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ABSTRACT 

Solid-state deformation of polyethylene results in a preferential orientation 
of both crystalline and amorphous regions. Usually, one major problem in 
the prediction of the mechanical and thermal expansion properties of 
anisotropic polyethylene lies in determining values for the amorphous phase 
properties and, particularly, at a given level of solid-state deformation. 

This paper outlines simple procedures for determining the two-dimensional 
amorphous orientation function and values for the mechanical and thermal 
expansion properties of the oriented amorphous phase. Mathematical 
expressions for determining the tensile and shear moduli, Poisson ratio and 
thermal strain of the amorphous phase for anisotropic polyethylene at any 
level of orientation are defined. Comparison between the predicted 
amorphous phase tensile modulus and the experimental measurements yields 
an agreement within 30%. 

INTRODUCTION 

Crystalline polymers usually crystallize in a spherulitic form when 
supercooled from the melt; spherulite also grow in concentrated solutions. 
They are made up of crystalline lamellae fanning out from the center and in 
between lies the amorphous phase. Lamellar crystallites are formed by folded 
molecular chains; chain folding normally occurs transverse to the growing 
direction. The amorphous region is comprised of molecules whose complex 
tacticity or branching prevents their crystallization, molecules excluded from 
the crystals because of their molecular weight difference, tie molecules and 
disordered fold regions on. the crystal surface [ 1]. 
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Solid-State deformation processes, either cold or hot, are commonly 
employed to induce plastic deformation into polyethylene [ 1-6]. This plastic 
deformation invariably produces a deep series of complex changes in the 
morphology of the material. For instance, when the material is drawn, 
deformation is localized into a 'neck' region and it is here that a discontinuous 
change occurs from the normal lamellar structure into a fibrillar one. The 
deformation of spherulites largely characterizes the material's response, for the 
microscopic behavior is determined by crystalline tilting, twisting, slipping, 
orientation distribution and sometimes recrystallization [7]. In the amorphous 
region, chain slippage and rubber-like deformation also occur. The resultant 
oriented structure is anisotropic in a number of mechanical and thermal 
properties with a degree of anisotropy dependent on the extent of deformation. 

Many models have been proposed to describe the morphology and the 
mechanical and thermal properties prediction for oriented crystalline polymers 
[8-14]. Usually one major problem in the prediction of mechanical and 
expansional behavior of molecular composite systems lies in the assumed 
values for the amorphous (matrix) properties. Therefore, it is of prime 
importance to address more attention to the subtlety of the oriented amorphous 
phase. The objective of this paper is to elucidate how one can obtain 
reasonably accurate values for the mech~mical and expansional properties of the 
amorphous phase for anisotropic polyethylene at any given state of orientation. 

EFFECT OF DEFORMATION ON THE 
AMORPHOUS PHASE PROPERTIES 

Among the contents of the amorphous phase, tie molecules seem to be the 
most prominent elements in altering the amorphous phase properties during the 
deformation process. In the fully oriented texture, tie molecules which linked 
different lamellae in the initial spherulitic material, now connect different 
microfibrils; i.e. they have become interfibrillar tie molecules and contribute 
to a greater extent to the mechanical properties of the highly deformed polymer 
[15]. 

For a simplified two-dimensional symmetric orientation, the extent of the 
amorphous phase orientation can be quantitatively represented by the following 
expression (16): 

(1) 
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where 8m represents the average orientation angle between the polymer chain 
axis in the amorphous phase and the reference direction of the material; < > 
designates the average value. At this point it is pertinent to mention that a 
more usual definition for the orientation function is fm = 1h (3 < cos28m > - 1) 
[16, 17]; this is the widely adopted definition for three-dimensional orientation 
distribution. It will not be utilized in this paper, and since we are assuming 
two-dimensional distribution, we will rather use the definition expressed by 
Equation 1. In addition to being proportional to the amorphous phase stiffness, 
the amorphous orientation function is known to increase with drawing [ 17, 18]. 
This increase may be attributed to the presence of taut tie molecules, their 
quantity, orientation and degree of tautness. If one is interested in interpreting 
the anisotropic behavior of polyethylene, tie molecules will have to be 
considered. We will define the amorphous phase stiffness as: 

(2) 

where Em is the amorphous phase stiffness at any orientation level described 
by the amorphous orientation function, fm, Em,iso is the amorphous phase 
modulus in the isotropic state and Em.ult is the maximum attainable value for the 
amorphous phase modulus. Equation 2 ·shows that the amorphous phase 
modulus increases as the orientation process proceeds and the effect of tie 
molecules can be implicitly accounted for in this expression (through the use 
of fm). For the initial isotropic case, fm = 0 and Em = Em,iso; on the other hand 
Em is progressively approaching the upper bound imposed on the amorphous 
phase modulus as the deformation proceeds with fm approaching unity. 
Obviously the effect of tie molecules on the mechanical properties of oriented 
polyethylene can now be accounted for. 

The shear modulus of the amorphous phase (Gro) is also affected by solid­
state deformation, and obviously, a given state of orientation will be 
accompanied by a particular value for Gm. Therefore, one may face the 
problem of determining Gm at various levels of amorphous phase orientation. 
Previous studies on amorphous polymers like polyvinyl chloride, polymethyl­
methacrylate, polystyrene and polycarbonate, have demonstrated that the shear 
modulus for these polymers is linearly proportional to the amorphous 
orientation function on a semilogarithmic plot [19-21]. Therefore, if we assume 
that a maximum value for the amorphous phase shear modulus is attainable at 
an amorphous orientation function of unity, one can interpolate the value of the 
shear modulus corresponding to any value for fm. In other words, we can join 
the isotropic value for Gm at fm = 0 to the maximum value at fm = 1 with a 
straight line or a semi-logarithmic scale. At this point, it is pertinent to point 
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out that, indeed, the Poisson ratio of the amorphous phase, 11m, is also affected 
by a given state of orientation. A reasonable expression to estimate it, is 
defined as: 

= (3) 1 

vm vm,iso 

where llm,u.o and llm.uit are the Poisson ratios for a completely random and fully 
oriented amorphous phase. Obviously as fm approaches 0, 11m ::::::: llm.u.o and as 
fm approaches unity, 11m ::::::: llm,ult· 

The thermal expansion properties are equally affected by the orientation 
of the amorphous region. The amorphous orientation function will be also used 
to weigh the amorphous thermal strain as follows: 

= (4) 1 

where em is the thermal strain of the matrix at any amorphous phase orientation 
level defined by fm; em,iao is that of the isotropic amorphous phase and em,ult 
represents the thermal strain of the fully aligned amorphous region. Equation 
4 shows how the isotropic thermal strain of the amorphous region gradually 
decreases to a value of its counterpart in the fully aligned anisotropic case, 
throughout the solid-state deformation as fm approaches unity. At this point, it 
is pertinent to note that Equation 2 shows an increase in Em with fm, while 
Equation 4 shows a decrease in the value of em as fm increases. The inverse 
relationship between the modulus and the thermal expansion for the amorphous 
region is obviously preserved; such a phenomenon is in compliance with the 
fact that the thermal expansivity is a stiffness-dominated property. 

1. Amorphous Phase Moduli 

Three different teams of investigators [22-24] have recorded experimental 
data for the dynamic shear modulus for polyethylene with different levels of 
crystallinity over a wide range of tempera~ure. Extrapolation of these data to 
zero volume fraction crystallinity at room temperature leads to the 
determination of the amorphous phase shear modulus for isotropic 
polyethylene. The work of Gray and McCrum [22] is not challenging since 
dual extrapolation is required because the temperature range covered in their 
work does not include room temperature. On the other hand, the work of 
Mandelkern et al. [23] and Illers [24], covers the temperature range -200°C to 
100°C, and only extrapolation to zero volume fraction crystallinity is required 
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in order to obtain a value for the amorphous phase shear modulus. The work 
of Mandelkern et al. gives an amorphous phase shear modulus (Gm.iso) of 
0.0317 GPa, while that of Illers gives the value of 0.057 GPa. With an 
amorphous phase Poisson ratio, Pm,iso• of 0.45 [25, 26], the values for the 
corresponding tensile moduli, Em,iso• will be 0.09215 and 0.1653 GPa, 
respectively. It is pertinent to note that Holliday [27] discussed various models 
from the literature to predict the amorphous phase tensile modulus CEm,iso) and 
he set out a plausible picture of how the overall stiffness of an isotropic 
polyethylene is built up in which Em,iso• ranged from 0.1 to 0.5 GPa. 
Accordingly, it was decided to use an average value for the extrapolated results 
mentioned earlier, and the values for Gm,iso and Em,iso were taken as 0.044 GPa 
and 0.128 GPa, respectively. On the other hand, the ultimate value for the 
amorphous phase tensile modulus, Em,utt• needed in Equation 2 was obtained 
from the work of Holliday [27] who used a simple crystalline-amorphous series 
arrangement and estimated the value of 1.6 GPa for the amorphous phase 
tensile modulus for a completely aligned chain-extended polyethylene texture. 

It was mentioned earlier that the shear modulus of the amorphous phase 
is linearly proportional to the amorphous phase orientation function on a semi­
logarithmic plot. Accordingly, a further problem arises: the determination of 
the maximum value of the amorphous phase shear modulus, Gm.utt· Obviously, 
an entirely amorphous phase having completely random order can easily be 
assumed in a relaxed state. On the other hand, an unrelaxed amorphous phase 
is a state where the molecular chains in this phase are highly restricted in their 
mobility due to the extremely low temperature environment or high molecular 
orientation. l,berefore, the unrelaxed (below -1400C) amorphous phase shear 
modulus was assigned to the maximum attainable shear modulus for a highly 
oriented amorphous phase. Using the work of Mandelkern et al. [23] and Illers 
[24], an average value for the shear modulus in the temperature range -140 
to -1800C was found to be 1.42 GPa. Having obtained the upper limit on the 
amorphous phase shear modulus, one can join it to the lower bound of 0.044 
GPa (value for the isotropic shear modulus) with a straight line, as shown in 
Figure 1. This figure may be utilized to interpolate values for the amorphous 
phase shear modulus at any level of orientation. The relationship may be 
mathematically expressed as: 

Gm = 0. 044exp (3. 474fm) 
(5) 

Finally, in order to obtain the Poisson ratio for the amorphous phase at 
a given level of orientation one may use Equation 3. It was difficult to find 
experimental work on values of Poisson ratio for a fully aligned amorphous 
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Figure 1: Plot of the amorphous phase shear modulus vs. the 
amorphous orientation function 

phase in the literature. Therefore, we assumed that vm.ult is 0.3. With vm,iso = 
0.45 [4,5,26], Equation 3 shows that the Poisson ratio of the amorphous phase 
decreases with increasing the degree of orientation. Such a result makes sense, 
since, by definition the Poisson ratio is the ratio between lateral and 
longitudinal extension. Obviously, stretching will impose more constraint on 
the amorphous phase extension, therefore, its Poisson ratio will be reduced. 

2. Thermal Expansion of the Amorphous Phase 

The thermal strains of the isotropic amorphous state, em.iso• at different 
temperature levels were found by extrapolating polyethylene data from various 
levels of crystallinity to zero volume fraction crystallinity using the work of 
Buckley and McCrum [4], who provided the temperature dependence of the 
linear thermal strain for isotropic polyethylene, covering a crystallinity range 
from 0.494 to 0.775. Smoothing the data using a second degree polynomial 
one can obtain the following expression: 
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where Tis the temperature in oc, and the reference temperature is ooc. At this 
point it is important to mention that the thermal expansion coefficient (obtained 
from the first derivative of Equation 6) of the isotropic amorphous region is in 
good agreement with the work of Stehling and Mandelkern [23] and Engeln et 
al. [28] over a wide temperature range of -1500C to room temperature. 

Now, em,utt• used in Equation 4 deserves the final attention. This thermal 
strain is assumed to be the lowest attainable strain by the amorphous phase in 
an extremely oriented polyethylene texture. The values for this thermal strain 
were also obtained from the work of Buckley and McCrum [ 4]. They prepared 
a single-crystal sample of polyethylene and provided experimental data for the 
thermal strain in the deformation (draw) direction. They made the 
approximation that all the c-axes were parallel to this direction and 
accordingly, they have postulated a simple crystalline-amorphous series 
arrangement in the draw direction. This approximation is similar to the one 
adopted by Holliday [27] to obtain ~.utt· Furthermore, this approximation is 
also equivalent to the assumption made by Sakurada et al. [29] in connection 
with the calculation of the Young's modulus in the chain direction in the 
crystalline phase of polyethylene using X-ray measurement of strain. Knowing 
the thermal strain in the draw direction and that of the c-axis (the chain axis), 
em,utt was obtained from the following expression: 

(7) 

which is the relation proposed by Buckley and McCrum [4] to express the 
thermal strain in the draw direction, ez. Values fore~ were determined from the 
work of Davis et al. [30]. Vr and V mare the volume fraction of the crystalline 
phase and the amorphous phase, respectively. Obviously, Equation 7 is the 
familiar rule of mixtures expression and its use in this particular case is in the 
spirit of the idea introduced by Schapery [31], that whenever a state of uniform 
stress is implied (crystalline-amorphous series arrangement), the expansivity 
is obtained by the rule of mixtures expression. Therefore, the expression 
developed for em,ult may be expressed as: 
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Again, T is in oc and the reference temperature is ooc. Now, at any given 
temperature, knowing em,;.., and em.uh• one should be able to calculate the 
thermal strain of the amorphous phase for polyethylene at any orientation level 
using Equation 4. 

Obvious) y, to determine any of the properties expressed by Equation 2 to 
5, values for fm should be known. The following is an attempt to clarify how 
one can readily determine the amorphous phase orientation function for 
anisotropic polyethylene. 

3. Amorphous-Phase Orientation Function 

Samuels [32] realized the identity of crystalline polymers as two-phase 
systems, and expressed the sonic modulus (Young's modulus measured using 
the ultrasonic technique) measured in the direction of solid state deformation 
as: 

1 
E 0 

Et,c 

v 
(1- <cos26c>) + E: (1- <cos26m>) 

t,m 

(9) 

where E\c and E\m are the intrinsic lateral moduli of the perfectly oriented 
crystalline phase chains and amorphous phase chains, respectively. The angle 
()c is the average orientation angle between the c-axis of the crystallites and the 
deformation direction. For a simplified two-dimensional orientation 
distribution, the crystalline orientation function is defined as [33]: 

(10) 

For two-dimensional, randomly oriented, isotropic polyethylene both fm and fc 
vanish and from Equations 1 and 10: 

( 11) 
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Therefore, for isotropic polyethylene Equation 9 reduces to: 

2 + (12) 

From the definition of the orientation functions and the combination of 
Equations 9 and 12, we obtain the following expression: 

(13) 

In this equation E;.., and E are the sonic moduli of the isotropic sample and the 
oriented sample, respectively Eot,c is the inter-molecular transverse tensile 
modulus of the crystalline chain, for polyethylene its value is 3.6 GPa [29, 34]. 
Therefore, for polyethylene of known volume fraction crystallinity and 
isotropic sonic modulus, the intrinsic transverse modulus of the amorphous 
region, E\m, can be readily obtained using Equation 12. Polyethylene samples 
of different thermal histories were prepared and fully characterized; the 
experimental details and methodology are outlined elsewhere [35]. Using 
experimentally determined values for E;..,, E and the corresponding volume 
fraction crystallinities and crystalline orientation functions, E\m was found to 
be 0.4433 GPa. Therefore, for an oriented sample of known crystalline 
orientation function, fc, and sonic modulus, E, one may use Equation 13 to 
obtain fm, and a set of corresponding values for the amorphous orientation 
function can be readily obtained. Consequently, for any orientation level 
described by a given value for fm, one may use Equation 2 and 5 to estimate 
the amorphous phase tensile and shear moduli, while Equation 3 may be 
utilized to estimate the Poisson ratio of the amorphous region and Equation 4 
may be used to estimate the thermal strain of the amorphous phase. Table 1 
summarizes the values for the amorphous properties along with the predictive 
relations to estimate the mechanical and expansional properties of the 
amorphous phase at any orientation level described by a given value for fm. 

COMPARISON BETWEEN PREDICTION 
AND MEASURKMENT 

Ol).e may argue about the validity of Equation 2 is estimating the 
amorphous phase modulus at any given level of orientation. Therefore, it was 
found necessary to compare theoretical prediction with experimental findings. 
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Table 1 Mechanical* and thermal expansion •• properties for the 
amorphous phase of polyethylene 

Amorphous phase moduli Moduli for predicitive Calculations 

(Randomly aligned) (Completely aligned) 

Em.oo 
0.128 

Et,m 
0.4433 

Gm,wt 
1.42 

Em= 1.6fm + 0.128(1-fm> 
Gm = 0.044 exp(3.474fJ 

Amorphous phase Poisson ratio 

Randomly aligned Completely aligned Poisson ratio for predicitve calculations 

~'m,iso = 0.45 ~'m,ult = 0.30 

Randomly aligned: 
Completely aligned: 

1 
+ 

0.30 0.45 

Thermal strains 

em.oo = -3.269x10'4 + 2.234xto·"T + 3.696xt0·7T2 

ern.ult = 5.0485x10'6 + 8.556x to·7T- 1. 7754xto·9'f2 

Thermal strain for predicitve calculations 

1 
+ 

ern,ult 

* All moduli are in GPa 
**Temperature is in oc and the reference temperature is 0°C 
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An effective value for the tensile modulus of the amorphous phase, Eom, 
can be estimated from [36]: 

1 sin
4
8 m cos

4
8 m 28 . 28 [ 1 2v ml -- + + + cos s1n - - --E o o m mG o em Et,m E1 ,m m E1 ,m 

(14) 

E\m is the intrinsic longitudinal modulus of the polymer chain constituting the 
amorphous phase in a perfectly oriented polyethylene texture; this modulus is 
nothing but Em,ult· The effective angle, (Jm, between the polymer chains in the 
amorphous region and the deformation direction can be obtained from the 
following approximation: 

(15) 

where from Equation 1, < cos28m > = (fm + 1)/2. Therefore, a set of values for 
E8m can be obtained for given degrees of orientation described by different 
value for fm and corresponding values for Gm and ~'m· Figure 2 shows that 
Equation 2 predicts Em for anisotropic polyethylene sheets at various levels of 
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Figure 2: Comparison between experimentally determined 
amorphous phase tensile modulus ( •) and theoretical 
prediction: (-) Equation 2; (-) Equation 16. 
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orientation with an agreement between 2% and 30% This agreement may be 
considered quite good if one accounts for the procedure followed for the 
determination of the modulus which involved many assumptions and 
approximations. 

At this point one may also argue that the amorphous phase tensile 
modulus may follow a trend similar to the one followed by the shear modulus 
(see Equation 5). In other words one may postulate that it could be obtained 
through the expression: 

Em = 0.128 exp (2. 5257 fm) 
(16) 

The constants 0.128 and 2.5257 were obtained through the bounds on Em when 
fm = 0.0 and fm = 1.0, respectively. Figure 2 also shows that either Equation 
2 or 16 predicts Em within 30%, but up to an amorphous orientation function 
of 0.26, above which Equation 2 shows better agreement. Therefore, Equation 
2 is more suitable than Equation 16 in estimating reasonable values for the 
amorphous phase tensile modulus. 

CONCLUSION 

The subtlety of the micromorphological behavior of the amorphous phase 
in anisotropic polyethylene has been highlighted and the potential of the 
amorphous phase contribution to the behavior of anisotropic polyethylene has 
been emphasized. 

A simple algorithm for determining the amorphous orientation function 
of anisotropic polyethylene has been outlined. Procedures for determining 
numerical values for the mechanical and thermal expansion properties of the 
amorphous phase for isotropic and fully oriented polyethylene have been 
demonstrated. Mathematical expressions for determining the tensile and shear 
moduli, Poisson ratio and thermal strain of the amorphous phase at a given 
two-dimensional orientation level have been defined. Comparison between 
theoretically predicted and experimentally determined tensile modulus of the 
amorphous phase for anisotropic polyethylene shows a reasonable correlation, 
within 30%. 
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