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ABSTRACT

ELNOUR, MARIAM, A., Masters :

June : 2019, Master of Science in Electrical Engineering

Title: Fault Diagnosis of Sensor and Actuator Faults in Multi-Zone HVAC Systems

Supervisors of Thesis: Dr. Nader, M, Meskin and Dr. Mohammed, I, Al-Naemi.

Globally, the buildings sector accounts for 30% of the energy consumption and

more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and

Air Conditioning (HVAC) system is the most extensively operated component and it is

responsible alone for 40% of the final building energy usage. HVAC systems are used

to provide healthy and comfortable indoor conditions, and their main objective is to

maintain the thermal comfort of occupants with minimum energy usage.

HVAC systems include a considerable number of sensors, controlled actuators, and

other components. They are at risk of malfunctioning or failure resulting in reduced effi-

ciency, potential interference with the execution of supervision schemes, and equipment

deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve

their reliability, efficiency, and performance, and to provide preventive maintenance.

In this thesis work, two neural network-based methods are proposed for sensor and

actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised

sensor data validation and fault diagnosis method using an Auto-Associative Neural

Network (AANN) is developed. The method is based on the implementation of Non-

linear Principal Component Analysis (NPCA) using a Back-Propagation Neural Net-

work (BPNN) and it demonstrates notable capability in sensor fault and inaccuracy

correction, measurement noise reduction, missing sensor data replacement, and in both

single and multiple sensor faults diagnosis. In addition, a novel on-line supervised
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multi-model approach for actuator fault diagnosis using Convolutional Neural Net-

works (CNNs) is developed for single actuator faults. It is based a data transformation in

which the 1-dimensional data are configured into a 2-dimensional representation with-

out the use of advanced signal processing techniques. The CNN-based actuator fault

diagnosis approach demonstrates improved performance capability compared with the

commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and

standard Neural Networks).

The presented schemes are compared with other commonly used HVAC fault diag-

nosis methods for benchmarking and they are proven to be superior, effective, accurate,

and reliable. The proposed approaches can be applied to large-scale buildings with

additional zones.
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Chapter 1: INTRODUCTION

Globally, the buildings sector accounts for about 40% of the energy consumption

and more than 55% of the electricity demand [4]. Specifically, the Heating, Ventilation,

and Air Conditioning (HVAC) system is one of the major and extensively operated

components of buildings for providing healthy and comfortable indoor conditions and it

is responsible alone for 40% of the final building’s energy usage [5]. Its main objective

is to maintain the thermal comfort of occupants with minimum energy usage. This

energy demand continues to rise, driven by the improved access to energy, the greater

use of energy-consuming devices, and the rapid growth in the global building sector.

1.1 HVAC System Description

A typical HVAC system in buildings is composed of an air ventilation system, an Air

Handling Unit (AHU), and a coil fluid chiller/heater system connected with ducts, air

chambers, and pipes as illustrated in Fig.1.1. It is equipped with temperature, humidity,

pressure, and flow sensors for monitoring and control purposes as well as fans, pumps,

valves, dampers, and filters.

It is concerned with three main processes which are, heating and cooling related to

controlling the thermal energy within the control space, humidifying and dehumidifying

concerning the control of the amount of moisture in the air, and finally ventilation,

filtration, and circulation of air [6].
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Figure 1.1: Diagram of a typical HVAC system.

1.1.1 Air Ventilation System

The air ventilation system is responsible for the air exchange between the condi-

tioned space and the outdoor environment. Mainly, the ventilation system aims to dilute

the gaseous contaminants in the air and to maintain an acceptable indoor air quality in

terms of freshness. However, based on the ventilation rate, in some cases it is used for

maintaining the conditioned space temperature and humidity. For example, exchanging

hot indoor air with cooler air, and exhausting moist air for drier air from the outside

environment. Typically, in HVAC systems in commercial and institutional buildings

the ratio of ventilation air to indoor air varies from 15% to 25% of the outside air [6].

1.1.2 Air-Handling Unit

The air-handling unit is responsible for bringing the space air of the conditioned

space of interest to desired setpoints. Generally, its main components are the cooling

coil for the cooling and dehumidification of air, the heating coil for heating, the humidi-
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fier, and the air filter. All or some of those components may exist in AHUs based on the

building’s requirements and the type of application. AHUs can be classified into two

types in terms of the air conditioning method as constant air volume (CAV) and vari-

able air volume (VAV) as illustrated in Figures 1.2 and 1.3. In CAV, the air is supplied

to the conditioned space at a constant flow rate and variable temperature according to

conditioning requirement. However, an AHU with VAV supplies air of a constant tem-

perature that is sufficient to meet the maximum thermal load in the conditioned space

and a variable air flow rate controlled to meet the desired setpoints.

The air-handling unit is one of the most extensively operated equipment in HVAC

systems and hence it contributes to a significant portion of the total energy consumption

in buildings. It requires follow-up maintenance closely and it is subjected to malfunc-

tion and failure due to multiple factors such as poor system integration, equipment

failure, etc.

 

Supply Air 
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Space 2 

Variable air 
volume damper 

Figure 1.2: A VAV system for a two-zone HVAC system.
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Figure 1.3: A CAV system for a two-zone HVAC system.

1.1.3 Fluid Chiller/Heater System

The fluid chiller/heater system is dedicated to adjusting the fluid temperature before

supplying it to the AHU coils. Chiller plants account for a considerable portion of

the energy consumption of HVAC systems. That is, under faulty operation -due to

performance degradation or malfunction-, a significant amount of energy is wasted [7].

1.2 Objective of HVAC Systems

The HVAC system is desired to provide an acceptable indoor environment with

optimum cost and energy usage solutions. The objective of HVAC systems can be

described in terms of the following factors: air quality, thermal comfort, safety, and

system’s reliability and efficiency [6].

1.2.1 Air Quality

The air quality inside buildings is an important factor affecting the health of the

occupants. One of the primary objectives of the HVAC system is maintaining the min-

imum essential air quality measures by supplying clean, odor-free outdoor air to the

indoor spaces in the quantities necessary for breathing and dilution. In addition, smoke,
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excessive moisture, gases, and other airborne pollutants generated must be removed

from the indoor air.

1.2.2 Thermal Comfort

The thermal comfort can be defined as the measure of satisfaction of occupants with

the indoor environment. It is directly affecting their health and productivity. Thermal

comfort can be considered subjective due to some influencing factors such as the activ-

ity level, clothing, and individual preferences of occupants. However, there are main

factors directly related to the management of the HVAC system operation which are the

supply air temperature and speed, the radiant heat, and the humidity level. It is required

that the indoor air temperature and motion are closely and simultaneously controlled

as to maintain the desired and acceptable temperature overly and without causing draft

discomfort or a stuffy environment.

1.2.3 Safety

The assurance of occupants’ safety is essential. The HVAC system’s equipment

may be potential and serious hazard sources in case of failure or malfunction. For ex-

ample, a heating equipment can cause a potential fire hazard. Improper air distribution

in case of fire occurrence can result in spreading the fire in the building [8]. Moreover,

a malfunction in the HVAC system components and sensors can interfere in safety and

evacuation procedures, Hence, precautions and proper management of HVAC systems

are necessary to prevent such incidents and to employ the system in assisting safety

assurance operation.
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1.2.4 Reliability and Efficiency

The reliability and efficiency of the HVAC system operation are important charac-

teristics. The HVAC equipment is desired to operate healthily and normally on the long

run with minimal maintenance requirement as to lower the repair costs. Moreover, the

HVAC systems’ energy consumption must be optimum, and this is achieved by proper

HVAC system design based on the building’s type, size, etc., and by proper control and

monitoring of the system’s operation.

1.3 Thesis Motivation

As mentioned previously, HVAC systems are major components of buildings for

providing healthy, acceptable quality, and comfortable indoor conditions for occupants.

Their main aim is to provide a safe and comfortable indoor environment for occupants

while maintaining an efficient and reliable performance. However, they are subjected

to failure that would affect their functionality and performance. For example, faults in

HVAC systems can result in providing lower air quality, which would jeopardize the

safety and health of occupants.

In addition, they would reduce energy efficiency by the faulty and unnecessary in-

crease in energy usage. Moreover, faults can interfere in the execution of safety supervi-

sion scheme (e.g. building evacuation) and affect their effectiveness and correctness by

resulting in executing crucial tasks based on faulty decisions [9]. Nevertheless, faults

in the HVAC system cause components’ wear which results in shortening their lifetime

and increasing the maintenance cost.
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Hence, Fault Diagnosis (FD) in HVAC systems becomes very essential in order to

achieve the best system performance with minimum costs. It is important to develop

effective and robust FD techniques for HVAC systems in order to identify the fault

occurrence and source.

1.4 Fault Diagnosis Methods of HVAC Systems

Faults are defined as undesired deviations of the characteristic properties of the sys-

tem from the standard conditions. They can be classified as sensor faults, actuator faults,

and process faults (components or parameter faults). Faults may result in interruption

of control action of the process controller, substantial measurement error, changing the

dynamic properties of the system leading ultimately to degradation in the performance

of the system or its breakdown and damage [10]. Fault diagnosis methodologies can be

generally classified as: model-based methods, signal-based methods, knowledge-based

methods, and hybrid methods as categorized in [10].

1.4.1 Model-based Methods

In model-based methods, the knowledge of the process models is required, which

can be obtained using the physical principles or system’s parameters identification ap-

proaches. Fault diagnosis algorithms are developed based on those models to moni-

tor the consistency between the measured outputs of the real systems and the model-

predicted outputs. They can be defined as follows:

1) The observer-based approach, in which the actual data of the system’s states of

interest is compared with the estimated ones by the observer. The generated error resid-

uals are used to diagnose faults according to the detection thresholds. For deterministic

7



systems, Luenberger observers can be used while Kalman Filters (KFs) are employed

when the system is subjected to noise that can affect the fault diagnosis procedure [11].

2) Parity relation approach where the residuals are generated by checking the parity

between the estimated and the actual system measurements of the concerned outputs.

3) Parameter estimation using system identification methods (e.g., least square error,

etc.) such that it is assumed that the faults are reflected on the parameters of the system.

The fault diagnosis depends on the online estimation of the parameters which are then

compared with the nominal ones under fault-free system operation.

1.4.2 Knowledge-based Methods

They require a considerable amount of historical data of the concerned system on

which artificial intelligence techniques are applied to extract knowledge -quantitatively

or qualitatively- about the system. The behavior of the actual system is compared

against the knowledge-based model to produce the fault diagnosis decision [12]. They

are defined as the following:

1) Expert system-based methods: They are rule-based approaches that are built

based on human expertise. The evaluation is performed on the online monitored data

based on the deduced rules. Even though they are easy to develop and use once the rules

are at available, they are difficult to generalize and expand to variants of the system, e.g.

in terms of type, size, etc.

2) Data-driven methods, which can be classified based on their analysis approach as

statistical or non-statistical. The common statistical analysis used are Principal Com-

ponent Analysis (PCA), Partial Least Squares (PLS), Independent Component Analysis

(ICA), Support Vector Machine (SVM), and clustering analysis. On the other hand, the

8



non-statistical analysis-based data-driven fault diagnosis algorithms are Neural Net-

works (NNs) and fuzzy logic.

The data-driven FD approaches can be developed in supervised-learning, and unsupervised-

learning manners. In the supervised-learning fault diagnosis methods, the knowledge

of both the faulty and fault-free system data is required to build the model while in the

unsupervised-learning, the knowledge is extracted from the unlabeled historical data of

the system.

1.4.3 Signal-based Methods

Signal-based fault diagnosis methods work under the assumption that the faults can

be linked to the measured signals features and patterns. Signals analysis such as fre-

quency and spectral analysis are employed provided that the faults are reflected on the

spectral features of the signals. In addition, signals measurements such as energy, cur-

rent, etc. can be used as certain faults indicators.

The difference between the signal-based methods and data-driven methods is that

the latter is based on analyzing an amount of historical data to deduce useful information

about the behavior of the system of interest. However, the signals-based approaches do

not require large amount of data but rather utilize the real-time signal measurements

and employ signal processing techniques.

1.4.4 Hybrid Methods

In the hybrid method, a combination of their previously discussed methods is de-

veloped to make use of the distinctive advantages and strengths and to compensate for

their limitations. Examples of hybrid methods are the use of parameter estimation with

SVM, frequency analysis with PCA, Kalman filter with PCA, etc.
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1.4.5 Characteristics of Fault Diagnosis Methods

There are a number of important features that are desired in the fault diagnosis

methods which are the response time, efficiency, reliability, isolability, robustness, and

low computation and modeling requirements [10]. Quick fault diagnosis is desired to

prevent escalating the impact of the fault on the system components and to maintain the

efficiency and reliability of the system. Moreover, the diagnostic method should be able

to identify the location of the faults as well as to be robust to measurement noise and

modeling uncertainty to avoid false fault alarms. The modeling and computational re-

quirements of the fault diagnosis strategy are required to be minimal for high feasibility

and ease of implementation of the method on real-life systems. In addition, high scala-

bility of the fault diagnosis method is preferred in order to easily adapt it for variants of

the system.

1.5 Literature Review on Fault Diagnosis in HVAC Systems

Fault diagnosis of HVAC systems is essential to provide preventive maintenance

and to maintain the system’s reliability and efficiency. Given the literature, most of the

FD methods in HVAC systems are studied at the sub-system level (i.e., AHU, chiller

system, etc.). The state-of-the-art diagnosis approaches used for the HVAC systems

found in the literature are summarized in Fig.1.4.
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Figure 1.4: Summary of the fault diagnosis methods used for HVAC systems.

1.5.1 Model-based Methods

Model-based methods are used in developing fault diagnosis algorithms for HVAC

system components, such as AHUs, chiller plants, etc. as summarized in Table 1.1.

Authors in [13] and [14] present an unknown residual generation observer-based fault

diagnosis algorithm for stuck dampers faults in VAV boxes in AHUs. The FD method

is validated using MATLAB/Simulink on a 4-zone HVAC system. In [15], a nonlinear

joint state-parameter observer-based method for damper position estimation in VAV

boxes is proposed. It is implemented for stuck damper fault diagnosis such that the fault

is reflected on the ratio of the air flow to each zone provided that a constant nominal

flow rate supplied by the supply air fan. The method is tested using MATLAB on a

simple two-zone HVAC system.

In [16], a model-based FD approach is proposed employing two state observers to

perform fault detection and fault isolation. The first observer is comprised of discrete-

time on-line approximator (OLAD) and a robust term while the other one includes the

models of faults. The method is tested using simulation and the type of faults considered

are degradation in cooling coil performance represented by an increase in the supply air
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temperature, and leakage from conditioned space (or insulation degradation) emulated

by the change in the zone air temperature.

In [17] and [18], a model-based fault diagnostic approach is presented for valve

actuator faults in discharge air temperature (DAT) system using a combination of state

and parameter estimation. In [18], a dual Extended Kalman Filter (EKF) is used while

in [17], a joint Unscented Kalman Filter (UKF) is used for actuator faults and both

are compatible with the nonlinearity in the HVAC system model. The actuator fault

is modeled as a multiplicative fault and the FD methods are validated using MAT-

LAB/Simulink.

In [19], a novel model-based on-line robust fault diagnostic approach is proposed

based on Unscented Kalman Filtering and back-smoothing algorithm for typical faults

in the chiller plants. The types of faults considered are process faults represented by

reduced efficiency of components such as compressor which might result in excessive

energy consumption and degrades its performance, and valve actuator faults resulting in

reduced air flow rate. The FD strategy is tested and validated using simulation tools. In

[20] and [21], an interactive multi-model augmented FD approach based on unscented

Kalman Filter is developed for valve actuator faults and the fault modes generated by

the possible perturbations in HVAC systems.

A model-based fault diagnostic algorithm is developed in [22] and [9] for sensor

faults and in [23] for actuator faults in complex multi-zone HVAC systems on a dis-

tributed framework. Each subsystem is equipped with a dedicated local sensor as a

fault diagnosis (LSFD) agent. The distributed sensor fault detection is conducted us-

ing robust analytical redundancy relations of estimation-based residuals and adaptive

thresholds. Both sensor and actuator faults are examined for constant bias or offset
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faults. The method is validated using simulation for faults in the temperature sensors

and water valves.

The automated strategy proposed in [24] and [25] utilizes a Total Variation (TV)

filter with an enhanced Particle Filter (PF) for faults detection in heat exchangers. The

TV filter is used for transient occurrence detection and the Local Search Particle Filter

(LSPF) is used for degradation tracking. The types of faults evaluated in the paper are

condenser fouling, refrigerant leakage, non-condensable, and reduced water flow rate.

The validation of the algorithm is carried out using simulation tools and experimental

chiller faults data for different severity level of the four types of the fault.

Table 1.1: Model-based FD methods developed for HVAC systems.

Ref. Fault type Approach

[22], [9] Sensor - Overall system Observer

[23] Sensor and actuator - Overall system Observer

[16] Process - AHU Observer

[20], [21] Actuator - DAT system UKF

[17] Actuator - DAT system Joint UKF

[18] Actuator - DAT system Dual EKF

[14], [13] Actuator - VAV boxes Observer

[15] Actuator - VAV boxes Parameter estimation

[24], [25] Process and actuator - Heat exchangers TVF, LSPF, and KF

[19] Process and actuator - Chiller system UKF and BSA
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1.5.2 Signal-based Methods

There are a few signal-based fault diagnosis methods for the HVAC system as sum-

marized in Table 1.2. In [26], an electrical measurement-based approach is presented

for fault detection of airflow blockage faults in AHUs and estimation of insufficient

airflow employing induction machine diagnostic work. While in [27], a signal-based

FD method is proposed for airflow blockage and unbalanced load of fan faults in the

AHU based on frequency spectrum analysis. In addition, a fault detection strategy is

presented in [28] for valves in AHUs employing frequency and spectral analysis as well.

Table 1.2: Signal-based FD methods developed for HVAC systems.

Ref. Fault type Approach

[27] Sensor and process - AHU Freq. spectrum analysis

[28] Actuator - AHU Freq. and spectral analysis

[26] Sensor and process - AHU Signal processing and analysis

1.5.3 Data-driven Methods

The majority of the fault diagnosis approaches proposed for the HVAC systems are

data-driven given the high complexity of the system as well as the fact that modern

buildings are equipped with building management and control systems (BMS) where

records of the HVAC system data can be obtained and used in the development of the

diagnostic strategies. The different data-driven methods used for HVAC system fault

diagnosis that are found in the literature are summarized in Table 1.3.

In [29], a sensor FD algorithm for the AHU is discussed employing a Machine

Learning technique systematically based on analyzing the system’s behavior and com-
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paring it against faulty conditions described by a set of behavioral patterns. Common

faults are considered which are stuck damper/valve, coil fouling, and damper leakage.

A novel fault diagnostic architecture for variable refrigerant flow (VRF) in AHUs is pro-

posed in [30] based on Bayesian Belief Network (BBN) employing expert rule-based

technique. The type of evaluated faults are refrigerant under-change and overcharge.

The diagnosis method is tested using a practical VRF system under different cooling

modes and operation conditions.

In [31], an ICA-BPNN-based fault diagnostic method is presented for refrigerant

charge faults in the VRF systems combining Independent Component Analysis (ICA)

and Back-Propagation Neural Network (BPNN) methods. The ICA is used for fault de-

tection and the BPNN is employed to develop the fault diagnosis model. A data-driven

fault diagnostic strategy for refrigerant charge amount (RCA) faults in the VRF systems

is proposed in [32] by combining SVM mRMR-based feature selection and Wavelet De-

noising (WD) algorithm. In addition, an enhanced Back-Propagation Neural Network

(BPNN). While in [33], a fault diagnosis strategy is proposed for refrigerant charge

amount faults -overcharge or undercharge- in the VRF systems utilizing PCA and dual

ANN model.

In [34], an improved Decision Tree (DT)-based diagnostic approach is proposed

for the VRF system. It combines a data-driven model and a virtual sensor-based fault

indicator for faults detection. In [35], a fault diagnosis strategy is presented based on

PCA and pattern matching using two factors for characterization of the similarity degree

between the historical data and real-time data. While in [36] a FD method is proposed

by integrating D-matrices and PCA, and in [37] an enhanced and novel sensor fault

diagnosis strategy is presented using the Satizky-Golay (SG) and the PCA methods for
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the VRF system, namely SG-PCA method. The SG algorithm is used for smoothing

the data based on the least-squares polynomial approximation and the PCA model is

trained for fault diagnosis using the smoothed data. In [38], an improved PCA-based

with Joint Angle Analysis (JAA) approach is proposed for sensor faults diagnosis in the

VAV system considering both fixed bias and drifting faults.

A novel HVAC fan machinery fault diagnosis approach is developed in [39] and [40]

by combining Kernel Principal Component Analysis (KPCA) and Least Square Support

Vector Machine (LSSVM). In [41], an unsupervised diagnostic strategy is presented

employing cluster analysis for AHU sensor fault detection assuming that the faulty data

is spatially and temporally separated from the normal data. The recorded history data

of the system is pre-processed using PCA for dimension reduction. The clustering

algorithm ordering points to identify the clustering structure (OPTICS) is used for data

separation and type identification. The sensor faults are modeled as constant offset

faults with different severity levels and the FD method is validated using TRNSYS

simulation tool. In [42], a dual Neural Network (NN) strategy is proposed for AHU

sensor faults detection in which the basic and auxiliary neural networks are developed

then combined through allocating the weighting factors of the two neural networks

using PCA. Two types of sensor faults are examined which are positive/negative fixed

offset and drifting bias in addition to the case of complete sensor failure and a stuck

water valve actuator fault. The FD method is validated using TRNSYS simulation

tool. While in [43], a robust fault diagnosis method is developed by combining neural

networks and subtractive clustering analysis for the same fault types as in [42]. The

dual neural networks are used for fault detection and the subtractive clustering analysis

is employed for fault diagnosis through adaptive classification of the faults’ sources.
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In [44], a FD method is presented employing SVM for common faults in the variable

air volume conditioning (VAVC) systems in the HVAC system. The evaluated sensor

and actuator faults are stuck chilled water valve, stuck VAV box damper fixed bias

temperature sensor, and stuck recirculation damper. The FD strategy is tested using

MATLAB/Simulink simulation model. While in [45], a novel fault diagnostic approach

is developed based on the combination of Gaussian Process (GP) and SVM algorithms

for AHUs. The GP algorithm is used to provide a probabilistic model to estimate the

AHUs measurements as a function the external variables; time, occupancy, and the

ambient temperature. Prediction error and variance are computed then its ratio is used

in the SVM algorithm to develop the data-driven model that can be used to detect the

faults. It is tested using TRNSYS simulation tool for a 46-zone building.

In [46], a self-adaptive sensor FD approach for an AHU is presented. It consists of

two FD models, one for the AHU control loop including two Back-Propagation Neu-

ral Networks (BPNNs), and the other model is developed using both wavelet analysis

method - for measurement data processing - and Elman neural network for sensor fault

identification. The considered sensor faults are fixed bias, drifting bias, and complete

sensor failure and the proposed FD strategy is validated using simulation. In [47] and

[48], a dual FD approach is presented for VAV boxes in the AHU employing both ANN

and fuzzy logic. The latter is utilized for fault detection, and the ANN is used for fault

identification. The typical faults in AHU are examined which are damper fault, coil

water valve error, sensor offset fault, and the fan fault. The validation of the FD method

is carried out by simulating a multi-zone system in MATLAB/Simulink.

In addition, an automated FD strategy for sensors failure in the AHU is proposed

in [49] employing Radius Basis Function (RBF) network and a combination of Genetic
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Algorithm (GA) and pseudo-inverse matrix algorithm for Gaussian function parameters

selection. A Deep Bayesian Networks (DBNs)-based approach is proposed in [50] and

[51] for the diagnosis of common faults in AHUs. It uses the diagnostic information

about the HVAC system in an information fusion way utilizing fault patterns recorded

from multiple identical systems. A semi-supervised fault diagnostic algorithm is devel-

oped in [52] and [53] based on PCA statistical model along with a reconstruction-based

approach. The PCA model is used for identifying healthy and faulty operation, and the

reconstruction-based contribution approach is used for variables isolation, and decision

tables for fault diagnosis.

In [54], a FD strategy is presented for chiller systems using Bayesian network clas-

sifier with probabilistic boundary in order to eliminate the problem of high false alarm

rate. Typical faults in chiller systems are considered in the proposed FD method which

are, the reduced condenser water flow, the reduced evaporator water flow, the refrigerant

leakage, the refrigerant overcharge, the condenser fouling, the non-condensable gas in

the refrigerant, and the excess oil for different severity levels and operating conditions.

Additionally, a novel on-line FD method is developed in [55] based on Tree-structured

Fault Dependence Kernel (TFDK) method for fault classification for the same types of

faults as in [54]. While in [56], a two-stage fault diagnosis strategy is proposed adopting

Linear Discriminant Dnalysis (LDA) for data dimension reduction and a distance-based

classifier for the common faults in chiller systems.

In [57] and [58], the development of fault diagnosis approach is discussed using

neural networks and statistical tools for HVAC chillers. The GLRT is used for faults

detection while SVM, PCA, and PLS, are used for faults isolation. In addition, PLS

is employed for faults severity estimation and chiller system modeling. Moreover, in
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[57] an algorithm for optimal sensor suite selection for maximizing diagnosability is

proposed. The same fault diagnosis strategy developed in [49] is proposed and applied

for refrigeration units in the HVAC system in [59].

In [60], a fault diagnostic strategy using Artificial Immune Recognition System

(AIRS) is proposed based on history and simulation classified system data for 13 com-

mon faults in the HVAC system. The method is validated using TRNSYS for a 10-zone

building equipped with a full HVAC system. Where in [61], an online fault diagnosis

framework is proposed based on the lattice-valued fuzzy automate such that the sys-

tem is modeled as a fuzzy discrete event system. An online fault detection algorithm

is presented in [62] utilizing Machine Learning techniques and HMM model such that

the probabilistic relationships among variables of interest are analyzed and encoded. In

addition, a sensor fault detection algorithm is proposed in [63] in which a combination

of Probabilistic Principal Component Analysis (PPCA) models are used.

In [64], a FD approach is developed for HVAC systems employing Multi-Objective

Clustering Rapid Centroid Estimation (MOC-RCE) technique which combines Rapid

Centroid Optimization (RCE) algorithm and the Multi-Objective Clustering (MOC)

paradigm. A clustering-based distributed sensor fault diagnosis algorithm is presented

in [65] for Wireless Sensor Networks (WSN) monitoring HVAC systems, allowing the

diagnosis of multiple sensor faults under the presence of disturbances and uncertainties.

In addition, in [66] a fault detection method is presented employing spectral cluster-

ing and PCA for better root cause fault detection and reduction of false alarms. Authors

in [67] describe the application of a robust dual fault detection approach for HVAC sys-

tems under real-time working conditions using online SVM classifier combined with an

ANN model. A data-driven FD method is developed in [68] combining BBN and rule-
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based analysis for fault diagnosis in AHUs. The types of faults examined are process

faults such as fouling, control signal error, sensor bias faults, and actuator faults, such

as a stuck valve, stuck damper, etc.

In terms of the knowledge-based methods, an automated expert rule-based FD method

is described in [69] for common faults in VAV boxes using mass and energy balance

equations of various subsystems of the AHU. In addition, authors in [70] developed

a novel semantic knowledge-based fault detection approach utilizing physical system

knowledge encoded in a semantic graph to identify potential causes of faults.
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Table 1.3: Data-driven FD methods developed for HVAC systems.

Ref. Fault type Approach

[45] Sensor and process - AHU SVM

[71] Process - VRF BPNN and ANN

[33] Process - VRF PCA and ANN

[42] Sensor and actuator - AHU NN and PCA

[43] Sensor and actuator - AHU NN and subtractive clustering

[46] Sensor - AHU BPNN and NN

[38] Sensor - VAV boxes PCA and JAA

[54] Process - Chiller system Bayesian network

[55] Process - Chiller system Tree-structured TFDK method

[35]
Sensor, process, and actuator -

AHU
PCA and pattern matching

[41] Sensor - AHU PCA and clustering analysis

[29] Process and actuator - AHU Bayesian network

[57], [58] Process - Chiller system PCA, NN, SVM, PLC, GLRT

[52] Process - Chiller system PCA

[53] Process - Chiller system PCA and RBC

[39], [40] Process - AHU KPCA and LSSVM

[70] Process and actuator - AHU Expert-rule

[66] Sensor and process - AHU PCA and spectral clustering
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Ref. Fault type Approach

[44]
Sensor and Actuator - VAV

boxes
SVM

[64] Process and actuator - AHU MOC-REC clustering

[49] Sensor and process - AHU GA and RBF methods

[59] Process - Refrigeration unit GA and RBF methods

[47], [48]
Sensor, process and actuator -

VAV boxes
ANN and Fuzzy logic

[67] Process -AHU SVM and ANN

[61]
Sensor, process, and actuator -

Overall system
Fuzzy logic

[36]
Sensor, process, and actuator -

AHU
PCA and D-matrices

[62]
Sensor, process, and actuator -

AHU

DBN, HMM, and clustering

analysis

[50], [51]
Sensor, process, and actuator -

AHU
Bayesian networks

[37] Sensor - VRF SG-PCA method

[56] Process - chiller system LDC and distance classifier

[30] Process - VRF BBN

[31] Process - VRF ICA and BPNN

[32] Process - VRF SVM and WD
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Ref. Fault type Approach

[63] Sensor - Overall system Parity relation and PCA

[34] Process - VRF Decision tree and VR-FI-based

[65] Sensor - Overall system Distributed clustering-based

[68]
Sensor, process, and actuator -

AHU
BBN and rule-based analysis

1.5.4 Hybrid Methods

Several applications of hybrid fault diagnosis strategies for HVAC systems com-

bining model-based and data-driven methods are proposed by researchers. Table 1.4

summaries the hybrid FD methods used for HVAC systems in the literature. In [72],

SVM is applied to the model parameters that are found recursively by an autoregressive

time series model with exogenous variables (ARX). The types of faults considered in

the paper are actuator faults and process faults which are a stuck exhaust air damper,

a stuck speed return fan, complete failure of return fan, an unstable cooling coil valve

control, a stuck outside air damper (fully open or fully closed), a stuck cooling coil

valve (partially open, or fully open or fully closed ), outside air damper leak, and duct

leak.

A hybrid FD strategy is proposed in [73] for cooling coil faults using Unscented

Kalman Filter and Statistical Process Control (SPC). The types of faults tested are pro-

cess faults due to fouling and accumulation of dust particles. The diagnosis method is

evaluated using simulation tools. Similar to [73] but on the system-level, UKF and SPC

are used in [74] for robust fault detection with potentials for large-scale implementation.
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In [75], a novel hybrid FD technique in the AHU is proposed considering fault

propagation impacts among components. The fault diagnostic strategy combines both

filtering technique - Kalman filter and Unscented Particle Filter (UPF)-, and Hidden

Markov Model (HMM) which is a statistical model representing the relationships be-

tween hidden states and observations. Statistical Process Control (SPC) is employed for

process monitoring and control. Sixteen typical types of faults occurring in AHUs are

considered including process and actuator faults which are, a stuck exhaust air damper

(closed/open), a stuck outside air damper (closed/leakage), cooling coil tube fouling,

dust on cooling coil fins, a stuck water valve (closed/open), duct leakage at different

parts of the system (before/after supply fan), complete fans failure, and reduced fan ef-

ficiency. The FD method is validated using a simple two-zone HVAC model simulated

using MATLAB/Simulink.

In [76], a FD strategy is proposed for the AHU and multiple VAV boxes. The

developed algorithm utilizes dynamic HMMs, UPF, and SPC for fault identification in

the cooling coil, fans, and VAV boxes. The difference between [75] and [76] is that

the former emphasis is on fault propagation impact while in [76], the proposed strategy

highlights diagnosing faults of many VAV boxes with minimum computational effort

and the algorithm used for sensor faults detection.

In [77], a robust FD strategy is presented for multiple faults in AHU by using a

rule-based and residual-based Exponentially Weighted Moving Average (EWMA) con-

trol chart method. EWMA is used for fault detection and the expert rule-based method

is used for simultaneous multiple faults isolation in the VAV boxes. The types of faults

considered are pump fault, cooling coil fouling, cooling coil valve leaking, a stuck cool-

ing coil valve, cooling coil valve controller failure, filter failure, fan failure, temperature
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sensor fault, pressure sensor fault, and incorrect chilled water temperature settings. It

is validated using operational data of a 36-office building that is fully equipped with an

automated energy management and control system.

In [78], a hybrid approach is proposed for on-line fault detection in the chiller plants.

It is based on Particle Filter (PF), joint nonlinear Bayesian-based estimation, and kernel-

based partial least square method. Moreover, a hybrid fault diagnostic approach is

proposed in [79] combining EKF with coupled Hidden Markov Model (CHMM) in the

chiller plants. The typical fault is taken into consideration which is the pipe fouling and

the leakage. The fault diagnostic method is tested using EnergyPlus simulation tool for

a simple two-zone building equipped with a full HVAC system.

In [80], a hybrid fault diagnostic technique is proposed in which the interdependen-

cies among the different HVAC subsystems is considered and the algorithm can easily

be adapted to dynamical operational conditions and different building configurations.

The proposed system-level FD approach utilizes knowledge about the HVAC system’s

modules interdependency, the energy and mass conservation laws, and the historical

data of the system in developing the diagnostic model.

In [81], a combined system-level and sensor fault FD strategy is proposed for the

HVAC systems comprising of two schemes. A system-level fault diagnosing scheme

performance indices (PIs) are introduced to determine the performance status of each

system as faulty or healthy. The other scheme is for bias sensor fault diagnosis using

PCA. Similarly, a hybrid system-level fault diagnostic approach is proposed in [82] for

the low delta-T syndrome in the AHU and heat exchanger due to performance degra-

dation in complex HVAC systems. The HVAC system measurement data are processed

online to generate the performance indices and the reference models are developed
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offline using the regression model which are used in determining the benchmarks of

the PIs. Adaptive residuals are calculated using the t-statistic approach to identify the

healthy conditions of the performance indices. Additionally, in [83] a fault diagnosis

method is proposed for low delta-T syndrome resulted from the cooling coil fouling in

heat exchangers. The method uses defined performance indices and adaptive thresholds

in order to improve the prediction uncertainty of the reference models. The proposed

method is validated using simulation tool.

A novel fault diagnosis strategy is developed in [84] based on parameter estimation

utilizing a recursive least-squares-based algorithm to detect faults in the HVAC system

operation. A time-varying ARX/ARMAX model is formulated based on the paramet-

ric model found from the recursive identification for the types of fault studied. The

algorithm is tested for the common fault type occurring in different components of the

HVAC system using simulation tools.

In [85], a fault detection and isolation architecture for the VAV boxes is developed

based on an integrated statistical and linear model-based framework. A statistical model

is developed employing PCA and joint angle analysis for determining benchmarks and

a linear model-based framework is designed for FDI of multiple actuator and multiple

sensor faults. Additionally, the algorithm includes a safe parking strategy for energy

savings purposes. A cross-level FD technique is proposed in [86] for complex HVAC

systems. It is based on energy performance monitoring of the HVAC system units, and

temporal and spatial partition. Energy utilization is observed in groups and at different

levels over well-defined time periods and consequently suitable thresholds are defined

for the purpose of fault detection and identification. PCA is used to identify the corre-

lations between system variables.
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In [87], a hybrid FD method is proposed combining a rule-based classifier with

signal-based CUSUM control chart for sensor faults, process faults, and actuator faults

in VAV boxes. In [88], a novel FD strategy is presented based on exponentially weighted

moving average charts and Shewhart charts that are compared to a breakout detection

algorithm to diagnose faults in the HVAC system. In addition, the method is tested

using simulation tools and artificial faults are injected and used for validation of the

statistical techniques used.
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Table 1.4: Hybrid FD methods developed for HVAC systems.

Ref. Fault type Approach

[84] Process - Overall system RLS and parameter estimation

[80] Process and actuator - AHU
Bayesian network and model-based

method

[72] Process and actuator - AHU ARX model and SVM

[75] Process and actuator - AHU KF,UPF, HMM, and SPC

[76] Process and actuator - AHU UPF, HMM, and SPC

[74], [89] Sensor and process - Overall system UKF and SPC

[73] Process - AHU UKF and SPC

[79] Process - Chiller system EKF and CHMM

[78] Process - Chiller system
PF, parameter estimation, and

KPLS

[77]
Sensor, process, and actuator -

AHU

(EWMA) control chart method and

expert rule-based method

[81]
Sensor, process and actuator - Over-

all system
PCA and performance indices

[82], [83] Process - AHU SPC and parameter estimation

[85] Sensor and actuator - VAV boxes PCA, JAA, KF

[86] Process - Overall system Signal-based and PCA

[87]
Sensor, process, and actuator - VAV

boxes

Rule-based classifier with CUSUM

control chart

[88] Process - AHU EWMA and Shewhart charts
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By reviewing the previous works on fault diagnosis in HVAC systems, limited re-

search works cover sensor and actuator faults diagnosis and the matter of sensor data

validation and reconciliation is not investigated thoroughly. The focus of the majority

of the previous works is on the process faults occurring in the chiller system specifi-

cally. This is justified given the impact of the chiller system-related faults on the HVAC

system performance and efficiency. Nevertheless, we think that further research in sen-

sor and actuator faults diagnosis is indispensable for the following reasons. The sensors

measurements are crucial for the HVAC system operation (i.e. the closed-loop control,

the execution of supervision scheme, etc.) and hence the sensors data must be reliable

and fault-free. In addition, the actuator faults can alter the HVAC system in terms of

maintaining occupants comfort as a result of failing to fulfill the thermal load require-

ment, system maintenance (i.e. ducts damage or leak due to increased pressure due to

damper blockage), and potentially the energy consumption.

Most of the model-based approaches found in the literature are developed for sen-

sor and actuator fault diagnosis. They can diagnose unknown faults utilizing limited

knowledge about the system (i.e. the mathematical model), but they require an accu-

rate, detailed, and explicit model depicting the system’s operation. Hence, the perfor-

mance of the fault diagnostic algorithm depends on the model’s accuracy. This limits

the scalability and adaptability of the diagnosis methods when considering larger and

variants buildings. On the other hand, even though the signal-based HVAC fault diag-

nosis approach does not require the system mathematical model, it is concerned with

the major characteristics of the output signals for diagnosis with less attention to system

dynamics resulting in potential degradation of the diagnostic approach performance in

the presence of unknown disturbances.
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On the other hand, the rule-based FD method requires the expert knowledge and

it may perform poorly under undefined conditions by the set of the diagnosis rules.

Moreover, data-driven HVAC fault diagnosis methods are commonly used as shown in

the previous sections. Their main advantage is that the system’s model is not required.

Hence, they better suit applications where systems models are unavailable, complicated,

or challenging to derive such as complex HVAC systems but their performance is tied to

the amount and quality of the training data used. More specifically, the use of Machine

Learning algorithms such as PCA, SVM, neural networks, etc. in developing HVAC

fault diagnosis approaches is evolving. In addition, the newly emerging field of deep

learning demonstrates notable capabilities in pattern recognition and health monitoring.

It has not yet been applied for HVAC system fault diagnosis, but it has a wide range of

similar applications with promising performance. That is, the learning-based methods

are characterized by the following features: scalability, reliability, high performance

accuracy, and low false alarms rate which are the desired characteristics in the HVAC

fault diagnosis system. They can be developed by making use of historical data from

the building management system.

1.6 Thesis Objectives

Researchers have been investigating various solutions for fault diagnosis in the

HVAC system as demonstrated by the literature survey. However, the improvements

are still not keeping up with the growing sector and the increasing global demand for

energy. The main objective of this work is to develop an effective fault diagnosis method

as to improve the efficiency and reliability of the HVAC system that can be applied to

variants of the systems and making use of the availability of system historical data from
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the BMS.

This is tackled by proposing two data-driven fault diagnosis methodologies for sen-

sor and actuator faults. Firstly, a sensor data validation and fault diagnosis strategy is

developed given that sensors measurements are crucial in the closed-loop control oper-

ation of the HVAC system. It aims to promote the HVAC system operation becoming

invulnerable under sensor faults and degradation. In addition, a novel and robust CNN-

based actuator fault diagnosis is developed to reliably diagnose dampers and valves

faults in the HVAC system with high accuracy.

1.7 Thesis Contribution

The contribution of this thesis work can be summarized as follows:

• Two data-driven fault diagnosis strategies are developed for HVAC system sen-

sor and actuator fault diagnosis that do not require the knowledge of the system

mathematical model and hence avoiding the complications that can arise due to

modeling approximation and uncertainties. The methods are developed utiliz-

ing the building’s historical data that can be obtained from the modern building

management systems.

• A semi-supervised on-line sensor fault diagnosis method for HVAC systems is

proposed using an Auto-Associative Neural Network (AANN) for both single

and multiple faults utilizing only the healthy sensors data. Due to the network

structure, the method is capable of sensor data validation in terms of replacing

missing sensor measurements with the validated data, correcting inaccurate or

faulty data, and filtering out measurement noise.
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• The proposed AANN-based sensor data validation and fault diagnosis technique

serves as an effective method to validate sensor measurements for the closed-

loop control of the HVAC system to maintain its reliable performance. It can be

applied for large-scale buildings with additional zones and it is expected that the

performance will be improved with the increase in the HVAC system size due to

a higher correlation between the inputs. The proposed AANN-based approach is

suitable for applications where sensors measurements are broadly steady over the

operation period which is the case with HVAC systems.

• A novel supervised on-line actuator fault diagnosis for HVAC systems using 2D

Convolutional Neural Networks (CNNs) is proposed based on a data transfor-

mation to obtain the 2D representation of the raw 1D measurements data of the

HVAC system variables without advanced data pre-processing requirement. The

CNN-based actuator fault diagnosis method demonstrates an improved perfor-

mance when compared with the commonly used methods and it addresses the

limitations of the past works in terms of the method’s accuracy, reliability, and

precision.

1.8 Thesis Organization

The remainder of this thesis report is organized as follows. In Chapter 2, the de-

tails of the building and the HVAC system under this study are presented along with

the description of the simulator design using TRNSYS in Sections 2.1 and 2.2 respec-

tively. The simulator details are demonstrated in Section 2.2.1 and simulation results

are presented in Sections 2.2.2 and 2.2.3 for the normal operation and in case of actuator

faults. In addition, in Chapter 3 the proposed sensor data validation and fault diagnosis
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approach using the Auto-Associative Neural Network is described. An overview of the

theory of Back-Propagation Neural Networks in provided in Section 3.1 and in Section

3.2, the theory of the Auto-Associative Neural Network is presented in addition to the

details of the network training procedure and the performance evaluation metrics used.

Section 3.3 presents the evaluation results and discussion of the sensor data valida-

tion method while the performance of the proposed approach in sensor fault diagnosis

is demonstrated in Section 3.4 and a comparison between the proposed AANN-based

scheme and a PCA-based method is presented in Section 3.5. A summary is presented

in Section 3.6.

In Chapter 4, a Convolutional Neural Network-based fault diagnosis scheme is de-

veloped for actuator faults in HVAC systems. Section 4.1 presents the theory of the

Convolutional Neural Networks and in Section 4.2 the training specification, proce-

dures, and performance metrics are described. The details of the proposed diagnosis

framework are explained in Section 4.3 and the evaluation results of the developed

scheme are demonstrated in Section 4.4. In addition, a comparison between the convo-

lutional neural network-based approach and other commonly used methods for HVAC

systems fault diagnosis is conducted is Section 4.5. A summary is presented in Section

4.6. Finally, Chapter 5 provides a summary of the final conclusions of this thesis work

presented in this report in addition to future work.
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Chapter 2: HVAC System Description and Simulation

This chapter presents the details of the system under this study which is a 3-zone

office building equipped with a simple HVAC system for the cooling application. The

detailed description of the building is presented in Section 2.1. As discussed in Section

2.2, the HVAC system simulation is carried out using TRNSYS. The simulator details

are demonstrated in Section 2.2.1 and the simulation results are presented in Section

2.2.2. In addition, the actuator fault emulation method is presented in Section 2.2.3 and

a demonstration of actuator faults results is provided.

2.1 Building Description

The building considered for this work is a one-floor office building presented in [1].

It is assumed to be located in Doha city in Qatar and operating from 6 AM to 6 PM

during weekdays (Sunday to Thursday). It is composed of three zones with a total floor

area of 200 m2 as shown in Fig.2.1. Zones 1 and 3 are of a volume of 240 m3 and

a floor area of 80 m2 each and the first one includes a meeting room and a reception

room while the latter has four identical office rooms. The main hall is considered as

a separate zone with a volume of 120 m3 and a floor area of 40 m2. The zoning of

the building is based on the thermal load requirement of the adjacent rooms. That is,

the rooms that have approximately the same cooling requirement are considered to be

within a distinct zone. In the simulator, each room has a separate temperature sensor

and the temperature of each zone is the average of the rooms’ temperatures in that zone.

In addition, the building’s structure and geometry, occupancy, internal equipment, and

lighting are considered in the simulator design with the details presented in Table 2.1

and Table 2.2.
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Figure 2.1: Sketch of the simulated 3-zone building.

Table 2.1: Characteristics of the building wall materials [1].

Component Layer Thickness(cm)

Thermal

conductivity

(kJ/h/m/K)

Density (kg/m3)

Thermal

capacity

(kJ/kg/K)(kJ/h/m/K)

U-value

(W/m2/K)

Exterior wall Mortar 2 4.152 2000 0.84 5.338

Hollow brick 20 0.75 664 0.74 0.200

Cement plaster 2 4.152 1700 1 5.26

Ground Stone 20 6.12 2095 1 3.476

Concrete 12 7.2 2450 1 4.348

Cement screed 7 3.6 1700 1 4.167

Tiles 1 4.68 2300 0.84 5.686

Roof Mortar 2 4.152 2000 0.84 5.338

Concrete 14 7.2 2450 1 5.650

Cement screed 3 3.6 1700 1 5.000

Interior wall Mortar 2 4.152 2000 0.84 5.338

Hollow brick 7 0.705 938 0.741 1.897

Mortar 2 4.152 2000 0.84 5.338
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Table 2.2: Internal heat gain sources.

Room Number of occupants Occupation time Details

Meeting room 4 Weekdays: 8AM-9AM Person: Seated, very light work, 120 W

Lights: 5 W/m2

Reception room 1 Weekdays: 6AM-6PM Person: Seated, light work, typing, 150 W

Computer: 140 W

Lights: 5 W/m2

Main hall 4 Weekdays: 6AM-6PM Person: Standing, light work, 120 W

Lights: 5 W/m2

Office room 1 Weekdays: 6AM-6PM Person: Seated, light work, typing, 150 W

Computer: 140 W

Lights: 5 W/m2

2.2 HVAC System Simulation

The system is simulated using Transient System Simulation Tool (TRNSYS) which

is a graphical software environment that allows the simulation of transient systems be-

havior through energy and mass balance equations [90]. The simulation tool is used

to estimate actual dynamics of the HVAC system components while taking into con-

sideration the building geometry and structure, internal loads, weather conditions, and

ventilation rate. TRNSYS has been widely used for HVAC systems simulation for re-

search and development purposes as in [41–43, 45, 60, 81] and it is found to be a reliable

tool to simulate the system operation.

The main variables of the system are as follows, the zones temperatures Tz1, Tz2,

and Tz3, the chilled water tank temperature Tt, the AHU supply air temperature Tao, the

return water temperature from the cooling coil to water tank Two, the ambient tempera-

ture Tamb, the zones VAV boxes control signals U1, U2 and U3, and the water tank valve

control signal U4.
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2.2.1 Simulator Design

The building is equipped with a simple HVAC system for cooling application in

which only the temperature at each zone is controlled using proportional integral deriva-

tive (PID) controllers. The zones are supplied from the AHU with cold air of constant

temperature of 13 ◦C and a variable flow rate controlled by the VAV box terminals. The

water chiller and the cooling coil are connected via the chilled water tank. The water

tank temperature is controlled at 11 ◦C via a water valve regulating the flow of chilled

water from the chiller to the tank.

In the simulation software, the components of the HVAC system are simulated as

shown in Figure 2.2. The cold output air of the AHU is supplied through supply air

ducts and a supply air fan to the zones ducts with the VAV boxes terminals. The zones

temperature controllers modulate the position of the air dampers according to the ther-

mal load of the zones and the variation in weather conditions to achieve the desired

setpoints. The zones return air is fed back to the AHU through the return air ducts using

the return fan. The exhaust air dampers (EA), outside air (OA) dampers, and return air

(RA) dampers are operated simultaneously as to control the fraction of the recirculated

air and the ventilation air in order to maintain the indoor air quality.
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Figure 2.2: HVAC system simulation using TRNSYS software.

2.2.1.1 VAV Boxes

The VAV boxes are modeled as variable speed fans as shown in Fig.2.3. The output

of the supply air fan is fed to the plenum and the plenum air proportion are determined

based on the control signals emulating the amount of the VAV openings.

Figure 2.3: Simulation block of the VAV boxes terminals.
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2.2.1.2 PID Controllers

As shown in Fig.2.4, three PID controllers are used to control the three zones tem-

peratures based on the specified setpoints. Table 2.3 presents the PID parameters used

in the simulation. As per specified by the developers of TRNSYS, there are special con-

siderations associated with the PID controller model [91]. Unlike most of TRNSYS’s

controller components, this PID controller model may be used in heating, cooling, and

combined heating and cooling applications based on the setting of the proportional

gain parameter. A negative proportional gain must be used if the controller is used

for cooling-only or combined heating and cooling applications. For instance, given that

the zone temperature is the controlled variable and the flow rate of the fan is the mod-

ulated parameter, the flow rate should increase when the tracking error (the difference

between the setpoint and the controlled variable) decreases meaning that more cooling

should be provided when the temperature rises above the setpoint. Hence, the setting

of the controller should be a negative gain constant and the minimum and maximum

control values of the control signal should be set to 0 and 1 that is proportional to the

maximum flow rate value.
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Figure 2.4: Simulation block of the zones temperature controllers.

Table 2.3: Zones temperature PID controllers parameters used in the simulator.

Gain constant Integral time (hours) Derivative time (hours)

-0.3 1.5 0.001

2.2.1.3 Chiller System and AHU

Figure 2.5 presents the chiller system and the AHU simulation block. The chiller

has a capacity of 300 kW and a coefficient of performance (COP) of 2. The temperature

of the chiller outlet water is 7 ◦C. The amount of water flowing to the chilled water tank

is controlled by a variable speed pump simulating the water valve to regulate the tank

temperature at the desired setpoint. The tank temperature PID controller specification

is presented in Table 2.4. A constant speed pump is used to maintain the water flow rate

through the cooling coil at 3 kg/s. The cooling coil model in TRNSYS has an inherent

outlet air temperature controller such that the desired value can be set among the other

model parameters.
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Figure 2.5: Simulation block of the chiller system and AHU.

Table 2.4: Tank temperature PID controller parameters used in the simulator.

Gain constant Integral time (hours) Derivative time (hours)

-0.5 1 0.001

2.2.2 Simulation Results

The controlled variables of the system are the zones temperatures upon the set-

points. The zones setpoints are ranging between 18 - 26 ◦C based on the cooling load

requirement which depends on the operation’s time and day such that it is low in the

daytime during working days and it is set at a higher value at night and during week-

ends. As mentioned previously, the AHU output air temperature is constant at 13 ◦C and

the water tank temperature is controlled at 11 ◦C by modulating the control signal of

the chiller pump. Figures 2.6 and 2.7 demonstrate the simulation results of the normal

system operation for one working day in August in which the three zones temperatures

are controlled at 22 ◦C, 20 ◦C, and 20 ◦C at daytime, and at 26 ◦C, 24 ◦C, and 25 ◦C

during the night respectively. The zones temperatures are well controlled according to
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their setpoints with an average settling time of 40 minutes. At night, the control signals

are at their minimum values because the cooling load is low and they peak at 6 AM at

which the cooling load requirement increases before the zones temperatures are stabi-

lized at the desired values. That is, when the temperature setpoint is high, the VAV air

damper becomes fully closed (i.e. almost zero control signal) and vice versa.

Figure 2.6: System simulation results of the zones temperatures and the VAV boxes

control signals under normal operation.

Figure 2.7: System simulation results of the tank, AHU output air, and coil return

water temperatures and the valve control signal under normal operation.
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2.2.3 Actuator Fault Emulation

An actuator is a component responsible for moving or controlling a mechanism or

system such as a valve, a damper, etc. As shown in Fig.2.8, the controller determines

the required control input u (t ) based on the real-time measurement of the state x (t )

and the desired setpoint xd to achieve the output y (t ) from the damper or the valve.

The control input u(t ) is received by the actuator which actuates the damper or valve

opening accordingly.

 
y(t) Damper 

or  
Valve 

Actuator 
u(t) 

Controller 
x(t) 

xd 

up(t) 

Figure 2.8: Block diagram of a healthy actuation system.

A fault in the actuator results in wrong positioning of the damper or the valve as shown

in Fig.2.9 provided that up(t ) is the damper actuating signal under normal operation,

up(t ) is the faulty damper actuating signal, and f (t ) is the amount of fault introduced

to the actuating signal.

 

y(t) Damper 
or  

Valve 
Actuator 

u(t) 
Controller 

x(t) 

xd 
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f(t) 

Figure 2.9: Block diagram of an actuation system subjected to actuator fault.

Let the time at which the fault occurs be tf, then the stuck fault in the air damper (or

water valve) actuator can be expressed as:

up(t ) = up(tf), for t ≥ tf. (2.1)
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In terms of simulating the actuator fault, assuming that the valve has linear opening

characteristics, the relation between the flow rate and the damper position (or valve

opening) can be assumed to be linear [92] as presented in Fig.2.10.
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Figure 2.10: The relation between the flow rate percentage and the percentage of

damper position (or valve opening).

Moreover, the relation between the control input u(t ) and the damper position (or valve

opening) can be represented by a linear relation as in equation (2.2) given the specifica-

tion provided by the manufacturer on the magnitude of the control signal as:

u(t ) = A
Qd(t )

Qrated(t )
, (2.2)

where A is the amplitude of the control signal, Qd(t ) is the desired flow rate, and

Qrated(t ) is the rated flow rate.

Hence, the actuator faults are emulated by modifying the VAV damper (or the valve)

opening value. That is, in the normal system operation the VAV damper (or valve)

opening corresponds to its control signal. Under a stuck actuator fault, the VAV damper

(or valve) opening freezes at the control signal value at the instant of the fault occur-

rence. Two fault scenarios are considered as illustrated in Figures 2.11 to 2.14. The
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variables V AV1, V AV2, V AV3, V LV E1 represent the four actuators’ openings. The first

one shown in Figures 2.11 and 2.12 is a low impact fault occurring in the VAV 1 damper

that is stuck at 10% opening position during the night operation at 12 AM. It can be ob-

served that the system is unable to control zone 1 temperature at the desired setpoint and

the effect of the fault increases during the daytime in which the cooling load is higher.

The control signal U1 is at its maximum value but the damper opening is stuck in the

same position since the fault occurred (12 AM). The second actuator fault case demon-

strated in Figures 2.13 and 2.14 is the stuck water valve at a fully closed position at the

end of the night operation (a little before 6AM). This fault is of high severity level such

that it impacts all of the system’s variables. It is observed that the zones temperatures,

AHU output air temperature, coil return water temperature, and water tank temperature

are diverging from their normal values and they follow the ambient temperature. On the

other hand, the control signals are all at their maximum values to attempt mitigating the

wrongful behavior of the system.

Figure 2.11: System simulation results of the zones temperatures and the VAV boxes

control signals under fault in VAV 1 damper.
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Figure 2.12: System simulation results of the tank, AHU output air, and coil return

water temperatures and the valve control signal under fault in VAV 1 damper.

Figure 2.13: System simulation results of the zones temperatures and the VAV boxes

control signals under fault in the water valve.

Figure 2.14: System simulation results of the tank, AHU output air, and coil return

water temperatures and the valve control signal under fault water valve.
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Chapter 3: Sensor Data Validation and Fault Diagnosis using

AANN

Sensors measurements are the fundamental inputs of fault diagnosis methods and

their reliability is crucial for the closed-loop control of the HVAC systems. The perfor-

mance of the HVAC control system can be perturbed due to sensor faults or degradation.

Hence, sensor data validation and fault diagnosis is a key preliminary step prior to the

closed-loop control scheme in which contaminated data are identified and replaced with

estimated reliable data.

There are several sensor fault diagnosis methods that have been proposed and ap-

plied for HVAC systems. They can be categorized mainly as model-based [9] and data-

driven [35–38, 41–51, 60, 63, 65, 81, 85] methods. As mentioned previously, model-

based FD methods need comprehensive mathematical modeling which can be costly,

time-consuming, computationally demanding, and inaccurate for complex HVAC sys-

tems. The FD method performance can be degraded due to modeling approximation

and uncertainties.

The main shortcoming of the aforementioned data-driven methods proposed in the

literature is that the availability of sufficient amount of faulty data is essential for sensor

fault identification and isolation as in [35, 38, 41–45, 47, 48, 60] which is generally

not available in the practical systems. While the methods that do not require the faulty

data [37, 63, 65, 81, 85] work under the assumption that the healthy and faulty data

are spatially and temporally separated which might not be valid in complex sensor fault

scenarios. In [46], even though only the data of the normal operation of the system is

required to develop the neural network-based sensor fault diagnosis approach, it is based

on a multi-model neural network to identify and isolate sensor faults which increases
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the computational requirement. Moreover, there is no highlight of the possibility of

using the methods for sensor data validation and correction.

This chapter presents a data-driven method for both sensor data validation and fault

diagnosis in HVAC systems using an Auto-Associative Neural Network (AANN) to

overcome the aforementioned shortcomings. The algorithm is based on applying the

theory of Back-Propagation Neural Networks along with nonlinear dimensionality re-

duction to construct an input-output mapping model in which the network inputs are the

sensors measurement data. Table 3.1 summaries the features of the sensor data valida-

tion and fault diagnosis methods found in the literature and our proposed AANN-based

approach.
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Table 3.1: Summary of the literature review in data-driven sensor fault diagnosis for

HVAC systems.

[#] Method Data source
Features

HDT FD FI MF MDR FC NF INC

[45] SVM Simulation (TRNSYS) X X

[93] SVDD Operational X X X

[94] ICA Operational X X X X

[63] Probabilistic PCA - X

[38] PCA and JAA Simulation X X X X

[35] PCA & pattern matching Experimental X X

[41] PCA & clustering analysis Simulation (TRNSYS) X X

[37] SG-PCA Operational X X X

[81] PCA Simulation (TRNSYS) X X X X

[95] PCA and AFT Simulation (Modelica) X X X

[96] PCA & clustering Operational X X X

[97] PCA - X X X X

[98] PCA Operational X X X

[46] BPNN & Elman NN Simulation X X X

[42] NNs Simulation (TRNSYS) X X

[43] NNs & clustering Simulation (TRNSYS) X X

[48] Fuzzy NN Simulation (Simulink) X X

[99] NN & fractal analysis Simulation X

- AANN (Proposed method) Simulation (TRNSYS) X X X X X X X X

HDT: Training with healthy

data only

FD: Fault detection

FI: Fault isolation

MF: Multiple faults

MDR: Missing data replace-

ment

FC: Fault correction

NF: Noise filtering

INC: Inaccuracy correction

The use of Auto-Associative Neural Networks for sensor data validation and fault

diagnosis is introduced for the first time in [100] and later on applied to different

complex systems [101–107], for measurement noise filtering, sensor fault diagnosis,

49



and sensor data validation and correction. In [101, 102], a reliable and enhanced on-

line AANN-based monitoring method is presented for simulated boiling water reactor

(BWR) component and in [104] an AANN is used for sensor data validation and for

multiple sensor and component faults diagnosis in gas turbine engines. A sensor fault

diagnosis and reconstruction method using AANN is presented [103] for the engine

control system. In the Bio-engineering field, AANN-based online fault detection in

Virginiamycin production process is proposed in [105] and an online fault diagnosis of

α-Amylase production process is presented in [106] using an Auto-Associative Neural

Network. In addition, AANN is used for industrial bioprocesses condition monitoring

in [107].

The chapter is organized as follows, in Section 3.1, an overview of the theory of

neural networks in presented. While in Section 3.2, the theory, mathematical principles

and training details of the Auto-Associative Neural Networks is described. The eval-

uation of the AANN-based data validation scheme is discussed in Section 3.3 and the

results are demonstrated. The sensor fault diagnosis strategy using the AANN is pre-

sented in Section 3.4 and the performance analysis of the proposed method is carried

out. A comparison between the AANN-based and PCA-based is conducted in Section

3.5. A summary of the chapter is presented in Section 3.6.
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3.1 Overview of Neural Networks

Layers of the neural network are composed of a number of nodes (or neurons) and

they have full pairwise connections with the adjacent ones. Those connection are rep-

resented by a set of parameters known as the weights W and biases b which are to

be adjusted through an iterative training procedure such that the network objective is

achieved.

For an input a[l−1] ∈ IRnl−1 to layer l , its activation a[l ] ∈ IRnl is computed as:

a[l ] = f
(
W[l ]a[l−1] +b[l ]

)
, (3.1)

where f is the activation function, nl−1 is the input a[l−1] dimension, nl is the activation

a[l ] dimension, W[l ] ∈ IRnl×nl−1 is the weights matrix of layer l , and b[l ] ∈ IRnl is the bias.

3.1.1 Activation Functions

Activation functions enable the network to learn and approximate complex func-

tional mappings between the inputs and output targets. For every node in the layer, a

transformation function is applied to the weighted sum vector x to produce the output

y . There are several types of activation functions and the most commonly used are:

Sigmoid (σ)

It is expressed as:

y =σ(x) = 1

1+exp(−x)
. (3.2)
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Hyperbolic tangent (Tanh)

The Hyperbolic tangent produces an output with values between -1 and 1 and is ex-

pressed as:

y = tanh(x) = 2

1+exp(−2x)
−1. (3.3)

3.2 Auto-Associative Neural Networks

Auto-Associative Neural Networks (AANNs) are Back-Propagation Neural Net-

works with the aim to capture the input-output model from known data samples [108].

The network is trained using the back-propagation algorithm to learn identity mapping

from the input to the output. That is, the weights and biases of the network units are

adjusted as to reproduce the input at the output. The architecture of an AANN is com-

posed of the input layer, three hidden layers known as mapping layer, bottleneck layer,

and de-mapping layer respectively, and the output layer as illustrated in Fig.3.1. The

activation functions must be non-linear in the mapping and the de-mapping layers to

improve the nonlinear dimensional mapping. However, linear or non-linear activation

functions can be used in the bottleneck and output layers [109].
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Figure 3.1: Diagram of AANN, xi ’s are the network inputs, yi ’s are the network

outputs, n is the number of inputs/outputs, k is the number of nodes in the

mapping/de-mapping layers, and f is the number of nodes in the bottleneck layer.

Both the input and the output layers have the same number of units corresponding

to the dimension of the input of interest. In the mapping layer, the input is nonlinearly

mapped to a higher dimensional space such that the data can be better separated than in

the original space which helps to perform better at the preceding layer. The bottleneck

layer aims to compress the input representation to the least possible dimension that

promotes eliminating any random variations in the data. That is, the number of units in

the bottleneck layer is desired to be as minimum as possible and less than the dimension

of the input. The objective of the last two layers together is to reconstruct the inputs

from the compressed representation obtained from the bottleneck layer and to bring the

reconstructed data to the original spatial dimension.
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3.2.1 Mathematical Description

The theory behind Auto-Associative Neural Networks can be described mathemat-

ically by two cascaded nonlinear vector transfer functions G = [G1,G2, . . . ,G f ]T and

H = [H1, H2, . . . , Hn]T where the first two layers represent the transfer vector func-

tion G:IRn → IR f - provided that f < n - in which the nth dimensional input X =

[x1, x2, . . . , xn]T is mapped to a lower dimensional space IR f as follows:

Ti =Gi (X), i = 1,2, . . . , f , (3.4)

where Ti is the output of the i th bottleneck unit and Gi is i th nonlinear factor defined

by the parameters (weights and biases) on the connection from the input X to the output

Ti . The output of the bottleneck layer T = [T1,T2, . . . ,T f ]T is then fed as the input to

the second transfer vector function H:IR f → IRn to produce the network output in the

original nth dimensional space as:

y j = H j (T), j = 1,2, . . . ,n, (3.5)

where y j is the output of the j th network output, and H j is j th nonlinear factor defined

by the parameters (weights and biases) on the connection from the bottleneck output T

to the output yi .

The process of dimensional mapping and de-mapping is described by equations

(3.4) and (3.5) representing the implementation of a nonlinear principal component

analysis (NLPCA) provided that the activation functions in the mapping and de-mapping

layers are nonlinear (e.g. Sigmoid, Tanh, etc.).
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3.2.2 Network Training and Performance Metrics

The AANN model is developed using MATLAB on data collected from the sim-

ulation model in TRNSYS for several modes of the HVAC system cooling operation.

The data set contains 3 months of the normal system operation data sampled every 1

min in the summer season from June to August with a total size of 144K samples. The

operating modes are day time and night time in both weekdays and weekends for dif-

ferent temperature setpoints of the zones (in the range of 18 - 26 ◦C). Normalization

is performed on the sensors data to have values between 0 and 1 and it is based on the

practical measurement range of the temperature sensor which is 10 - 40 ◦C. The training

set and the validation set are 85% and 15% of the total data set, respectively allocated

randomly.

The AANN has 11 inputs (n = 11) which are the normalized measurement vectors of

the 7 sensors, the three control signals of the zones VAV boxes, and the control signal of

the water valve. It is worth mentioning that we are interested in the data validation and

fault diagnosis of the 6 sensors measuring Tz1, Tz2, Tz3, Tt, Tao, and Two since they are

vital for the HVAC system operation and its closed-loop control. However, the ambient

temperature Tamb sensor data and the control signals U1 - U4 are used to enhance the

learning of the AANN given the existing correlation between the 11 variables which

promotes developing a proficient input-output mapping model. The cost function is the

mean-square-error described as:

J = 1

m ×n

n∑
i=1

m∑
j=1

(
x j

i − y j
i

)2
, (3.6)

where x j
i is the i th network input of the j th sample, y j

i is the i th network output of the
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j th sample, and m is the number of samples.

Different network architectures are built by varying the number of neurons in the

mapping/de-mapping layers and the bottleneck layer. Once the network is structured,

it is trained using the Adams backpropagation algorithm to optimize the cost function.

The training is carried out using a computer with 16 GB RAM and processor Intel(R)

Core(TM) i7-4510U CPU at 3 GHz speed. The network performance evaluation is

based on two metrics in addition to the cost function. The first metric is the network re-

construction accuracy (REC-ACC) which is measured by its ability to produce reliable

sensors data at the output -close to the expected healthy data- when faulty inputs are

applied. That is, the faulty data are generated as described in Section 3.2.3 using a bias

fault of 10 ◦C. The reconstruction accuracy is determined within 2% difference error

margin as:

REACC= 1

m ×n

n∑
i=1

m∑
j=1

Count if
(∣∣∣(y j

i

)
H
−

(
y j

i

)
F

∣∣∣< 0.02
)

, (3.7)

where
(

y j
i

)
H

is the healthy i th output of the network of the j th sample due to a healthy

input, and
(

y j
i

)
F

is the actual i th output of the network due to a faulty input of the same

sample.

The second evaluation metric is the reduced noise level (RNL) that is measured by

the noise removed from the input by the AANN as follows:

RNL=
(

1− σ2
O

σ2
I

)
×100, (3.8)

where σ2
O is the average noise variance of the output vector, and σ2

I is the average noise

variance of the input vector of the network over the test set.
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The network that achieves the best performance in terms of these metrics is selected.

Non-linear activation is used in the bottleneck layer, namely the sigmoid function which

is also used in the mapping and the de-mapping layers while the output layer’s activation

is linear. Table 3.2 presents a summary of the evaluation results for some structures

among all the evaluated network’s architectures (with Sigmoid activation in bottleneck

layer).

Table 3.2: Results of the performance analysis of different network’s architectures.

# Structure REC-ACC Cost RNL

1 11-18-3-18-11 54.10% 0.0052 85.42%

2 11-36-3-36-11 55.71% 0.0045 79.98%

3 11-48-3-48-11 65.10% 0.0049 76.67%

4 11-15-4-15-11 49.10% 0.0033 76.10%

5 11-42-4-42-11 52.21% 0.0029 79.26%

7 11-27-5-27-11 35.37% 0.0015 65.38%

8 11-48-5-48-11 33.44% 0.0014 65.20%

9 11-45-6-45-11 20.67% 0.0011 64.50%

10 11-30-7-30-11 14.32% 0.0002 58.08%

It is observed that mostly as the number of the neurons in the bottleneck layer in-

creases, the mean-square-error between the network input and output decreases mean-

ing that the network ability to produce outputs matching inputs increases and the cost

function value decreases. However, the network ability to filter out noise, and to recon-

struct healthy outputs reduces. That is, the bottleneck layer is desired to be as small

as possible in order to compress the input’s dimension to the minimum possible mak-
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ing the network useful for fault diagnosis and noise reduction. Otherwise, the network

would just learn the exact mapping of the input at the output as the case with network

structures 4 to 10. It is found that the best network architecture is Network 3 with the

structure 11-48-3-48-11 with reconstruction accuracy of 65.1% and average noise re-

moval of 76.1%. It consists of 11 neurons in the input and output layers, 48 neurons in

the mapping and de-mapping layers, and 3 neurons in the bottleneck layer.

3.2.3 Sensor Fault Models

The performance of the AANN in sensor fault detection and isolation is examined

for bias and drift faults with different severity levels. The sensor fault is injected using

the normal operation validation dataset as follows:

xf(t ) = xh(t )± fbias, (biased fault)

xf(t ) = xh(t )± fdriftt , (drift fault)

(3.9)

where xf(t ) are the faulty sensor data, xh(t ) are the healthy sensor data, fbias is the bias

fault magnitude, fdrift is the drift gain magnitude, and t is the time.

3.3 AANN-based Sensor Data Validation Approach

The proposed AANN-based scheme is capable of recovering the healthy data from a

faulty or inaccurate sensor since the network is trained to reproduce the healthy version

at the output and hence it can be used primarily in sensor error correction and miss-

ing sensors replacement. Additionally, the AANN helps in data noise reduction and

inaccuracy correction due to the data dimensionality compression implemented in the

bottleneck layer which serves in eliminating uncorrelated variation in the data such as
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measurement noise. The evaluation analysis of the applied data validation strategy is

presented in the following subsections.

3.3.1 Sensor Error Correction

The unreliable sensor data due to fault occurrence (bias fault or drift fault) are re-

placed by their corrected values utilizing the other valid sensors data. Nevertheless,

since the network variables are interrelated, a deviation is expected in the fault-free

sensors data at the output due to the occurred fault. The network performance is evalu-

ated to investigate the network capability in an effective sensor error correction due to

the fault and the robustness of the healthy sensors under sensor fault occurrence. The

evaluation metrics for the faulty sensor data correction and the healthy sensors data

deviation per data sample are as follows [104]:

Recovery Rate=
(
1− |Yo −Yf|

Yh

)
×100,

Deviation Rate=
( |Yo −Yf|

Yh

)
×100,

(3.10)

where Yo is the actual output of the AANN and Yh is the expected healthy output.

The results of the AANN capability in sensor fault correction are shown in Figures

3.2 to 3.4. These figures depict the average recovery rate of the faulty sensors data

and the average deviation rate of the other healthy ones for different bias faults in the

range of 1-30 ◦C over the test data set. The results show significant recovery rates for

the sensors in the realistic bias fault range of 1-10 ◦C with an average recovery rate of

around 93% on the faulty sensors while the deviation percentage in most of the healthy

sensors data is maintained below 7%.

The capability of the AANN in fault correction decays for extreme bias faults. The
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return water temperature sensor validated data Two is mostly sensitive to faults in the

other sensors which is apparent from the average deviation rate plots. The larger the

bias magnitude on the faulty sensor, the higher the deviation rate on Two data.

Figure 3.2: The average recovery rate and the average deviation rate for different bias

faults in sensor error correction performance of the AANN on Tz1 and Tz2 sensors data.

Figure 3.3: The average recovery rate and the average deviation rate for different bias

faults in sensor error correction performance of the AANN on Tz3 and Tt sensors data.
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Figure 3.4: The average recovery rate and the average deviation rate for different bias

faults in sensor error correction performance of the AANN on Tao and Two sensors

data.

3.3.2 Missing Sensor Replacement

Sensors functionality may be interrupted due to maintenance activities, complete

failure, etc. [100]. The AANN retains sufficient information making it possible to re-

place missing sensors readings with estimated values using the data of the available

sensors. This feature allows estimating the missing sensors data if they become un-

available and hence not interfere with other performance or safety-related processes

within the system that rely on the continuous availability of those sensors data. Figure

3.5 demonstrates the missing sensor data recovery for the six sensors in the scenario of

a single sensor complete failure at 12:00 PM. Tables 3.3 and 3.4 present the average

recovery rate of the missing sensor and the average percentage deviation in the avail-

able remaining sensors over the test dataset. It is found that the network is remarkably

capable of producing reliable data for the missing sensor measurement with an aver-

age recovery rate of 90% while the average deviation rate on the remaining sensors is
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around 4.5%.

Missing

Figure 3.5: The missing, the corrected, and the healthy sensors data of the AANN due

to a single complete sensor failure for each of the six sensors.

Table 3.3: Percentage of data recovery of the missing sensors.

Missing sensor Tz1 Tz2 Tz3 Tt Tao Two

Avg. Recovery 89.0% 94.2% 95.5% 97.4% 98.4% 88.2%
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Table 3.4: Average percentage of data deviation of the remaining available sensors.

Missing sensor Tz1 Tz2 Tz3 Tt Tao Two

Avg. deviation 5.00% 3.57% 3.94% 4.42% 3.92% 5.12%

3.3.3 Noise Filtering

Additionally, the AANN is found capable of filtering the measurement noise in

the sensors data. The performance of the network in measurement noise reduction is

noticeable as listed in Table 3.5 and illustrated in Fig.3.6 with an average of 92% noise

removal. The analysis is conducted under the assumption that the HVAC system units

-zones, AHU, water tank, etc.- are equipped with the same type of temperature sensor

which has a measurement range of 5-50 ◦C and accuracy of ±0.5◦C. The nominal noise

level is assumed to be 1% of the full range.

Table 3.5: Percentage of noise reduction in each sensor for the noise reduction

evaluation.

Sensor Tz1 Tz2 Tz3 Tt Tao Two

RNL 71.78% 65.74% 66.10% 92.57% 89.52% 32.61%
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Figure 3.6: The noisy and the filtered sensors data in noise reduction performance of

the AANN on the six sensors data.

3.3.4 Sensor Inaccuracy Correction

Sensors are subjected to loss of accuracy in which the absolute difference between

the sensor output and the actual value is increased. Maintaining sensors accuracy is im-

portant for a reliable and successful system operation. The sensor inaccuracy is modeled

by increasing the level of the noise in the sensors measurements to be 10% of the full

range [104]. The performance results of the network in sensors inaccuracy correction

are presented in Table 3.6 and are shown in Fig.3.7. It is clear that the network substan-

tially suppressed the random variations due to the loss of accuracy for the sensors by an

average of 94.5%.
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Table 3.6: Percentage of noise reduction in each sensor for sensor inaccuracy

correction evaluation.

Sensor Tz1 Tz2 Tz3 Tt Tao Two

RNL 89.78% 96.81% 95.79% 97.34% 98.06% 88.42%

Figure 3.7: Inaccurate and accurate sensors data in sensors inaccuracy correction

performance of the AANN on the six sensors data.
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Figure 3.8: Diagram of sensor fault diagnosis scheme using AANN given q is the

number of control signals and k is the number of sensors.

3.4 AANN-based Sensor Fault Diagnosis Approach

The Auto-Associative Neural Network can be used for sensor fault diagnosis based

on observing the difference between the input xi and the output yi of the network with

proper selection of the detection threshold εi as shown in Fig.3.8. Ideally, in fault-

free scenarios, the generated residuals ri are expected to be almost zero given that the

network is constructing the input at the output layer. However, practically that is not the

case since the network accuracy will never be 100%. Hence, it is a common practice

to assign a threshold εi which is a safe margin the network residuals must exceed to

indicate the fault occurrence as follows:

ri =
∣∣yi −xi

∣∣ (3.11)

The i th sensor fault indicator=


0, ifri < εi

1, ifri ≥ εi

, for i = 1, . . .k. (3.12)
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The detection threshold is closely tied to the diagnosis method characteristics which

are the detection time, sensitivity, reliability, robustness, and isolability. These aspects

need to be compromised when selecting the detection threshold. If the threshold value

is set low, quick and sensitive fault detection is achieved but FD method reliability,

robustness, and isolability may be degraded because false alarms rate will be increased

due to modeling approximation and noise degrading. If the threshold value is high, the

diagnosis algorithm will be robust to noise, but slow in fault detection, insensitive to

low impact faults, and unreliable since missed alarms rate will be increased.

The performance of the AANN in sensor fault diagnosis is examined for bias and

drift faults with different severity levels based on the selected detection threshold in

Table 3.7. The detectable and isolable bias range for each sensor is presented in Table

3.8. It is determined by injecting a single bias fault with different magnitudes and

assessing the True Positives Rate (TPR) for the faulty sensor indicating the percentage

of correctly detected faults to be 85% minimum, and by False Positives Rate (FPR) for

the remaining healthy sensors representing the percentage of the false alarms that is to

be maintained below 10%.

Table 3.7: Detection threshold selected for sensor fault diagnosis.

Sensor Tz1 Tz2 Tz3 Tt Tao Two

Threshold ε 0.06 0.06 0.06 0.05 0.05 0.1

The percentage of correctly identified faults increases as the severity of the fault

becomes higher as in Fig.3.9 while the average percentage of false alarms -triggered

due to the fault - on the remaining healthy sensors increases as shown in Fig.3.10. For

example, if sensor Tz1 is subjected to ±6◦C, around 98% of actual fault instances are
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detected and an average of 3% of time instances are falsely triggered alarms on the other

fault-free sensors due to the network output deviation caused by the fault.

The capability of the proposed sensor fault diagnosis approach in diagnosing the

sensor faults in the cooling coil output water temperature sensor is quite limited, unlike

the others. This is due to the fact that this variable Two fluctuates according to the time-

varying cooling load while the rest are generally steady over the air-conditioning period

and hence it is easier to diagnose such sensors faults when their readings deviate from

the normal values.

Table 3.8: Detectable and isolable bias fault for sensor fault detection and isolation.

Sensor Tz1 Tz2 Tz3 Tt Tao Two

Range (◦C) 3-7 2-7 3-7 3-10 3-10 3.5-4.5

Figure 3.9: The percentage of the true positive rate under single bias sensor fault with

different severity levels.
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Figure 3.10: The average percentage of the false positive rate of the healthy sensors

under single bias sensor fault with different severity levels.

As been demonstrated above, the sensitively of the diagnosis scheme is fairly ac-

ceptable with a detectable and isolable bias fault range of ± 5 to 15% of the full sensor

measurement range, an average TPR of 85% on the faulty sensors, and an average FPR

of 3% on the healthy sensors. Faults in Two sensor mainly causes extreme deviation in

Tz1 sensor output causing it’s residual to exceed the detection threshold. This results

in increased FPR on the fault-free sensor and consequently, the detectable and isolable

bias range on Two sensor is narrow.

The evaluation of the sensor diagnosis scheme is based on looking at a one-day

window assuming that the fault source will be eliminated within that time period. In

addition, the case studies presented in the following subsections are evaluated under

the presence of measurement noise with a variation level of 0.5% of the full sensor

measurement range. It is worth mentioning that the AANN-based sensor fault diagnosis

scheme is robust under low noise level operation such that the noise variance is below 1

◦C. However, the approach cannot be used in the presence of high measurement noise

because the difference between the noisy input and the filtered output can be interpreted

falsely as a fault incident.

69



3.4.1 Single Sensor Fault

Single bias and drift faults are examined on each of the six sensors and the proposed

method demonstrates an effective and reliable performance in diagnosing the sensor

faults. Examples are presented in Fig.3.11 to Fig.3.14. Figure 3.11 shows 0.6 ◦C/h drift

fault in sensor Tz1 at 2 PM. The fault is detected within 2 hours after the fault magnitude

exceeds the minimum detectable bias while the residuals of the healthy sensors are well

below their detection thresholds. In Fig.3.12, sensor Tz2 is subjected to a drift fault of

0.3 ◦C/h at 9 AM. The detection time is longer since the severity of the fault is lower.

The detection time for bias faults is immediate as illustrated in Fig.3.13 and Fig.3.14.

Figure 3.11: Single drift fault of 0.6◦C/h in Tz1 sensor. (a) Faulty sensor residual. (b)

and (c) Residuals of the fault-free sensors.

Figure 3.12: Single drift fault of 0.3◦C/h in Tz2 sensor. (a) Faulty sensor residual. (b)

and (c) Residuals of the fault-free sensors.

70



Figure 3.13: Single bias fault of 3◦C in Tz3 sensor. (a) Faulty sensor residual. (b) and

(c) Residuals of the fault-free sensors.

Figure 3.14: Single bias fault of 5◦C in Tt sensor. (a) Faulty sensor residual. (b) and

(c) Residuals of the fault-free sensors.
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3.4.2 Multiple Sensor Fault

The occurrence of multiple sensor faults is also investigated thoroughly by injecting

several sensor faults and observing the sensor residuals and the proposed approach is

found capable of diagnosing multiple sensor faults as long as the fault amount is within

the diagnosable range. For instance, Figure 3.15 shows 0.5 ◦C/h and 0.9 ◦C/h drift

faults in two sensors, Tz1 and Tt occurring at 9 AM and 1 PM respectively. The scenario

of two bias faults of 7 ◦C and 4 ◦C in Tz3 and Two sensors is shown in Fig.3.16. In

addition, Figure 3.17 presents two drift faults and one bias fault in Tao, Tz1, and Tt

occurring simultaneously.

As shown in these figures, the residuals of the faulty sensors exceed the detection

threshold while the others remain well below it. Unlike the majority of the previous

works in sensor fault diagnosis schemes, the AANN-based method is able to detect

and isolate multiple sensors faults whether they are interrelated (e.g., Two and Tz3 in

Fig.3.16) or not (e.g., Tao and Tz1 in Fig.3.17).

Figure 3.15: Multiple drift faults of 0.5 ◦C/h and 0.9 ◦C/h in Tz1 and Tt sensors. (a)

Faulty sensors residuals. (b) and (c) Residuals of the fault-free sensors.
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Figure 3.16: Multiple bias faults of 7 ◦C and 4 ◦C in Tz3 and Two sensors. (a) Faulty

sensors residuals. (b) Residuals of the fault-free sensors.

Figure 3.17: Multiple drift and bias faults of 0.5 ◦C/h, 0.7 ◦C/h, and 4 ◦C in Tao, Tz2,

and Tt sensors. (a) Faulty sensors residuals. (b) and (c) Residuals of the fault-free

sensors.

3.5 Comparison with PCA-based Method

The performance of the proposed AANN-based sensor data validation and fault

diagnosis scheme is compared with the PCA-based approach in [81]. The number of

chosen principal components is 3 with a cumulative variance contribution of 95%. In

terms of data validation, the PCA method performance in noise filtering and sensor

inaccuracy correction is insignificant. However, the approach is capable of replacing

missing sensor data with an average recovery rate of 77%.

For example, Fig.3.18 shows the recovery of Tz1 sensor data after it is lost at 12
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PM. The AANN-based method surpasses the PCA-based by 22% in missing sensor

data replacement. The efficiency of these two schemes in fault correction is evaluated

by injecting a sudden single 5◦C and 10◦C bias faults. It is found that the faulty data is

validated by an average recovery percentage of 97% and 95% using the AANN-based

approach and 93% and 86% via the PCA-based method for the 5 ◦C and 10 ◦C faults

respectively on the six sensors. The fault correction capability of the two methods

is approximately the same for low severity level faults but the AANN-based method

performance is better as the fault severity increases.

Missing

Figure 3.18: The missing, the healthy, and the corrected sensors data of the AANN and

PCA due to a single complete Tz1 sensor failure.

For the PCA-based sensor fault diagnosis algorithm, the threshold Qa is set at 95%

confidence interval and found to be 5.15. Tested on a 3◦C bias fault, the accuracy of the

PCA-based diagnosis method is lower with an average diagnosis accuracy of 59%. For

instance, Fig.3.19 presents a 0.5 ◦C/h drift fault on Tz2 occurring at 8 AM. The fault

is detected and isolated at 12:30 PM using the AANN provided that the residuals of

the remaining healthy sensors are maintained below the detection threshold as shown

in Fig.3.20. With the PCA model, the fault is detected at 12:30 PM as well but only

correctly isolated at 4 PM as shown from the Q-contribution plot in Fig.3.21. Table 3.9

presents a summary of the comparison between the two approaches.

74



Figure 3.19: (a) Output of AANN and PCA models due to a single drift fault of

0.5◦C/h in Tz2 sensor. (b) The AANN residual of the faulty sensor. (c) The Squared

Prediction Error (SPE) of the PCA output.

Figure 3.20: AANN-based method residuals of the fault-free sensors due to a single

drift fault of 0.5◦C/h in Tz2 sensor.

Figure 3.21: The Q-contribution plot of the PCA model due to a single drift fault of

0.5◦C/h in Tz2 sensor.

75



Table 3.9: Summary of the comparison between the performance of the AANN-based

and the PCA-based sensor data validation and fault diagnosis approaches.

Performance metric AANN PCA

Average diagnosis accuracy 80% 59%

Average fault correction
4 ◦C 97% 93%

10 ◦C 95% 86%

Average missing data recovery 94% 77%

3.6 Summary

This chapter presented an application of the Auto-Associative Neural Network in

sensor data validation and fault diagnosis for a 3-zone HVAC system. The method

was developed and tested using simulation data generated from TRNSYS. The AANN-

based solution has demonstrated effective performance in sensor data error correction,

data replacement of unavailable sensors, measurement noise reduction, as well as in

both single and multiple sensor faults diagnosis. The performance of the diagnostic

method was found very satisfactory with a detectable and isolable bias range of 5 - 15%

of the full measurement range.

This approach was compared with a PCA-based algorithm and the results showed

a notable improvement by 35% in diagnosis accuracy, 22% in missing data recovery,

and 10% in fault correction. Moreover, unlike the PCA-based approach, it was capable

of diagnosing multiple and simultaneous sensor faults, as well as sensor noise filtering

and inaccuracy correction.
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The proposed algorithm can be applied for large-scale buildings with additional

zones and it is expected that the performance will be improved with the increase in

the HVAC system size due to a higher correlation between the inputs. Its computa-

tional requirement can be compromised by exploiting parallelism and deploying a kind

of a multi-agent diagnosis scheme as the building size grows larger. In addition, this

method can be used as a pre-preliminary step to the HVAC closed-loop control system.

The AANN sensor data validation and fault diagnosis approach is suitable for applica-

tions where sensors measurements are broadly steady over the operation period which

is the case with HVAC systems. It is robust under low noise level and detection thresh-

old re-assignment must be carried out for higher measurement noise variance to avoid

misinterpreting the difference between the noisy input and the filtered output as a fault

occurrence.
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Chapter 4: Actuator Fault Diagnosis of HVAC System using CNNs

Researchers have been investigating and proposing various solutions for actuator

fault diagnosis given that actuators are mostly prone to faults resulting in thermal dis-

comfort and energy consumption inefficiency in buildings. As summarized in Table

4.1, different data-driven approaches such as SVM [44], PCA and pattern matching

[35], Bayesian Networks [51, 80, 110], neural networks [43, 48], and control chart and

rule-based [77] have been developed for HVAC actuator fault diagnosis. Development

in this field is still progressing but it is still not keeping up with the growing building

sector and the increasing global demand for energy. For instance, some developed ap-

proaches have limited performance capability for large-scale buildings [44] and others

do not address the fault isolation matter [35]. The limitation in the proposed approach

in [77] is its dependency on a set of expert rules while the other methods suffer from

limited diagnosis accuracy due to the relatively high rate of false alarms (or missed

alarms) [43, 48, 51, 80, 110].

This chapter presents a novel supervised on-line actuator fault diagnosis for HVAC

systems using 2D Convolutional Neural Networks. It aims to address the limitations

found in the previous works in terms of the diagnosis accuracy, and adaptability to

larger buildings by adopting the recently evolving topology of the Convolutional Neural

Networks.
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Table 4.1: Summary of HVAC system actuator fault diagnosis methods in the

literature.

Ref. Method Data source Fault Type

[44] SVM
Simulation (MAT-

LAB/Simulink)

Stuck

damper/valve

[35]
PCA and Pattern

Matching
Experimental Stuck damper

[51] Bayesian networks Experimental Stuck damper

[80] Bayesian networks Simulation Stuck valve

[110] Bayesian network Simulation
Stuck

damper/valve

[48] ANN and Fuzzy logic
Simulation (MAT-

LAB/Simulink)
Stuck valve

[43]
NNs and clustering

analysis
Simulation (TRNSYS) Stuck valve

[77]
Control chart and rule-

based
Operational Stuck valve

Convolutional Neural Networks (CNNs) are commonly used for computer vision

and image processing applications due to their computation efficiency, high perfor-

mance accuracy, and feature extraction and classification fused characteristic when

dealing with high-dimensional data [3]. In addition, they are used with 1D data for

natural language processing [111–113], biomedical engineering applications [62, 114–

128], and condition monitoring and fault diagnosis [129–152].

One-dimensional Convolutional Neural Network (1D CNN) has been used for bear-
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ing fault detection in [129–132], structural damage detection in [133–135], hydraulic

pump fault diagnosis in [136], gearbox condition monitoring in [137], and modular

multilevel converter (MMC) circuits fault diagnosis in [138]. 1D CNNs are effective

when dealing with relatively fast signals in which particular features or patterns can be

captured in short fixed-length segments.

In some research works, 2D CNNs are used with 1D signals where the raw data are

converted to a 2-dimensional configuration using various conversion approaches. For

instance, in [139–141] 2D CNN-based method is proposed for bearing fault diagnosis

using vibration images produced by signal amplitude to pixel intensity mapping while

[142] uses the actual images of the vibration signals segments as CNN inputs. Process

fault diagnosis frameworks are developed in [143, 144] in which time-series process

variables are configured into a matrix where the x-axis is time and the y-axis represents

different process variables.

Moreover, signals processing techniques are applied to the raw signals to obtain

their 2D representations as in [145] using Discrete Fourier Transform (DFT), in [146–

148] using time-frequency representation, in [149] using Continuous Wavelet Trans-

form Scalogram (CWTS), and in [150] using Spectral Energy Maps (SEMs) for bear-

ing and rotary machinery fault diagnosis. In [151], planetary gearbox fault diagnosis

method is presented using Discrete Wavelet Transform (DWT) on vibration signals and

in [152], a CNN-based stability monitoring system for power systems is developed us-

ing the heatmap representation of the measurements.

The limitations with the aforementioned CNN-based algorithms proposed in the lit-

erature are that they require advanced data preprocessing and/or a sequence of input

data to make the diagnosis decision. For slow signals such as temperature, the time
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frame window should be large enough for the network to learn to capture the fault oc-

currence which consequently leads to long detection time and increased computational

requirements.

The work presented in this chapter eliminates those drawbacks found in the FD

CNN-based approaches by proposing the use of 2D CNN with efficient and real-time

data transformation to obtain the 2D representation of the raw 1D measurements data

of the HVAC system variables without advanced data pre-processing requirement. The

proposed diagnosis scheme demonstrates improved performance overly when compared

with other commonly used methods.

This chapter is organized as follows. Section 4.1 presents the theory of the Convo-

lutional Neural Networks and in Section 4.2 the network training details and the evalu-

ation metrics are presented. The proposed CNN-based HVAC actuator fault diagnosis

approach is presented in Section 4.3. Firstly, in Section 4.3.1 the proposed 1D data

representation transformation is demonstrated and in Section 4.3.2 the evaluated CNN-

based fault diagnosis models are described. In Section 4.4, the results of the evaluated

models are presented while the comparison results between the actuator fault diagnosis

using CNN, ANN, and SVM are discussed in Section 4.5. A summary is presented in

Section 4.6.

4.1 Overview of Convolutional Neural Networks

The Convolutional Neural Network is a special type of Back-Propagation Neural

Networks with an input layer, hidden layers, and an output layer and it is character-

ized by its internal structure which contains the Convolution (Conv) layers, the pooling

layers, and the Fully Connected (FC) layers as shown in Fig.4.1. Similar to the stan-
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dard neural network, it is trained using the backpropagation algorithm to optimize a

cost function. However, CNN exploits spatially local correlation by enforcing a local

connectivity pattern between neurons of adjacent layers [3].
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Figure 4.1: Typical Convolutional Neural Network architecture.

4.1.1 Convolution Layer

The convolution layer is the core building block of the CNN where most of the

computation is carried out. Convolution denoted by the operator ‘∗ ’ is a mathematical

operation that uses both addition and multiplication and it is used during both forward

and backward pass during training. The convolution layer consists of a number of

convolution windows called filters or kernels that slide over the input preserving its

spatial structure to produce the feature map (output) as illustrated in Fig.4.2.
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convolution window

𝟒 × 𝟒
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0 0 0 0
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=

1 × 1 + 𝟓 × 0 + 𝟔 × −1 + 𝟏𝟎 × 1
+𝟐 × 0 + 𝟕 × 0 + 𝟏 × 0 + 𝟗 × 0
+ 𝟒 × −1 + 𝟎 × 0 + 𝟐 × 1 + 𝟕 × 0
+𝟗 × 1 + 𝟓 × 1 + 𝟕 × 1 + 𝟒 × 1 = 𝟐𝟖

(a) (b)

Figure 4.2: Convolution layer operation. (a) The sliding of the convolution window

(kernel) over the input to compute the output. (b) The convolution mathematical

operation (valid convolution).

Given the illustration in Fig.4.3, the layers activations (outputs) size is denoted by

n ×m with c number of feature maps. Let the i th feature mapping of the activations

in layer l be A[l ]
i ∈ IRnl×ml , the j th feature mapping of the activations of the preceding

layer are A[l−1]
j ∈ IRnl−1×ml−1 , the kernel is w [l ]

i j ∈ IR2, i.e, weights of the connection

between the i th feature mapping at the layer l −1 and the j th feature mapping at the

layer l , the bias is b[l ]
i ∈ IR, and the activation function is f , then [3]

A[l ]
i = f

(∑
j

w [l ]
i j ∗A[l−1]

j +b[l ]
i

)
. (4.1)

Conv
layer (l-1)

Conv
layer l

……

Figure 4.3: Illustration of outputs of the Convolutional Neural Network layers.
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Convolution layers are characterized by neurons’ local connectivity determined by

the kernel size, spatial arrangement which is how the filter slides over the input, and

parameter sharing [2].

There are a number of hyper-parameters in the convolution layer which are the ac-

tivation function, the size of kernel f ∈ IR2 which defines the field of view of the con-

volution, the number of filters F ∈ IR, i.e., the number of feature maps, the stride s ∈ IR

representing the size of the convolution step, i.e. if it is one, the kernel is moved by one

step in each direction, and the type of convolution which can be same or valid. In the

same convolution, zero-padding is performed on the input in order for the output to have

the same dimension as the input whereas a valid convolution is a type of convolution

operation that does not use any padding on the input.

4.1.2 Pooling Layer

The pooling layer which is also known as the sub-sampling layer aims to reduce the

spatial size of the convolution layer output in order to reduce the number of parameters

and the amount of computation. There are two commonly used types of pooling, which

are max pooling and average pooling as shown in Fig.4.4 and their fundamental prin-

ciple is merging similar local features into a single dominant one. That is, the pooling

layer transforms the representation h ∈ IRM×M to a pooled representation g ∈ IR
M
P ×M

P by

segmenting h into non-overlapping temporal regions rk ∈ IRP×P , for k = 1. . . ,
(M

P

)2 and

finding the maximum or the average of the regions as follows:

Max pooling:

g k
i = max

j∈rk

(
hk

j

)
, (4.2)
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Average pooling:

g k
i = 1

P 2

∑
j∈rk

hk
j , (4.3)

where for the kth region rk , hk
j is the j th element of the original representation and g k

i

is the i th element of the pooled representation computed for that region. The pooling

layer does not have any learnable parameters.

30 10 5 40

3 66 12 1

82 34 19 0

11 57 2 80

2 × 2
Max pooling

2 × 2
Average pooling

66 40

82 80

27 15

46 25

Figure 4.4: Max and average pooling operation with M = 4 and P = 2.

4.1.3 Fully Connected Layer

Nodes of the fully connected layer have full pairwise connections with the adjacent

layers. The number of neurons in the FC layer is a hyper-parameter to be set in addition

to the type of activation function. Multiple fully connected layers are usually placed

before the output layer for the purpose of feature classification. For an input a[l−1] ∈ IRn1

to layer l , its activation a[l ] ∈ IRn2 is computed as:

a[l ] = f
(
W[l ]a[l−1] +b[l ]

)
, (4.4)

where f is the activation function, W[l ] ∈ IRn2×n1 is the weights matrix of layer l , and

b[l ] ∈ IRn2 is the bias.
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FC layer takes 1D input and hence the output of the previous layers is flattened

into a one-dimensional array before feeding it to the FC layer as shown in Fig.4.5. Let

Q= [
qi j k

] ∈ IRw×v×c be the 3-dimensional output of the last convolutional layer where

w × v is size of the output, and c is the number of feature maps. Then, the flattening

produces the vector Qflat =
[
q111, q121, q131, . . . , qw vc

] ∈ IRN where N = w × v × c is the

number of elements of the output Q.

Flatten

Conv Layer
Output 

FC layers

Figure 4.5: Flattening convolution layer (and pooling layer) output before feeding it in

to the FC layers.

4.1.4 Output Layer

The output layer in a typical CNN is a fully connected layer with a number of

nodes equivalent to the number of classes and using a Softmax activation function. The

Softmax function is applied to the output of the fully connected layer z= [z1, z2, . . . , zk ]

to generate the output y = [
y1, y2, . . . , yk

]
corresponding to the probability of belonging

to each of the classes over the predicted output classes. The i th output yi is computed
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as:

yi = exp(zi )
k∑

j=1
exp(z j )

, i = 1, . . . ,k, (4.5)

where k is the number of classes, yi ∈ [0,1], and
k∑

j=1
y j = 1.

87



4.1.5 Activation Functions

As mentioned in the Chapter 3, Section 3.1.1, activation functions are used to pro-

mote the network learning capability. In addition to the activation functions described

in the previous chapter, the ReLU function is a commonly used with CNNs. It returns

0 if the input is negative and its mathematical form is:

y =max(0, x). (4.6)

Another version is the leaky ReLU such that for negative input values, it returns a

proportion of the input based on the scaling factor α and it expressed as:

y =max(αx, x), (4.7)

where α< 1.

4.2 Convolutional Neural Network Training

The training of CNN is a highly iterative process and it can be challenging due

to the several hyper-parameters involved. In addition, the choice of the optimization

algorithm is crucial which can be batch gradient decedent (GD), mini-batch gradient

descent, stochastic gradient descent with momentum (SGDM), adaptive moment esti-

mation (Adam), etc. For a k-class classification problem, given a training set {xi ,ti }m
i=1,

where m is the number of samples, xi ∈ IRn denotes the observation vector and ti ∈

{0,1}k is the class indicator vector with one-of-k encoding, i.e., for a class k, only the

kth element in the vector ti is 1 and all the other elements are 0, the cost function E to
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be optimized is the cross-entropy function given by [3]:

E =
m∑

i=1

k∑
j=1

ti j ln yi j , (4.8)

where ti j is the j th element of the target vector ti , and yi j is the j th element of the

prediction output vector yi ∈ IRk .

In addition to the hyper-parameters associated with the layers discussed in the pre-

vious section, there are ones related to the training procedures which are the learning

rate α, the mini-batch size, the number of epochs which is the number of full passes

through the training set during training, etc. One can always achieve better results by

hyper-parameter tuning. Moreover, other techniques can be applied to optimize the

training process and to avoid over-fitting such as batch normalization, regularization,

and dropout as described in the following subsections.

4.2.1 Batch Normalization

Batch Normalization (BN) aims to eliminate the internal covariate shift problem

given that the distribution of each layer’s inputs changes continuously during training.

It ensures that the range of the output of a layer is within a small interval before feeding

it to the subsequent layer. The normalization is performed with the running average

of the mean–variance statistics of each mini-batch. For instance, given the input to the

layer l , xi , the mean µB and variance σ2
B are calculated over the mini-batch and for each

input channel. Then, the normalized activations are calculated as:

x̂i = xi −µB√
σ2

B +ε
, (4.9)
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where ε is used to ensure numerical stability when the mini-batch variance is very small.

The final BN output is calculated as:

yi = γx̂i +β, (4.10)

where γ is the scale factor and β is the offset factor. BN allows the network to be

more stable. However, it usually slows down the training process and requires careful

initialization [153].

4.2.2 Regularization

Regularization aims to improve the generalization of the network to different data

and to solve the problem of over-fitting by limiting the magnitude of the network’s pa-

rameters. That is, over-fitting occurs when the weights of the neural network are trained

such that the network performs very well on the training dataset with poor generaliza-

tion on other data. Figure 4.6 demonstrates the cases of under-fitting and over-fitting

with respect to the error (cost) and the function order.

Figure 4.6: Under-fitting and over-fitting problems [2].

90



4.2.2.1 `p Regularization

Classical regularization techniques are `1 and `2 regularizations which work by

imposing a constraint on the weights Θ in the cost function as:

ER`1
= E +λ∑

i
Θi , (4.11)

ER`2
= E +λ∑

i
Θ2

i , (4.12)

where λ is the regularization factor (coefficient).

4.2.2.2 Dropout

Dropout prevents over-fitting by randomly turning off some neurons in the forward-

propagation pass during training at each iteration. It works by setting nodes outputs to

zero randomly with a probability p as shown in Fig.4.7.

1.5 Tricks for Better Learning 21

FIGURE 1.10

Comparison between a standard deep neural network and the same network with dropout
application. The circles with a cross symbol inside denote deactivated units.

e.g., 50%, in a network on each training iteration (Fig. 1.10B). This helps prevent
complex co-adaptations among units, i.e., undesirable dependence on the presence
of particular other units [24]. By preventing complex co-adaptations with dropout,
it naturally helps avoid overfitting, and thus makes the trained model better gener-
alized. The other noteworthy effect of dropout is to provide a way of combining
exponentially many different network architectures efficiently. The random and tem-
poral removal of units in training results in different network architectures, and thus
at each iteration, it can be thought to train different networks but their connection
weights are shared. In testing, all units in the network should be on, i.e., no dropout,
but the weights are halved to maintain the same output range.

1.5.3 BATCH NORMALIZATION
Ioffe and Szegedy [25] observed that the change in the distribution of network activa-
tions due to the change in network parameters during training, which they defined
as internal covariate shift, causes longer training time. To tackle this issue, they
introduced a batch normalization technique by performing normalization for each
mini-batch and backpropagating the gradients through the normalization parameters
(i.e., scale and shift). Specifically, for each unit in a layer l, their value is normalized
as follows:

â
(l)
k = a

(l)
k − E[a(l)

k ]√
Var[a(l)

k ]
(1.41)

where k denotes an index of units in the layer l. A pair of learnable parameters γ
(l)
k

and β
(l)
k are then introduced to scale and shift the normalized values to restore the

representation power of the network as follows:

y
(l)
k = γ

(l)
k x̂

(l)
k + β

(l)
k . (1.42)

  (a) Standard neural network                       (b) After applying  Dropout

Figure 4.7: Dropout operation [3].
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4.2.3 Performance Evaluation Metrics

The confusion matrix or the error matrix is typically used to evaluate the perfor-

mance of the CNN. It is a form of contingency table with two dimensions identified as

True and Predicted, and a set of classes in both dimensions as presented in Table 4.2.

The following performance metrics are derived from the confusion matrix [154].

Table 4.2: Table of confusion for 2-class problem.

Predicted

Positive Negative

Tr
ue

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

4.2.3.1 Accuracy and Error

Accuracy (ACC) is a measure of the closeness between the predicted result and the

true value while the error is the measure of deviation of the predicted value from the

true one. Accuracy is given as:

ACC = TP+TN

TP+TN+FP+FN
. (4.13)

4.2.3.2 Precision

It is also called the positive predictive value (PPV) which is a measure of the close-

ness of the set of predicted results and it is expressed as:

PPV = TP

TP+FP
. (4.14)
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4.2.3.3 Sensitivity

It is called true positive rate (TPR) or recall and is calculated by,

TPR = TP

TP+FN
. (4.15)

4.2.3.4 Specificity

It is also known as true negative rate (TNR) and is expressed as:

TNR = TN

TN+FP
. (4.16)

4.2.3.5 F1-Score

It is the harmonic average of the precision and recall, where it is at its best at a value

of 1 meaning perfect precision and recall and it is given as:

F1 = 2× PPV×TPR

PPV+TPR
. (4.17)

4.2.3.6 Matthews Correlation Coefficient (MCC)

It provides a balanced measure to evaluate the performance of binary classification

algorithms such that a value of 1 means perfect prediction and it is expressed as:

MCC = TP×TN−FP×FNp
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (4.18)
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4.2.4 k-Fold Cross Validation

This method is used to gain a sense of the network ability to generalize well on

different data especially when the amount of data is limited [155]. Firstly, the data set

is divided equally into k random subsets, also called folds. Then, the CNN is trained k

times and in each time one fold is used as the validation set and the remaining ones for

training as illustrated in Fig.4.8. The performance evaluation of the CNN is determined

by averaging the performance results of the k trained models.

Training 1
Validation 

set

Training set

Training 2
Validation 

set

Training 7
Validation 

set

..

..

..

..

..

..

Figure 4.8: 7-fold cross validation.

4.3 Proposed CNN-based Actuator Fault Diagnosis Framework

The framework of the proposed CNN-based diagnosis method as illustrated in Fig.4.9

consists of an off-line stage in which the CNN is trained using the historical building

data, and an on-line stage such that the real-time measurements of the system vari-

ables are acquired by the building management system (BMS) and used to determine

the diagnosis decision. Various network architectures and several diagnosis models are

proposed for actuator fault diagnosis using CNN as presented in the following subsec-

tions.
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Figure 4.9: The CNN-based HVAC system actuator fault diagnosis method framework.

4.3.1 Proposed 1D to 2D Data Conversion Technique

The variables of the system are time-series signals, i.e. temperature, control signals.

They need to be reformed before being used in the CNN-based diagnosis model because

the CNN input is 2-dimensional. The first step of the signal-to-matrix conversion is

the normalization of the temperature data to be ranging between 0 and 1. It is done

based on the practical measurement range of the temperature sensor of 10 - 40 ◦C.

The normalized data and the control signals are configured -with proper zero-padding -

into a 3D matrix from each data sample such that three different 2D configurations are

produced as illustrated in Fig.4.10.
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Figure 4.10: Reshaping the 11 system’s 1-dimensional data samples into 3D

configuration of size 3×4×3.

The arrangement of the system’s variables into the 3D matrix is another hyper-

parameter to be decided. That is, there are enormous possibilities of how the variables
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are configured into a 2D representation and it corresponds to the number of its permu-

tations. For example, for h different elements, the number of possible arrangements

corresponds to h!. This hyper-parameter can be managed by training the network sev-

eral times for different permutations generated randomly and then the arrangement that

promotes the network for the top performance is chosen.

4.3.2 Convolutional Neural Network Architectures

Networks can be designed shallow or deep based on the number of hidden layers,

and thin or wide depending on the kernel size which determines the extent of the local

interactions [153]. As presented in Fig.4.11, nine possible CNN architectures are de-

signed. For example, Structures 1-3 use different kernel sizes of 2×1, 2×2, and 2×3

respectively and have one convolution layer and two FC layers. Structures 4-7 are

deeper with one convolution layer and three FC layers in structures 4 and 5, and two

convolution layers and two FC layers in structures 6 and 7.
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Figure 4.11: Potential network architectures ranging from shallow and thin (left) to

deep and wide (right).
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4.3.3 CNN-based Actuator Fault Diagnosis Models

The CNN-based actuator fault diagnosis framework is aimed to identify the system

condition which has 5 possible classes that are healthy, faulty in actuator 1, faulty in

actuator 2, faulty in actuator 3, and faulty in actuator 4. The evaluated models are

presented in the following subsections.

4.3.3.1 Model-1

In this model shown in Fig.4.12, a multi-class CNN is trained to diagnose the sys-

tem state, whether it is fault-free, actuator 1 fault, actuator 2 fault, actuator 3 fault, or

actuator 4 fault.

Raw data
Data 

Pre-processing 

Multi-class 

CNN 

Figure 4.12: FD Model-1 using a multi-class CNN.

4.3.3.2 Model-2

The model shown in Fig.4.13 consists of two Convolutional Neural Networks in

a hierarchical framework in which a two-class CNN is trained to identify whether the

system is healthy or not and the other multi-class CNN is used to isolate the fault source;

actuator 1, actuator 2, actuator 3, or actuator 4.
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Figure 4.13: FD Model-2 consisting of CNN 1 to determine the system health state

and CNN 2 to isolate the fault source.

4.3.3.3 Model-3

It is a multi-model framework composed of 5 two-class CNNs as shown in Fig.4.14.

CNN 1 determines whether the system is fault-free or not. The remaining CNNs are

trained to diagnose each of the 4 faults independently.

yes

No

CNN 2

CNN 5

CNN 3

CNN 4

0/1

0/1

0/1

0/1

Raw data
Data 

Pre-processing 
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healthy?
CNN 1

Figure 4.14: FD Model-3 consisting of 5 two-class CNNs for each class of the system

state.
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4.3.3.4 Model-4

This model is very similar to Model-3 except that CNNs 2-4 share the same convo-

lution layer as presented in Fig.4.15 in an attempt to reduce the computational require-

ment. The convolution layer is pre-trained to learn the basic features and later on the

fully connected layers are trained for each network individually to diagnose each fault

type.
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Figure 4.15: FD Model-4 consisting of 5 two-class CNNs for each class of the system

state while the last 4 CNNs share the same convolution layer.

4.4 Results of the Proposed CNN-based Actuator FD Models

There are numerous CNNs that can be designed for each of the nine structures in

Fig.4.11 based on the hyper-parameter choices, i.e., activation function, number of con-

volution layer filters, number of FC layer units, BN, regularization, etc. Random hyper-

parameter search has demonstrated effective performance [156] and hence it is used in
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the design process of the CNNs for the evaluated models. Using MATLAB, the CNN

training algorithm used is Adam with piece-wise learning decay and the settings are

presented in Table 4.3. The training is carried out using a computer with 8 GB RAM

and processor Intel(R) Core(TM) i7-4510U CPU at 2.8 GHz speed. The CNN training

is conducted using 7-folds cross-validation and the average folds performance results

are demonstrated.

Table 4.3: The settings used for the CNN training.

Number of epochs Batch size Initial learning rate

5-15 256 0.05

The trained network is identified by the following: its structure i.e., structure 1,

2,..., or 9, and the dimension of the classification problem, i.e., Two-class, 4-class, or

5-class. For example, CNN-S8-5C-1 means its CNN number 1 of structure 8 for 5-

class classification problem. In addition, for two-class CNN, the classes are identified

as presented in Table 4.4.

Table 4.4: Labels of classes according to the system state.

System State Class Identification

Healthy Class A

Faulty at actuator 1 Class B

Faulty at actuator 2 Class C

Faulty at actuator 3 Class D

Faulty at actuator 4 Class E
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4.4.1 Dataset

The data used for Convolutional Neural Networks training and testing are collected

from the system simulator using TRNSYS. The total dataset size is 230k samples with

150k samples corresponding to the normal system operation and 20k samples of each of

the 4 types of the actuator fault. The types of actuators are 3 VAV box dampers and one

water valve. The data are collected at a sampling time of 1 min for 2 months duration

for the healthy system operation. The faults data are acquired for 13 days per fault type

for different fault scenarios which are stuck at fully closed (FC) position, stuck at fully

open (FO) position, and stuck at partially open (PO) position as summarized in Table

4.5.

Table 4.5: Dataset used for Convolutional Neural Network training.

System State
Train dataset

(samples)

Test dataset

(samples)
Description

Healthy 125607 20934 -

Actuator 1 fault 18175 3029 Stuck damper: FC, FO, PO at 10%, 40%

Actuator 2 fault 18175 3029 Stuck damper: FC, FO, PO at 10%, 50%

Actuator 3 fault 18175 3029 Stuck damper: FC, FO, PO at 20%, 40%

Actuator 4 fault 18175 3029 Stuck valve: FC, FO, PO at 10%, 50%

In data-driven classification approaches, a common issue is encountered with such

dataset referred to as data imbalance. When data of some classes are scarce (e.g. faulty

data) while for others, data are abundant (e.g. healthy data), the classification perfor-

mance of the network is altered such that a bias is introduced to the network predictions

since the network model will pay more attention to the majority class. The effect of

this issue can be minimized by modifying the sampling rate which can be done by ma-

jority under-sampling, minority over-sampling, or a combination of both with proper
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design of the network structure to avoid over-fitting problems. It is worth noting that

data balancing is performed only on the training dataset.

4.4.2 Model-1

In this model, majority-downsampling is used to balance the training dataset such

that the sampling time of the healthy data is modified to be 7 min. The performance of

the CNN is moderate as presented in Table 4.6 with a maximum accuracy of 94.95% and

F1-score of 92.99% achieved by CNN-S9-5C-2 with the details presented in Fig.4.16.

The details of the rest of the evaluated networks are presented in Appendix 5.1. The

network ability to correctly identify data classes is inadequate which is interpreted by

the CNN’s sensitivity of around 93%. This can be attributed to the insufficient amount

of data to train the network for the multi-classification problem with this level of com-

plexity.
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Figure 4.16: CNN-S9-5C-2 structure.
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Table 4.6: Performance results of the trained CNN for Model-1.

Network Accuracy Error Sensitivity Specificity Precision F1-score

CNN-S8-5C-1 0.9292 0.0708 0.9304 0.9775 0.9147 0.9169

CNN-S9-5C-2 0.9495 0.0505 0.9328 0.9825 0.9340 0.9299

CNN-S7-5C-3 0.9410 0.0590 0.9366 0.9811 0.9200 0.9238

CNN-S6-5C-4 0.9328 0.0672 0.9306 0.9777 0.9154 0.9188

CNN-S5-5C-5 0.9364 0.0636 0.9321 0.9793 0.9205 0.9199

CNN-S4-5C-6 0.9108 0.0892 0.9173 0.9737 0.8794 0.8904

CNN-S3-5C-7 0.9413 0.0587 0.9232 0.9785 0.9322 0.9221

CNN-S2-5C-8 0.9385 0.0615 0.9224 0.9780 0.9370 0.9217

CNN-S1-5C-9 0.9221 0.0779 0.9209 0.9743 0.9089 0.9061

4.4.3 Model-2

The 4-class CNN for Model-2 demonstrates improved results as presented in Table

4.7. The network with the architecture presented in Fig.4.17 is capable of approximat-

ing the functional mapping between the input and output up to an accuracy of 96.51%,

F1-score of 97.21%, and sensitivity of 97.21%. The details of the rest of the evaluated

networks are presented in Appendix 5.2.
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Figure 4.17: CNN-S5-4C-5 structure.
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Table 4.7: Performance results of the trained CNN2 for Model-2.

Network Accuracy Error Sensitivity Specificity Precision F1-score

CNN-S8-4C-1 0.9488 0.0512 0.9590 0.9863 0.9617 0.9586

CNN-S9-4C-2 0.9506 0.0494 0.9604 0.9868 0.9631 0.9598

CNN-S7-4C-3 0.9570 0.0430 0.9656 0.9885 0.9679 0.9654

CNN-S6-4C-4 0.9632 0.0368 0.9705 0.9902 0.9725 0.9704

CNN-S5-4C-5 0.9651 0.0349 0.9721 0.9907 0.9748 0.9721

CNN-S4-4C-6 0.9636 0.0364 0.9709 0.9903 0.9725 0.9709

CNN-S3-4C-7 0.9612 0.0388 0.9612 0.9871 0.9641 0.9607

CNN-S2-4C-8 0.9563 0.0437 0.9563 0.9854 0.9581 0.9558

CNN-S1-4C-9 0.9612 0.0388 0.9612 0.9871 0.9641 0.9607

4.4.4 Model-3

The training of each CNN in Model-3 is carried out using all the classes data such

that the targets are labeled positive for the concerned class, and negative otherwise

with proper data balancing. For example, for a CNN trained to identify Class A, the

data samples of Classes B to E are labeled as negative outputs and the healthy data are

identified with positive labels and down-sampled to avoid data imbalance, such that the

number of negative and positive samples are equal. For training the CNNs for Classes

B to E, both majority down-sampling for the healthy data and minority up-sampling for

the concerned class data are used to balance the dataset.

Satisfactory network performance is achieved as summarized in Table 4.8 and the

best results are obtained with the simple CNN structures 2 and 3 as highlighted in light

gray color, with an average accuracy and F1-score of 98%. For the limited available
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data, the network capability in identifying the classes is improved since the classifica-

tion problem is simpler with only two possibilities for the output (1 or 0). The detailed

architecture of the networks is illustrated in Fig.4.18 and presented in Table 4.9. The

details of the rest of the evaluated networks are presented in Appendix 5.3.
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Table 4.8: Performance results of the trained CNNs for Model-3.

Network Accuracy Error Sensitivity Specificity Precision F1-score
C

la
ss

A

CNN-S8-1C-A1 0.9572 0.0428 0.9814 0.9814 0.9829 0.9817

CNN-S7-1C-A2 0.9531 0.0469 0.9791 0.9791 0.9807 0.9797

CNN-S4-1C-A3 0.9523 0.0477 0.9782 0.9782 0.9815 0.9794

CNN-S3-1C-A4 0.9831 0.0169 0.9614 0.9956 0.9922 0.9765

CNN-S2-1C-A5 0.9833 0.0167 0.9632 0.9949 0.9909 0.9769

C
la

ss
B

CNN-S7-1C-B1 0.9666 0.0334 0.9833 0.9833 0.9738 0.9733

CNN-S3-1C-B2 0.9871 0.0129 0.9945 0.9139 0.9914 0.9929

CNN-S2-1C-B3 0.9915 0.0085 0.9980 0.9275 0.9928 0.9954

CNN-S2-1C-B4 0.9882 0.0118 0.9954 0.9165 0.9917 0.9935

C
la

ss
C

CNN-S7-1C-C1 0.9690 0.0310 0.9794 0.9794 0.9634 0.9682

CNN-S3-1C-C2 0.9850 0.0150 0.9941 0.8961 0.9896 0.9918

CNN-S2-1C-C3 0.9913 0.0087 0.9982 0.9233 0.9923 0.9952

CNN-S2-1C-C4 0.9845 0.0155 0.9929 0.9026 0.9902 0.9915

C
la

ss
D

CNN-S7-1C-D1 0.9949 0.0051 0.9942 0.9942 0.9937 0.9939

CNN-S3-1C-D2 0.9966 0.0034 0.9984 0.9794 0.9979 0.9981

CNN-S2-1C-D3 0.9967 0.0033 0.9982 0.9816 0.9981 0.9982

CNN-S2-1C-D4 0.9973 0.0027 0.9987 0.9840 0.9984 0.9985

C
la

ss
E

CNN-S7-1C-E1 0.9774 0.0226 0.9807 0.9807 0.9730 0.9744

CNN-S3-1C-E2 0.9841 0.0159 0.9908 0.9174 0.9918 0.9913

CNN-S2-1C-E3 0.9839 0.0161 0.9902 0.9218 0.9923 0.9912

CNN-S2-1C-E4 0.9825 0.0175 0.9888 0.9199 0.9921 0.9903

106



Conv1 layer BN Leaky ReLU Dropout FC1 layer Leaky ReLU

Figure 4.18: Architecture of the CNN with best performance for Model-3.

Table 4.9: Details of the selected CNN architectures for Model-3.

Network
Conv1 layer FC1 layer

Kernel size Number of Filter Number of units

CNN-S2-1C-A5 2×2 6 7

CNN-S2-1C-B3 2×2 6 9

CNN-S2-1C-C3 2×2 5 10

CNN-S2-1C-D4 2×2 8 7

CNN-S3-1C-E2 2×3 10 6

4.4.5 Model-4

The training of the CNN for this model is conducted using the convolution layer

from the pre-trained networks obtained from Model-3. Table 4.10 presents the evalua-

tion results of the best CNNs for the 4 fault classes and the specification of the design

of the network is presented in Fig.4.19. The kernel of the convolution layer is of size

2 × 2 × 8 and the number of nodes in the FC layer is 15 units for CNN-Class C and

CNN-Class D, and 25 units for CNN-Class B and CNN-Class E. The advantage of this

model is reducing the amount of the required computation while achieving satisfactory

classification performance.
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Figure 4.19: Architecture of the CNN with best performance for Model-4.

Table 4.10: Performance results of the trained CNNs for Model-4.

Network Accuracy Error Sensitivity Specificity Precision F1-score

CNN-Class B 0.9900 0.0100 0.9930 0.9602 0.9960 0.9945

CNN-Class C 0.9823 0.0178 0.9865 0.9405 0.9940 0.9902

CNN-Class D 0.9924 0.0076 0.9962 0.9550 0.9955 0.9958

CNN-Class E 0.9794 0.0206 0.9887 0.8871 0.9888 0.9886

4.4.6 Comparison Between Evaluated CNN-based Models

According to the evaluation results of the four models, the best performance is

achieved by Model-3 which encompasses a number of CNNs corresponding to the num-

ber of classes and each CNN is trained to perform binary classification of "belongs to

the class or not". However, it can be computationally demanding especially for large-

scale buildings. This issue can be minimized by Model 4 while still maintaining just

about the same performance.

Even though Models 1 and 2 demand less processing requirements, their classifi-

cation capabilities are found to be limited and insufficient. Nevertheless, their perfor-

mance is expected to improve for larger buildings because the increase in the number

of correlated variables shall promote the network learning capacity.

Depending on the building size and design specifications -i.e. zoning, etc.-, a com-

bination of the evaluated models can be deployed in the final fault diagnosis scheme.
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For example, a two-class CNN can be designed to determine whether the system is

fault-free or not and dedicated CNNs using Model-2 or Model-4 can be designed for

the fault types with similar attributes.

4.4.7 Evaluation of the Proposed CNN-based Actuator FD Scheme

This subsection presents case studies demonstrating the performance of the CNN-

based diagnosis scheme for actuator faults. The presented evaluation is carried out using

a dedicated test dataset that is generated for the case studies in which increased mea-

surement noise is introduced to the data. The noise is emulated by an additive random

uniformly distributed variable with a maximum level of 0.5 ◦C. Table 4.11 presents the

evaluated faults scenarios used for testing the proposed CNN-based diagnosis approach.

The first case study evaluating the faults F-VAV1-High to F-Valve-High presents an

actuator fault with a high severity level. For instance, the VAV damper is stuck at a

fully closed position at the night during which the load is minimal causing the HVAC

system to fail to meet the cooling load at the daytime and vice versa. The second case

study presents a low impact fault event such that the actuator is stuck at a position

that does not severely impede the HVAC system operation in fulfilling the thermal load

requirement. The performance evaluation is conducted on the CNN-based framework

using Model-3 presented in Section 4.4.4. Table 4.12 summarizes the evaluation results

of the average performance of the five CNNs in Model-3 under each fault scenario. The

evaluation is made upon the following metrics, the diagnosis accuracy, the false alarms

rate representing the false positive rate, and the missed alarms rate indicating the false

negative rate. It is based on an observation window of 1 day under the assumption that

the fault source will be abolished within that time period.

109



Table 4.11: Actuator fault scenarios used for the evaluation of the proposed

CNN-based FD scheme.

Fault identifier Description

F-VAV1-High Stuck damper at FO position at the beginning of daytime

F-VAV2-High Stuck damper at FC position during night

F-VAV3-High Stuck damper at FC position during night

F-Valve-High Stuck valve at FC position during minimum thermal load

F-VAV1-Low Stuck damper at PO at 18% opening

F-VAV2-Low Stuck damper at PO at 56% opening

For the high severity level fault events demonstrated in Figures 4.20 to 4.23, it is

observed that the diagnosis is quick and accurate in most of the cases with about 100%

average diagnosis accuracy of the 5 CNNs and almost no false or missed alarms. How-

ever, for the F-VAV2-High fault, an increased rate of false alarms is observed of around

5% with an average accuracy of 96% as shown in Fig.4.21. The effect of those out-

liers on the reliability of the diagnosis approach can be mitigated by applying statistical

analysis on the CNN outputs similar to the one proposed in [157]. It aims to determine

the probability of the fault occurrence based on the frequency of positive flags raised by

the CNN within a specified time period with careful attention to avoid compromising

the diagnosis time. It is worth noting that the plots of CNNs outputs are down-sampled

for demonstration purposes.
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Figure 4.20: CNN-based diagnosis method

performance due to stuck F-VAV1-High

fault at 100% open position at the

beginning of the day. (a) Zone 1

temperature. (b) CNNs outputs.

Figure 4.21: CNN-based diagnosis method

performance due to stuck F-VAV2-Hight

fault at 100% closed position at night. (a)

Zone 2 temperature. (b) CNNs outputs.

Figure 4.22: CNN-based diagnosis method

performance due to F-VAV3-High fault at

100% closed position at night. (a) Zone 3

temperature. (b) CNNs outputs.

Figure 4.23: CNN-based diagnosis method

performance due to F-Valve-High fault at

100% closed position. (a) Tank

temperature. (b) CNNs outputs.

Figures 4.24 and 4.25 represent the diagnosis results of fault incidents with low

impact level. The damper in each of the two scenarios is stuck at a non-critical time

of the operation. For instance, in F-VAV1-Low fault, the damper is stuck at 18% par-

tially open position which was sufficient to meet the low thermal load requirement at
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the night time. Hence, it is observed that the diagnosis time is long since the fault is

identified when it impacts the system states which results in the observed increase in the

missed alarms rate of around 6% and the lower diagnostic accuracy with an average of

89%. The overall performance of the CNN-based proposed diagnosis approach is found

stationarity such that it is quick, robust to measurement noise, reliable, and accurate.

Figure 4.24: CNN-based diagnosis method

performance due to stuck F-VAV1-Low

fault at 18% open position. (a) Zone 1

temperature. (b) CNNs outputs.

Figure 4.25: CNN-based diagnosis method

performance due to stuck F-VAV2-Low

fault at 56% open position. (a) Zone 2

temperature. (b) CNNs outputs.
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Table 4.12: Evaluation results of the proposed CNN-based FD scheme for the different

actuator fault testing scenarios.

Fault identifier
Diagnosis ac-

curacy

False alarms

rate

Missed

alarms rate

Diagnosis

time

F-VAV1-High 99.99% 0.01% 0.00% 30 min

F-VAV2-High 96.67% 5.01% 2.12% 60 min

F-VAV3-High 100.00% 0.00% 0.00% 2 min

F-Valve-High 99.85% 0.14% 0.00% 23 min

F-VAV1-Low 91.57% 4.49% 7.11% 8 hr

F-VAV2-Low 88.01% 6.54% 5.89% 7 hr

4.5 Comparison Between the Proposed CNN-based Actuator FD

Method and Others

This section presents the performance evaluation of the proposed CNN-based actu-

ator fault diagnosis method against SVM and neural network. The analysis is carried

out for Model-3 and the results are presented in Table 4.13.

It is found that the CNN-based FD diagnosis scheme demonstrates improved per-

formance when compared with the NN-based and SVM-based approaches. That is, the

average sensitivity (or recall) of Model-3 using the CNN is about 99% while it is 95%

for SVM and NN with an overall performance improvement of around 4%. The value of

recall is inversely proportional to the missed alarms rate and hence this means that using

CNNs elevates the reliability of the fault diagnosis. In addition, the average diagnosis

accuracy is higher using CNN with around 99% while it is 96% and 95% for SVM and
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NN respectively. The average diagnosis precision of the CNN-based approach is 99%

with an increase of 18% and 2% compared to SVM and NN respectively. Moreover, the

binary classification quality represented by the MCC value is improved by about 11%

with an average score of 95% using the CNN while it is 86% for SVM and NN.

Table 4.13: Comparison results between using NN, SVM, and CNN for Model-3

actuator fault diagnosis scheme.

Method Network Accuracy Error Sensitivity Specificity Precision F1-score MCC

N
N

CNN1 0.9010 0.0990 0.8516 0.9404 0.9194 0.8842 0.7997

CNN2 0.9823 0.0177 0.9874 0.9418 0.9927 0.9900 0.9124

CNN3 0.9838 0.0162 0.9913 0.9236 0.9905 0.9909 0.9177

CNN4 0.9816 0.0184 0.9994 0.8393 0.9803 0.9898 0.9042

CNN5 0.9298 0.0702 0.9211 0.9994 0.9999 0.9589 0.7508

SV
M

CNN1 0.9258 0.0742 0.9832 0.8539 0.8940 0.9365 0.8534

CNN2 0.9794 0.0206 0.9560 0.9823 0.8711 0.9115 0.9012

CNN3 0.9703 0.0297 0.9431 0.9737 0.8174 0.8757 0.8618

CNN4 0.9867 0.0133 0.8855 0.9993 0.9940 0.9366 0.9312

CNN5 0.9389 0.0611 0.9846 0.9332 0.6478 0.7815 0.7699

C
N

N

CNN1 0.9833 0.0167 0.9632 0.9949 0.9909 0.9769 0.9640

CNN2 0.9915 0.0085 0.9980 0.9275 0.9928 0.9954 0.9485

CNN3 0.9913 0.0087 0.9982 0.9233 0.9923 0.9952 0.9461

CNN4 0.9973 0.0027 0.9987 0.9840 0.9984 0.9985 0.9841

CNN5 0.9841 0.0159 0.9908 0.9174 0.9918 0.9913 0.9054

4.6 Summary

A CNN-based actuator fault diagnosis strategy is developed in this chapter for stuck

dampers and water valve faults in the HVAC system. Different models (e.g. multi-

model, and single model) and CNN architectures of the proposed scheme are tested and

compared. This analysis exploits most of the possible configurations of the CNN-based

diagnosis method that can be deployed for HVAC systems. That is, there is a trade-off
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between the performance of the model and the computational requirement. For instance,

Model-3 demonstrates the best option in terms of accuracy, precision, and recall while

Model-4 is a less computationally demanding version with some performance accuracy

compromise. In terms of the Convolutional Neural Network architecture, depending on

the availability of training data, there is a wide range of network designs that can be

used with careful attention to avoid over-fitting problem.

In addition, the CNN-based approach is compared with SVM and Neural Network

and the proposed method demonstrates improved performance in terms the diagnosis

accuracy, precision, and recall. The use of the Convolutional Neural Network for HVAC

system actuator fault diagnosis is proven to be successful in improving the accuracy,

reliability, and precision of the fault diagnosis by an average of 4%, 11%, and 10%

respectively when compared to standard Neural Networks and Support Vector Machine

which are commonly used algorithms.
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Chapter 5: Summary and Future Work

Given the fact that the HVAC systems account for 40% of the total building energy

usage, the work presented in this report is concerned with the development of fault di-

agnosis for HVAC systems to optimize their performance and maximize their efficiency

given the increasing global energy demand. Considering the underlying constraints and

complexity associated with the HVAC system models, this work presented two data-

driven fault diagnosis strategies for HVAC system sensor and actuator fault diagnosis

that do not require the knowledge of the system mathematical model but rather utilize

the building historical data that can be obtained from the modern building management

systems.

The first part of the thesis presented the proposed AANN-based sensor data valida-

tion and fault diagnosis technique that can be used to validate sensor measurements in

terms of missing sensor data replacement, sensor fault and inaccuracy correction, and

sensor data noise reduction for the closed-loop control of the HVAC system to maintain

its reliable performance. Moreover, the AANN-based sensor fault diagnosis method

showed a capability in diagnosing both single and multiple bias and drift faults effec-

tively. It addressed the limitations of the previous works and showed notable overall

performance improvements when compared with the commonly used method that is

PCA-based. The second part presented an actuator fault diagnosis approach for HVAC

systems using 2D Convolutional Neural Networks by proposing an efficient and real-

time data transformation to obtain the 2D representation of the raw 1D measurement

data of the HVAC system variables. The CNN-based actuator fault diagnosis method

demonstrated a successful deployment of the newly evolving field of Machine Learning

for condition monitoring and fault diagnosis applications by showing an improved per-
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formance when compared with the commonly used methods which are NN and SVM.

It addressed the limitations of the past works in terms of the accuracy, reliability, and

precision.

Both methods are robust and they can be applied for large-scale buildings with addi-

tional zones and it is expected that the performance will be improved with the increase

in the HVAC system size due to a higher correlation between the inputs. The use of

a multi-agent fault diagnosis framework is suggested for large-scale buildings in order

to compensate for the increased computational requirement of the proposed algorithms.

There are two limitation associated with the proposed approaches. Firstly, data-driven

methods require sufficient volumes of representative data of the system of interest to

ensure a reliable performance. The second limitation is regarding the training phase

which is time consuming and computationally demanding.

The future work would be considering the integration of multiple simultaneous actu-

ator faults as well as the development of data-driven fault diagnosis strategy for simulta-

neous sensor and actuator faults diagnosis. In addition, energy performance assessment

of the HVAC system can be conducted to demonstrate the diagnosis approach capa-

bility in improving the system efficiency. Moreover, for the AANN-based sensor fault

diagnosis method, a Machine Learning-based technique can be developed for threshold

selection.
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APPENDIX

This section presents the details of the evaluated Convolutional Neural Network

architectures in terms of the number of layers, sizes of the layers (e.g. size of the

kernel, number of filters, number of nodes), type of activation functions, and the use of

training enhancement methods (e.g. batch normalization, dropout, etc.).

5.1 Structures of the trained CNNs for Model-1

This section presents the detailed structures of the networks in Table 4.6 in Chapter

4, Section 4.4.2.

CNN-S8-5C-1 CNN-S7-5C-3 CNN-S6-5C-4

CNN-S5-5C-5 CNN-S4-5C-6 CNN-S3-5C-7
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CNN-S2-5C-8 CNN-S1-5C-9

5.2 Structures of the trained CNNs for Model-2

This section presents the detailed structures of the networks in Table 4.7 in Chapter

4, Section 4.4.3.

CNN-S8-5C-1 CNN-S7-5C-3 CNN-S6-5C-4

CNN-S5-5C-5 CNN-S4-5C-6 CNN-S3-5C-7
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CNN-S2-5C-8 CNN-S1-5C-9

5.3 Structures of the trained CNNs for Model-3

This section presents the detailed structures of the networks in Table 4.8 in Chapter

4, Section 4.4.4.

CNN-S8-1C-A1 CNN-S7-1C-A2 CNN-S4-1C-A3 CNN-S3-1C-A4

CNN-S7-1C-B1 CNN-S3-1C-B2 CNN-S2-1C-B4
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CNN-S7-1C-C1 CNN-S3-1C-C2 CNN-S2-1C-C4 

CNN-S7-1C-D1 CNN-S3-1C-D2 CNN-S2-1C-D3

CNN-S7-1C-E1 CNN-S2-1C-E3 CNN-S2-1C-E4
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