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Abstract. Wardowski [19] introduced a new concept of contraction which called F -
contraction and proved a fixed point theorem on complete metric space. Following this
direction of research, in this paper, we introduce an F−rational cyclic contraction on
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partial metric spaces and we present new fixed point results for such cyclic contraction
in 0-complete partial metric spaces. An example is given to illustrate the main result,
also an application to integral equation is given to show the usability of our results.

Keywords: fixed point, F -contractions, (0−complete) partial metric space.

1. Introduction

In 1994, S. G. Matthews [14] introduced the notion of partial metric spaces
and obtained various fixed point theorems. In fact, he showed that the Banach
contraction mapping theorem can be generalized to the partial metric context
for applications in program verification.

Later on, Romaguera [16] introduced the notions of 0-Cauchy sequences and
0-complete partial metric spaces and proved some characterizations of partial
metric spaces in terms of completeness and 0-completeness.

In 2012, Wardowski [19] introduced a new type of contraction called F -
contraction and proved a new fixed point theorem concerning F -contraction.
Furthermore, Abbas et al.,[1] generalized the concept of F−contraction and
proved certain fixed and common fixed point results. Afterwards Secelean [17]
proved fixed point theorems consisting of F−contractions by iterated function
systems. Piri et al.,[15] proved a fixed point result for F -Suzuki contractions for
some weaker conditions on the self map of a complete metric space which gen-
eralizes the result of Wardowski. Lately, Acar et al.,[5] introduced the concept
of generalized multivalued F−contraction mappings. Further Altun et al.,[4]
extended multivalued mappings with δ−Distance and established fixed point re-
sults in complete metric space. Sgroi et al.,[18] established fixed point theorems
for multivalued F−contractions and obtained the solution of certain functional
and integral equations, which was a proper generalization of some multivalued
fixed point theorems including Nadler’s. Recently Ahmad et al.,[6],[9] recalled
the concept of F−contraction to obtain some fixed point, and common fixed
point results in the context of complete metric spaces.

In this paper, we introduce an F−rational cyclic contraction on partial met-
ric spaces and we present new fixed point results for such cyclic contraction in
0-complete partial metric spaces. An example is given to illustrate the main
result, also an application to integral equation is given to show the usability of
our results.

2. Preliminaries

First we recall some definitions and properties of partial metric spaces.

Definition 2.1. [14] A partial metric on a nonempty set X is a function p :
X ×X → R+(R+ stands for nonnegative reals) such that for all x, y, z ∈ X :

(P1) x = y ⇔ p (x, x) = p (y, y) = p (x, y) ;

(P2) p(x, x) ≤ p(x, y);
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(P3) p (x, y) = p (y, x);

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p (z, z) .

A partial metric spaces is a pair (X, p) such that X is a nonempty set and p is
a partial metric on X.

It is clear that, if p (x, y) = 0, then from (P1) and (P2) x = y. But if x = y,
p (x, y) may not be 0. Also, every metric space is a partial metric space, with
zero self distance.

Example 2.2. [14] If p : R+ ×R+ → R+ is defined by p (x, y) = max{x, y}, for
all x, y ∈ R+, then (R+, p) is a partial metric space.

For more examples of partial metric spaces, we refer the reader to [8] and
the references therein.

Each partial metric p on X generates a T0 topology τ (p) on X which has a
base topology of open p−balls {Bp (x, ε) : x ∈ X, ε > 0} andBp (x, ε) = {y ∈ X :
p (x, y) < ε+ p (x, x)}.

A mapping f : X → X is continuous if and only if, whenever a sequence
{xn} in X converging with respect to τ (p) to a point x ∈ X, the sequence {fxn}
converges with respect to τ (p) to fx ∈ X.

Let (X, p) be a partial metric space.
(i) A sequence {xn} in partial metric space (X, p) converges to a point x ∈ X

if and only if p (x, x) = limn→∞ p (xn, x) .
(ii) A sequence {xn} in partial metric space (X, p) is called Cauchy sequence

if there exists (and is finite) limn,m→∞ p (xn, xm). The space (X, p) is said to
be complete if every Cauchy sequence {xn} in X converges, with respect to
τ (p) , to a point x ∈ X such that p (x, x) = limn,m→∞ p (xn, xm) .

(iii) A sequence {xn} in partial metric space (X, p) is called 0-Cauchy if
limn,m→∞ p (xn, xm) = 0. The space (X, p) is said to be 0-complete if every 0-
Cauchy sequence in X converges (in τ (p)) to a point x ∈ X such that p (x, x) =
0.

Lemma 2.3. Let (X, p) be a partial metric space.

(a) [2],[12] If p(xn, z) → p(z, z) = 0 as n → ∞, then p(xn, y) → p(z, y) as
n→ ∞ for each y ∈ X.

(b) [16] If (X, p) is complete, then it is 0−complete.

It is easy to see that every closed subset of a 0-complete partial metric space
is 0-complete. The following example shows that the converse assertion of (b)
need not hold.

Example 2.4 ([16]). The space X = [0,+∞) ∩ Q with the partial metric
p (x, y) = max{x, y} is 0-complete, but is not complete. Moreover, the sequence
{xn} with xn = 1 for each n ∈ N is a Cauchy sequence in (X, p) , but it is not a
0-Cauchy sequence.
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Definition 2.5 ([11]). Let (X, d) be a metric space and f : X → X be a
mapping. Then it is said that f satisfies the orbital condition if there exists a
constant k ∈ (0, 1) such that

(2.1) d
(
fx, f2x

)
≤ k d (x, fx) ,

for all x ∈ X.

Theorem 2.6 ([3]). Let (X, p) be a 0−complete partial metric space and f :
X → X be continuous such that

(2.2) p
(
fx, f2x

)
≤ k p (x, fx)

holds for all x ∈ X, where k ∈ (0, 1) . Then there exists z ∈ X such that
p (z, z) = 0 and p (fz, z) = p (fz, fz) .

Definition 2.7 ([11]). Let (X, p) be a partial metric space and f : X → X
be a mapping with fixed point set Fix(f) ̸= ϕ . Then f has property (P) if
Fix(fn) = Fix(f), for each n ∈ N .

Lemma 2.8 ([11]). Let (X, p) be a partial metric space, f : X → X be a self
map such that Fix (f) ̸= ϕ. Then f has the property (P ) if (2.2) holds for some
k ∈ (0, 1) and either (i) for all x ∈ X, or (ii) for all x ̸= fx.

One of the remarkable generalizations of Banach’s contraction principle was
reported by Kirk et al.,[13] via cyclic contraction.

Theorem 2.9 ([13]). Let {Ai}mi=1 be a nonempty closed subset of a complete
metric space (X, d) and suppose f :

∪m
i=1Ai →

∪m
i=1Ai be a mapping satisfying

the following conditions:

(1) f(Ai) ⊆ Ai+1 for 1 ≤ i ≤ m, where Am+1 = A1.

(2) d (fx, fy) ≤ ψ (d (x, y)) , for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, · · ·,m},

where Am+1 = A1 and ψ : [0, 1) → [0, 1) is a function, upper semi-continuous
from the right and 0 ≤ ψ (t) < t for t > 0. Then, f has a fixed point z ∈

∩m
i=1Ai.

Wardowski [19] defined the F−contraction as follows.

Definition 2.10 ([19]). Let (X, d) be a complete metric space. A self mapping
f : X → X is said to be an F−contraction if there exists a constant λ > 0 such
that

(1.3) ∀ x, y ∈ X, d(fx, fy) > 0 ⇒ λ+ F (d(fx, fy)) ≤ F (d(x, y)) .

where F : R+ → R is a mapping satisfying the following conditions:
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(F1) F is strictly increasing, i.e. for all x, y ∈ R+ such that x < y, F (x) <
F (y);

(F2) For each sequence {αn}∞n=1 of positive numbers, limn→∞ αn = 0 if and
only if, limn→∞ F (αn) = −∞;

(F3) There exists k ∈ (0, 1) such that limα→ 0+αkF (α) = 0.
We denote F the family of all functions F that satisfy the conditions (F1)−

(F3) .

Example 2.11 ([19]). The Family of F is not empty.

1. F (x) = ln(x);x > 0;

2. F (x) = x+ ln(x);x > 0;

3. F (x) = ln(x2 + x);x > 0;

4. F (x) = −1√
x
;x > 0.

Theorem 2.12 ([19]). Let (X, d) be a complete metric space and f : X → X
be a F−contraction. If f or F is continuous, then we have

(1) f has a unique fixed point x∗ ∈ X.
(2) For all x ∈ X, the sequence {Tnx} is convergent to x∗.

3. Main results and discussion

Let (X, p) be a partial metric space, through out of this paper we mean by ∆p

be the set of all nonempty closed subsets of X.

Definition 3.1. Let (X, p) be a partial metric space, Vi ∈ ∆p for i = 1, 2, · · · ,m,
E =

∪m
i=1 Vi where m ∈ N . A mapping f : E → E is called an F -rational cyclic

contraction if there exists F ∈ F and λ ∈ R+ such that
1. f(Vi) ⊆ Vi+1, i = 1, 2, ...,m, where Vm+1 = V1,
2. For x ∈ Vi, y ∈ Vi+1, i = 1, 2, ...,m, with p (fx, fy) > 0, we have

(3.1) λ+ F (p (fx, fy)) ≤ F (Hf (x, y)) ,

where

Hf (x, y) = ap (x, y) + bp (x, fx) + cp (y, fy) + dp (x, fy) + ep (y, fx)

+ l
p (x, fx) .p (y, fy)

1 + p (x, y)
,(3.2)

and

(3.3) a, b, c, d, e, l ≥ 0 with a+ b+ c+ d+ e+ l < 1.

The main result of this section is the following.
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Theorem 3.2. Let (X, p) be a 0-complete partial metric space, Vi ∈ ∆p; i =
1, 2, · · · ,m where m ∈ N and E =

∪m
i=1 Vi. Suppose that f : E → E is an

F -rational cyclic contraction. Then,

1. f has a unique fixed point z ∈ E.

2. p (z, z) = 0 and z ∈
∩m

i=1 Vi.

3. for any x0 ∈ E, the sequence xn = fnx0, converges to z in topology τ(p).

Proof. Let x0 ∈ E be an arbitrary point. Then there exists i0 such that
x0 ∈ Vi0 , so there is x1 ∈ Vi0+1 where x1 = fx0. Continue in this process we
can construct a sequence xn = fxn−1 = fnx0 ∈ Vi0+n. If xn = xn+1 for some
n ∈ N, then xn is a fixed point of f. From now on assume that xn ̸= xn+1, for
all n ∈ N and let pn = p (xn, xn+1), so pn > 0 for all n ∈ N. Since f : E → E is
an F -rational cyclic contraction. So, from (3.1) and (3.2) we have that

λ+ F (pn) = λ+ F (p (xn, xn+1))

= λ+ F (p (fxn−1, fxn))

≤ F

(
ap (xn−1, xn) + bp (xn−1, xn) + cp (xn, xn+1) + dp (xn−1, xn+1)

+ep (xn, xn) + l p(xn−1,xn).p(xn,xn+1)
1+p(xn−1,xn)

)
.

Since p(xn−1, xn+1) ≤ p(xn−1, xn)+p(xn, xn+1)−p(xn, xn), F is strictly increas-

ing and p(xn−1,xn).p(xn,xn+1)
1+p(xn−1,xn)

< p (xn, xn+1), then the above inequality becomes

(3.4) λ+ F (pn) ≤ F ((a+ b+ d) pn−1 + (c+ d+ l) pn + (e− d) p (xn, xn)) .

Since λ > 0, then

F (pn) ≤ λ+ F (pn) ≤ F ((a+ b+ d) pn−1 + (c+ d+ l) pn + (e− d) p (xn, xn)) .

But, F is strictly increasing, so we deduce that

(3.5) pn ≤ (a+ b+ d)pn−1 + (c+ d+ l)pn + (e− d)p(xn, xn)).

By symmetry of p (xn+1, xn) = p (xn, xn+1) , and using similar argument as
above one can deduce that

λ+ F (p (xn+1, xn)) = λ+ F (p (fxn, fxn−1))

≤ F ((a+ c+ e) pn−1 + (b+ e+ l) pn + (d− e) p (xn, xn)) .

Thus,

F (pn) ≤ λ+ F (pn) ≤ F ((a+ c+ e) pn−1 + (b+ e+ l) pn + (d− e) p (xn, xn))

which implies that

(3.6) pn ≤ (a+ c+ e)pn−1 + (b+ e+ l)pn + (d− e)p(xn, xn).
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Adding up, equations (3.5) and (3.6) we get pn ≤ βpn−1, where
β = 2a+b+c+d+e

2−b−c−d−e−2l < 1, which is a consequence of (3.3). Hence,

(3.7) pn < pn−1, for all n ∈ N

Using property(P2) of partial metric, equations (3.4), (3.7) and the property
of strictly increasing of F we get

λ+ F (pn) ≤ F ((a+ b+ d) pn−1 + (c+ d+ l) pn + (e− d) p (xn, xn))

≤ F ((a+ b+ d) pn−1 + (c+ d+ l) pn−1 + (e− d) pn−1)

= F ((a+ b+ c+ d+ e+ l) pn−1)

≤ F (pn−1).

Hence, λ+ F (pn) ≤ F (pn−1) for all n ∈ N. This implies

(3.8) F (pn) ≤ F (pn−1)− λ ≤ · · · ≤ F (p0)− nλ, for all n ∈ N

and so limn→+∞F (pn) = −∞. By the property (F2) , we get that pn → 0 as
n→ +∞.

Now, by (F3) there exist k ∈ (0, 1) such that limn→+∞p
k
nF (pn) = 0.

By (3.8), the following holds for all n ∈ N :

(3.9) pknF (pn)− pknF (p0) ≤ −nλpkn ≤ 0.

Letting n→ +∞ in (3.9) we deduce that

(3.10) lim
n→+∞

npkn = 0.

By using the continuous function g(x) = x
1
k ; x ∈ (0,∞), we get that

(3.11) lim
n→+∞

n
1
k pn = lim

n→+∞
g(npkn) = 0.

Now, by using the limit comparison test with an = pn, bn = n
−1
k and equation

(3.10) we ensure that the series
∑+∞

n=1 pn is convergent. This implies that {xn}
is a 0−Cauchy sequence. Since E is closed in a 0-complete partial metric (X, p) ,
then E is also 0-complete and there exist z ∈ E =

∪m
i=1 Vi such that

(3.12) lim
n→∞

p (xn, z) = 0 = p (z, z) .

Notice that the iterative sequence {xn} has an infinite number of terms in Vi for
each i = 1, ...,m. Hence, there is a subsequence of {xn} in each Vi, i = 1, ...,m,
which converges to z. Using that each Vi, i = 1, ...,m, is closed, we conclude
that z ∈

∩m
i=1 Vi.
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We shall prove that z is a fixed point of f . Using the triangle inequality (p4)
of partial metric space and (3.2) ( which is possible since z belongs to each Vi)
to obtain

p (z, fz) ≤ p (z, xn+1) + p (xn+1, fz)− p (xn+1, xn+1)

≤ p (z, xn+1) + p (fxn, fz)

≤ p (z, xn+1) + ap (xn, z) + bp (xn, xn+1) + cp (z, fz) + dp (xn, fz)

+ep (xn+1, z) + l
p (xn, xn+1) .p (z, fz)

1 + p (xn, z)
.(3.13)

Using Lemma 2.3 part (a) and passing to the limit when n → ∞ in (3.13),
we obtain that

(1− c− d) p (z, fz) ≤ 0,

and hence

(3.14) p (z, fz) = 0.

Now by using triangle inequality (P4), (3.14) and (3.12) we deduce that p(fz, fz)
= 0. Therefore, by (P1) we get f(z) = z.

Finally, we will prove the uniqueness, let u be another fixed point of f in E,
with p (u, z) ̸= 0. By the cyclic character of f , we have u, z ∈

∩m
i=1 Vi. Since f is

an F -rational cyclic contraction and using the property (P2) of partial metric,
we have

λ+ F (p (u, z)) = λ+ F (p (fu, fz))

≤ F

(
ap (u, z) + bp (u, u) + cp (z, z) + dp (u, z) + ep (u, z)

+l p(u,fu).p(z,fz)1+p(u,z)

)
≤ F ((a+ b+ c+ d+ e) p (u, z)) ,

which is a contradiction deduced from the strictly increasing property of F and
being a+ b+ c+ d+ e < 1, hence z = u. Thus z is a unique fixed point of f.

By taking F (α) = α+ ln(α) in Theorem 3.2 we get the following corollary.

Corollary 3.3. Let (X, p) be a 0-complete partial metric space, Vi ∈ ∆p; i =
1, 2, · · · ,m where m ∈ N and E =

∪m
i=1 Vi. Suppose that f : E → E and the

following conditions are hold:

1. f(Vi) ⊆ Vi+1, i = 1, 2, ...,m, where Vm+1 = V1,

2. There exist λ > 0 such that for x ∈ Vi, y ∈ Vi+1, i = 1, 2, ...,m, with
p (fx, fy) > 0, we have
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λ+ ln(p(fx, fy)) ≤

(
ap (x, y) + bp (x, fx) + cp (y, fy) + dp (x, fy)

+ep (y, fx) + l p(x,fx).p(y,fy)1+p(x,y)

)

+ ln

(
ap (x, y) + bp (x, fx) + cp (y, fy) + dp (x, fy)

+ep (y, fx) + l p(x,fx).p(y,fy)1+p(x,y)

)
,

where a, b, c, d, e, l ≥ 0 and a+ b+ c+ d+ e+ l < 1. Then,

1. f has a unique fixed point z ∈ E.

2. p (z, z) = 0 and z ∈
∩m

i=1 Vi.

3. for any x0 ∈ E, the sequence xn = fnx0, converges to z in topology τ(p).

By taking F (α) = −1√
α
in Theorem 3.2 we get the following corollary.

Corollary 3.4. Let (X, p) be a 0-complete partial metric space, Vi ∈ ∆p; i =
1, 2, · · · ,m where m ∈ N and E =

∪m
i=1 Vi. Suppose that f : E → E and the

following conditions are hold:

1. f(Vi) ⊆ Vi+1, i = 1, 2, ...,m, where Vm+1 = V1,

2. There exist λ > 0 such that for x ∈ Vi, y ∈ Vi+1, i = 1, 2, ...,m, with
p (fx, fy) > 0, we have

λ+
−1√

p(fx, fy)
≤ −1√√√√( ap (x, y) + bp (x, fx) + cp (y, fy) + dp (x, fy) + ep (y, fx)

+l p(x,fx).p(y,fy)1+p(x,y)

)

where a, b, c, d, e, l ≥ 0 and a+ b+ c+ d+ e+ l < 1. Then,

1. f has a unique fixed point z ∈ E.

2. p (z, z) = 0 and z ∈
∩m

i=1 Vi.

3. for any x0 ∈ E, the sequence xn = fnx0, converges to z in topology τ(p).

Example 3.5. Let X = R be equipped with the usual partial metric p (x, y) =
max{|x|, |y|}. Then, clearly (X, p) is 0−complete. Suppose V1 =

[
0, 12
]
, V2 =[−1

6 , 0
]
, V3 =

[
0, 1

18

]
, V4 =

[−1
54 , 0

]
and E =

∪4
i=1 Vi. Define f : E → E such

that fx = −x
8 for all x ∈ E. It is clear that f(Vi) ⊆ Vi+1.
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Take λ = ln(4), a = 1
2 and b = c = d = e = l = 1

11 . Let x ∈ Vi and y ∈ Vi+1

such that either x ̸= 0 or y ̸= 0, then

p(fx, fy) = max{|−x
8

|, |−y
8

|}

=
1

8
max{|x|, |y|}

=
1

8
p(x, y)

= (
1

4
)(
1

2
)p(x, y).(3.15)

Now take ln for both sides of (3.15) we get

ln(p(fx, fy)) = ln((
1

4
)(
1

2
)p(x, y))

= −ln(4) + ln(
1

2
p(x, y))

≤ −ln(4) + ln
(1
2
p(x, y) +

1

11
p(x, fx) +

1

11
p(y, fy) +

1

11
p(x, fy)

+
1

11
p(y, fx) +

1

11

p(x, fx)p(y, fy)

1 + p(x, y)

)
.

Hence,
ln(4) + F (p(x, y)) ≤ F (Hf (x, y)).

Therefore, all conditions of Theorem 3.2 are satisfied and we deduce that f has
a unique fixed point z = 0 ∈

∩4
i=1 Vi and p (z, z) = 0 holds true.

Another consequence of Theorem 3.2 is the following.

Theorem 3.6. Under the assumptions of Theorem 3.2. The function f satisfies
the orbital condition (2.2). In particular, there exist z ∈ E such that p (z, z) = 0
and p (fz, z) = p (fz, fz) ; also, f has the property (P) .

Proof. By Theorem 3.2, the set of fixed points for f is not empty. We will
prove that f satisfies condition (2.2) of Theorem 2.6. Let x ∈ Y be arbitrary.
Putting x = x and y = fx in condition (3.1) of Theorem 3.2, we have

λ+ F
(
p
(
fx, f2x

))
≤ F (Hf (x, fx))

≤ F

(
ap (x, fx) + bp (x, fx) + cp

(
fx, f2x

)
+dp

(
x, f2x

)
+ ep (fx, fx) + l

p(x,fx).p(fx,f2x)
1+p(x,fx)

)
,

By (P4) and repeating the same process as in proof Theorem 3.2, we get
that

λ+ F
(
p
(
fx, f2x

))
≤ F

(
(a+ b+ d) p (x, fx) + (c+ d+ l) p

(
fx, f2x

)
+(e− d) p (fx, fx)

)
(3.16)
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by symmetry we have,

λ+ F
(
p
(
fx, f2x

))
≤ F

(
(a+ c+ e) p (x, fx) + (b+ e+ l) p

(
fx, f2x

)
+(d− e) p (fx, fx)

)
.(3.17)

Using the same argument as in the proof of Theorem 3.2, we deduce that

p
(
fx, f2x

)
≤ βp (x, fx) ,

where β = 2a+b+c+d+e
2−(b+c+d+e+2l) < 1, which is a consequence of (3.3). Thus, f satisfies

the orbital condition. By Theorem 2.6, there exists z ∈ E such that p (z, z) = 0
and p (fz, z) = p (fz, fz) . So, by Lemma 2.8, f has the property (P) .

4. Application to integral equations

In this section, we will give an application to some integral equation to show
the usability of the main result. Consider the integral equation

(4.1) u(t) = h(u(t)) +

∫ t

0
H(t, r)ζ(r, u(r)) dr, for all t ∈ [0, 1],

where, ζ : [0, 1]×R → R, H : [0, 1]× [0, 1] → R and h : R → [0,∞) are functions.
LetX = C([0, 1]) be the set of all real continuous functions on [0, 1], endowed

with the partial metric

p(u, v) = max{ sup
t∈[0,1]

|u(t)|, sup
t∈[0,1]

|v(t)|}, for all u, v ∈ X.

Clearly, (X, p) is a 0-complete partial metric space.
Let κ, η ∈ X, κ0, η0 ∈ R such that for all t ∈ [0, 1] we have

(4.2) κ0 ≤ κ(t) ≤ η(t) ≤ η0,

(4.3) κ(t) ≤ h(u(t)) +

∫ t

0
H(t, r)ζ(r, η(r)) dr,

and

(4.4) η(t) ≥ h(u(t)) +

∫ t

0
H(t, r)ζ(r, κ(r)) dr.

Let for all r ∈ [0, 1], ζ(r, ·) and h(.) are decreasing functions, that is,

(4.5) x, y ∈ R, x ≥ y implies ζ(r, x) ≤ ζ(r, y).

and

(4.6) h(x) ≤ h(y).
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Assume that,

(4.7) max
t∈[0,1]

∫ 1

0
H(t, s)ds < e−λ, for some λ ∈ (0,∞).

and

(4.8) sup
r∈[0,1]

|ζ(r, u(r))| ≤ sup
r∈[0,1]

|u(r)|.

Define a mapping f : X → X by

(4.9) f(u(t)) = h(u(t)) +

∫ t

0
H(t, r)ζ(r, u(r))dr; t ∈ [0, 1].

Also, suppose that for all x, y ∈ R with (x ≤ η0 and y ≥ κ0) or (x ≥ κ0 and
y ≤ η0) we have,

(4.10) |h(u(t))| ≤ 1
8e

−λmax{supt∈[0,1] |u(t)|, supt∈[0,1] |f(u(t))|}.

Theorem 4.1. Under the assumptions (4.2)-(4.10), the integral equation (4.1)
has a solution z such that z ∈ C([0, 1]) with κ(t) ≤ z(t) ≤ η(t) for all t ∈ [0, 1].

Proof. Define the closed subsets of X, U1 and U2 by

U1 = {u ∈ X : u ≤ η}

and
U2 = {u ∈ X : u ≥ κ}.

Also define the mapping f : U1 ∪ U2 → U1 ∪ U2 by

f(u(t)) = h(u(t)) +

∫ t

0
H(t, r)ζ(r, u(r)) dr, for all t ∈ [0, 1].

Now we prove that,

(4.11) f(U1) ⊆ U2 and f(U2) ⊆ U1.

Suppose, u ∈ U1, that is,

u(r) ≤ η(r), for all r ∈ [0, 1].

Using condition (4.5) and (4.6) we obtain that

ζ(r, u(r)) ≥ ζ(r, η(r)), for all r ∈ [0, 1].

and
h(u(r)) ≥ h(η(r)), for all r ∈ [0, 1].
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The above inequalities with condition (4.3) imply that

f(u(t)) = h(u(t)) +

∫ t

0
H(t, r)ζ(r, u(r)) dr ≥ h(η(t))

+

∫ t

0
H(t, r)ζ(r, η(r)) dr = η(t) ≥ κ(t),

for all t ∈ [0, 1]. Then we have f(u(t)) ∈ U2. Similarly, let u ∈ U2, that is,

u(r) ≥ κ(r), for all r ∈ [0, 1].

Using condition (4.5) and (4.6) we obtain that

ζ(r, u(r)) ≤ ζ(r, κ(r)), for all r ∈ [0, 1].

and

h(u(r)) ≤ h(κ(r)), for all r ∈ [0, 1].

The above inequalities with condition (4.4) imply that

f(u(t)) = h(u(t)) +

∫ t

0
H(t, r)ζ(r, u(r)) dr ≤ h(κ(t))

+

∫ t

0
H(t, r)ζ(r, κ(r)) dr = κ(t) ≤ η(t),

for all t ∈ [0, 1]. Then we have f(u(t)) ∈ U1. Also, we deduce that (4.11) holds.

Let, x ∈ U1 and y ∈ U2. Then from (4.9), for all t ∈ [0, 1], we have

|f(x(t))| = |h(x(t)) +
∫ t

0
H(t, r)ζ(r, x(r)) dr|

≤ |h(x(t))|+ |
∫ t

0
H(t, r)ζ(r, x(r)) dr|

≤ |h(x(t))|+
∫ t

0
|H(t, r)||ζ(r, x(r))| dr

≤ |h(x(t))|+
∫ t

0
|H(t, r)|max{ sup

r∈[0,1]
|ζ(r, x(r))|, sup

r∈[0,1]
|ζ(r, y(r))|) dr

≤ |h(x(t))|+ max
t∈[0,1]

∫ t

0
H(t, r)p(x, y)dr

≤ |h(x(t))|+ 1

8
e−λp(x, y)

≤ 1

8
e−λp(x, fx) +

1

8
e−λp(x, y)

= e−λ(
1

8
p(x, fx) +

1

8
p(x, y)).
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Thus,

(4.12) sup
t∈[0,1]

|f(x(t))| ≤ e−λ(
1

8
p(x, fx) +

1

8
p(x, y)).

Similarly, we have

(4.13) sup
t∈[0,1]

|f(y(t))| ≤ e−λ(
1

8
p(y, fy) +

1

8
p(x, y)).

Hence, from (4.12) and (4.13) we have

max{ sup
t∈[0,1]

|f(x(t))|, sup
t∈[0,1]

|f(y(t))|} ≤ e−λ(
1

8
p(x, y) +

1

8
p(x, fx) +

1

8
p(y, fy))

≤ e−λ(
1

8
p(x, y) +

1

8
p(x, fx) +

1

8
p(y, fy)

+
1

8
p(x, fy) +

1

8
p(y, fx)).

Therefore,

p(fx, fy) ≤ e−λ(
1

8
p(x, y) +

1

8
p(x, fx) +

1

8
p(y, fy) +

1

8
p(x, fy) +

1

8
p(y, fx))

and so,

ln(p(fx, fy)) ≤ −λ+ln
(1
8
p(x, y)+

1

8
p(x, fx)+

1

8
p(y, fy)+

1

8
p(x, fy)+

1

8
p(y, fx)

)
,

which implies that λ+F (p(fx, fy)) ≤ F (Hf (x, y)) is satisfied for F (α) = ln(α)
for all α ∈ X with a = b = c = d = e = 1

8 and l = 0. Hence, all conditions
of Theorem 3.2 holds and f has a fixed point z such that z ∈ C([0, 1]) with
κ ≤ z(t) ≤ η for all t ∈ [0, 1]}. That is, z ∈ U1 ∩ U2 is a solution to (4.1).

Conflict of interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this paper. All
authors read and approved the final manuscript.

Conclusion

We conclude that every F -rational cyclic contraction mapping f :
∪m

i=1 Vi →∪m
i=1 Vi defined on a 0-complete partial metric space (X, p) has a unique fixed

point z ∈
∩m

i=1 Vi and for any x0 ∈
∪m

i=1 Vi, the sequence xn = fnx0 converges
to z in topology τ(p), where Vi is nonempty closed subset of X for each i =
1, · · · ,m.
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