussein form the Center of Advanced Materials for their help with RDE and potentiostat galvanostatic experiments.
Languageen
PublisherNature Research
SubjectElectrochemical
pyrite scale
TitleElectrochemical removal of pyrite scale using green formulations
TypeArticle
Issue Number1
Volume Number11


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record