• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A systematic optimization approach of an actual LNG plant: Power savings and enhanced process economy

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360544223001044-main.pdf (8.139Mb)
    Date
    2023-04-15
    Author
    Katebah, Mary A.
    Hussein, Mohamed M.
    Al-musleh, Easa I.
    Almomani, Fares
    Metadata
    Show full item record
    Abstract
    Developing a cost-effective LNG liquefaction cycle could significantly enhance the process's economic feasibility, improve the production rate and reduce GHG emissions. In this work, the power consumption of the C3MR system integrated with NGL recovery, HeXU, and NRU has been optimized within the process limitations and critical operational constraints. The study fills a gap in the literature by analyzing and optimizing the propane cycle using real-world plant data. Results revealed that increasing the NG pre-cooling temperature and pressure from the base-case values of −27 and 54.9 bar to ∼ -4 °C and 59 bar reduced the power requirement by 2.6% (123–119.8 MW). The optimized C3MR process showed power savings of 3.1 MW that could be translated into a saving of 0.092 MTPA of LNG corresponding to annual revenue of 28.5 million $. The cycle compression power was dramatically decreased from 44.3 MW to 18.5 MW resulting in a 15.6% (122.9 MW–105.5 MW) reduction in the total energy demand (TED). Systematic optimization of HeXU and NRU units saved power that could be utilized to produce an additional 13,873 TPD LNG. The proposed optimization approach reduced the TED of the LNG plant, increased production, and enhanced process economy.
    URI
    https://www.sciencedirect.com/science/article/pii/S0360544223001044
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2023.126710
    http://hdl.handle.net/10576/65712
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video