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• An event-based non-intrusive appliance recognition.

• A multi-scale wavelet packet tree descriptor for feature extraction.

• Appliance classification using ensemble bagging tree.
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• A frequency-based event detection for non-intrusive load monitoring.
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A B S T R A C T

Providing the user with appliance-level consumption data is the core of each energy efficiency system. To that
end, non-intrusive load monitoring is employed for extracting appliance specific consumption data at a low cost
without the need of installing separate submeters for each electrical device. In this context, we propose in this
paper a novel non-intrusive appliance recognition system based on (i) detecting events in the aggregated power
signal using a novel and powerful scheme, (ii) applying multiscale wavelet packet tree to collect comprehensive
energy consumption features, and (iii) adopting an ensemble bagging tree classifier along with comparing its
performance with various machine learning schemes. Moreover, to validate the proposed model, an empirical
investigation is conducted on two real and public energy consumption datasets, namely, the GREEND and REDD,
in which consumption readings are collected at low-frequencies. In addition, a comprehensive review of recent
non-intrusive load monitoring approaches has been conducted and presented, in which their characteristics,
performances and limitations are described. The proposed non-intrusive load monitoring system shows a high
appliance recognition performance in terms of the accuracy, F1 score and low time complexity when it has been
applied to different households from the GREEND and REDD repositories, in which every house includes various
domestic appliances. Obtained results have described, e.g., that average accuracies of 97.01% and 96.36% have
been reached on the GREEND and REDD datasets, respectively, which outperformed almost existing solutions
considered in this framework.

1. Introduction

Energy efficiency is considered as a demanding research topic and
more attention is paid to it recently due to the benefits that can bring to
the environment and society [1]. Recent studies have been reported
that the best method to achieve higher energy savings in households is
through monitoring each home appliance separately. However, this can
be very costly, especially when using separate plug power meters for

each domestic appliance [2,3]. In this regard, the best alternative so-
lution is to use non-intrusive load monitoring (NILM) procedures that
can separate aggregated power signal of a household or other buildings
into the consumption of each specific appliance independently [4]. This
is can be a very fruitful strategy due to the fact that providing in-
dividual power consumption of each appliance cannot only incentivize
consumers to use less electrical power [5], however, it further supplies
them with indicators about practical know-how and even more offers
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specific perceptions of the context and activities of end-users [6,7].
Furthermore, NILM techniques are generally divided into two main

categories of non-event-based and event-based [8]. The former, it is
mainly devoted on the use of statistical models, while the latter, which
is the purpose of this framework, focalizes on three main challenges
aiming at [9]: (1) detecting events and transition changes, (2) ex-
tracting a set of characteristics to efficiently discriminate between
various devices and capture unique properties of each one in regard to
the use context, given that every group of devices has its specific
electrical consumption signature, environment and use scenario (e.g.
house, academic building, factory, etc.) [10]; and (3) selecting the
appropriate learning architecture to classify appliances based on the
extracted features [11]. Overall, both categories have the same final
purpose that aims at splitting an aggregate energy consumption signal
into multiple fine-grained energy records and thereby recognizing the
appliance category of each individual fingerprint [12].

In consequence, the appliance recognition or identification task is
an essential step in the NILM system. Consequently, performing a de-
vice recognition through the electrical network results in an automatic
identification of each appliance from its power consumption signal
[13]. Further, it leads also into collecting fine-grained consumption
signatures of domestic electrical devices (such as air conditioner, TV,
fridge, coffee machine, dishwasher, etc.) [14]. Hence, they are a step-
ping-stone into decreasing power usage and promoting energy effi-
ciency through providing the user with consumption statistics of each
appliance [15]. Moreover, the appliance identification task allows other
important applications, among them the identification of energy hungry
devices [16], determination of suspicious electricity consumers [17],
fault and anomaly detection [18,19], occupancy detection [20,21],
detection of suspicious or unidentified appliances and eventually helps
in developing reliable energy disaggregation systems [22,20].

To that end, in this paper, we propose a novel NILM architecture
based on the following contributions: (1) a powerful event detection
scheme is introduced, which works in the frequency-domain and de-
ploys a filtering process in the Cesptrum space to reduce the noise
generated by the electrical devices, resulting then in a better detection
of transitional changes occurred in the power signals; (2) an efficient
feature extraction approach is introduced that is based on the multi-
scale wavelet packet tree (MSWPT). It is worth noting that, to the best
of our knowledge, this is the first framework that discusses the use of
MSWPT for NILM purpose. The MSWPT is a good candidate for ana-
lyzing stationary and even non-stationary signals. This is because the
multiscale time frequency examination provides a large dimensional
quantity of data and thereby supplying more details on the detected
events and capturing the peculiarities of every appliance through re-
moving irrelevant noise frequencies; and (3) an ensemble bagging tree
classifier (EBT) is introduced, which is designed to efficiently classify
appliances based on the features extracted from the detected events.
The use of the MSWPT is validated using a comprehensive comparison
with reference to several machine learning algorithms. In addition, an
extensive survey of existing NILM techniques has been conducted and
presented, in which their properties, performances and drawbacks are
seized. Following, a profound performance investigation is managed
using two large-scale and realistic databases, entitled the GREEND [23]
and REDD [24] datasets. The former contains daily load profiles of
more than 30 appliances groups, which are collected from six different
houses. Each device is monitored for a long period ranging from 4 to
12 months. However, the latter contains consumption fingerprints of
more than 20 appliance classes gathered at a resolution of 1/3 Hz.

In addition, the possibility of developing the proposed NILM system
as an industrial application is assessed, where the time complexity of
proposed system versus other MSWPT-based machine learning solu-
tions has also been investigated. Further, validating the proposed NILM
system on the GREEND and REDD datasets, in which the consumption
data are gathered at low frequency (1 Hz and 1/3 Hz, respectively), has
two main advantages; first, it can economize the power usage and data

storage without hindering the recognition task. Second, good recogni-
tion performances are achieved in terms of various benchmarking me-
trics at a low computational complexity.

The rest of this paper is structured as follows. Section 2 presents
various recent schemes pertaining to the two main categories of NILM
systems that are event-based and non-event-based. A comparison is
performed between techniques belonging to both groups, their limita-
tions and drawbacks are highlighted as well. Section 3, explains the
steps required to implement the proposed NILM system, in which
thorough explanations have been presented about the proposed event
detection scheme, MSWPT-based feature extraction approach and en-
semble bagging tree classifier. After that, a deep performance in-
vestigation carried out in accordance to various metrics is presented in
Section 4 on both the GREEND and REDD datasets. Finally, conclusions
on the appliance recognition study investigated in this paper are drawn
in Section 5 on the basis of the output analysis and therefore the
principal orientations for future works are identified as well.

2. Related works

Overall, NILM systems could be divided into two main categories of
non-event-based and event-based. The first, focuses on methods that are
not dependent on training in a specific building and could separate
energy traces of individual appliances from the aggregate load [25].
One of the methods that have been commonly investigated in this do-
main is the use of statistical models such as Hidden Markov Models
(HMMs), probabilistic models and higher-order statistics (HOS). The
second, refers to techniques that identify changes in the appliance state
by using event detection, classification, and then an approach for cal-
culating energy consumption for individual appliances [26].

2.1. Non-event-based NILM schemes

This class is mainly based on the use of statistical models, including
HMMs, probabilistic models and HOSs to segregate the aggregated
power signals into appliance-level data. In fact, the NILM issue re-
presents a time dependent problem in which statistical models are
greatly targeted as a suitable solution. Recently, HMMs-based methods
have been receiving increasing attention. Various NILM techniques,
adopting the HMMs as the central part of their architecture, have been
proposed in the literature.

In [27], a hierarchical method that can model various devices
within the same category using a Bayesian consideration of HMMs is
proposed. A specific device consumption model is then generated
through the combination of the various HMMs settings. In this regard, a
completely new device model is designed to represent an appliance
class form 3 to 6 device examples. In [28], a HMMs-based classification
is implemented on temporal power consumption sequences to segregate
aggregated load profiles. It aims at (i) detecting device states at a low
resolution and (ii) adopting these features to model appliance cate-
gories and classifying candidate devices. In [29], Makonin et al. pro-
pose an energy segregating technique based on the use of a super-state
HMMs and Viterbi model, hence allowing a better reliance between
appliance signatures and an easy disaggregation of multi-state energy
consumptions. The Viterbi scheme is used to effectively estimate the
sparse arrays used to perform the NILM task.

The problem of energy disaggregation is solved based on the rollout
of the Viterbi decoding process by Kong et al. [30]. This decoding is
particularly deployed to predict the probable sequences of the hidden
conditions of HMMs in regard to the observation sequences. In [31],
virtual stochastic sensors and hidden non-Markovian models (HnMM)
are employed to abstract electrical device signatures while considering
the precise period of switching on every device. In [32], the NILM
problem is solved using HOS, which are implemented on separate ap-
pliance energy consumption signals. In [33], power consumption pat-
terns of each electrical device are identified based on estimating the
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probability of events occurred for a set of electrical devices using a
mixture of Bernoulli distributions. In [34], the additive factorial ap-
proximate maximum a posteriori (AFAMAP) is used to extract power
signatures from electrical devices using recursive fuzzy c-Means and
HMMs.

In [35], two ML models based on unsupervised occurrence based
detection and Markov chain device energy consumption modeling are
combined in order to implement an NILM framework. The latter en-
ables a fast and on-line domestic device identification using consump-
tion patterns. In [36], a combination of NILM and load profiling process
is implemented to collect appliance-level consumption fingerprints at a
low sampling rate of 15 min. This technique focuses on using the HMMs
algorithm to model consumer behavior, extracting load usage profiles
and statistical patterns adequately and finally generating device-level
consumption footprints.

In [37], an additive factorial HMMs is deployed to develop an NILM
solution based on the combination of active/reactive power data. In this
context, a bivariate HMMs is used to model each device consumption
model while the emitting signatures are simply the combination of
active/reactive power usage. In [38], a fusion of the factorial HMMs
and recurrent sub-sequence dynamic time warping (SDTW) is operated
to design an NILM with a low complexity. The factorial HMMs are used
to extract the preliminary representation of consumption trajectories
while the recurrent SDTW is deployed to classify the appliances based
on a distance estimation. In [39], the difference factorial HMMs
(DFHMMs) along with the Kronecker process are used to develop an
NILM system that can retrieve appliance-level consumption patterns,
especially in the case of electric space heaters (ESH). This framework
has a good robustness to noise generated by other unknown appliances.
In [40], active power records are utilized to model domestic electrical
devices as factorial HMMs. In addition, an aggregated-consumption
modeling approach is introduced. Time windows are then investigated
using the probabilistic computing to capture correct parameter settings
that help in achieving the power disaggregation.

In [41], an NILM framework based on factor HMMs is introduced
where the devices’ current records are considered as the power con-
sumption features. A statistical model is then established to fit the ag-
gregated current and specific currents of multiple devices. Following, a
factor HMMs based approach is used to capture operation states of
every electrical device that help segregating the aggregated load. In
[42], HOSs pulled from current signals are used to model electrical
appliance signatures.

Table 1 presents a comprehensive comparison between different
statistical models according to different parameters, including the
adopted architecture, number of monitored appliances, frequency re-
solution and achieved accuracy.

2.2. Event-based NILM schemes

This type of methods is mainly categorized based on two important
modules participating in their development, the feature extraction
process and learning models. Traditional categories of NILM systems
are mainly focusing on the extraction of steady-states and transient-
states based characteristics and on the use of traditional machine
learning (ML) algorithms. However, new techniques have been pro-
posed recently relying on other new trends of power signal analysis.
This category of schemes is considered as non-conventional NILM sys-
tems.

2.3. Feature extraction

To categorize recent feature extraction schemes, three main classes
are highlighted as follows:

a. Graph signal processing (GSP) features: GSP is a popular research
topic that aims at representing the stochastic properties of signals using
graphs. In [59], an event-based graph scheme is proposed to design
signatures of power consumption signals and also to minimize the
training time and reduce computational complexity of traditional
graph-based approaches. In [60], different graph-based multi-label
approaches are introduced for identifying electrical appliances with a
semi-automatic manner. In [61], the NILM performance is improved
using a generic GSP-based scheme that relies on applying graph-based
filters, which can help in detecting on/off occurrences through miti-
gating the noise generated from electrical appliances.

b. Time-frequency analysis: this kind of analysis is among the well-
know methods conducted to extract features in many other research
fields. In the case of NILM, it can be used to solve the overlapping issue
and provide more resolution about the power consumption footprints.
In [62], time-frequency signatures are captured using a multiresolution
S-transform. In [63], wavelet analysis is performed, followed by a
power spectrum extraction from the wavelet coefficients based on the
Parseval’s theorem, while in [64] the energy of wavelet patterns at
multiple decomposition levels is used to represent appliances. Welikala
et al. [65] use a recursive deployment of the Karhunen-Loeve process to
collect a robust and fine-grained spectrum. Moreover, disaggregation of
power consumption footprints is realized using deconvolution ap-
proach. In [66], two classification techniques, namely RAkEL and
MLkNN, experiencing time and wavelet domain analysis, are used to
collect power characteristics. In [67], a time-related non-event-based
technique is proposed to detect if an appliance is on mode switch on
through using a sliding window and thus extracting unique signature
for each device. In [68], two TD feature bags are picked up using the
nonactive-current wave and the voltage-nonactive current shape. In

Table 1
An overview of the existing NILM systems based on statistical models.

Work Category Sub-category Architecture # appliances Resolution Accuracy
(Hz) (in %)

[27] unsupervised HMMs Bayesian HMMs 5 1–1/8 N/A
[28] un-supervised HMMs temporal sequence + HMMs N/A 1/600 75.25
[29] supervised HMMs super-state HMMs + Viterbi model 6 1/60 94.86
[30] supervised HOSs ANN + 2nd and 4th order statistics 11 15.36 97
[31] supervised HnMMs virtual stochastic sensors (VSS) 11 12 k 94
[32] un-supervised HMMs iterative k-Means N/A 1/3 85
[33] un-supervised Probabilistic Bernoulli distributions N/A 1 80
[34] un-supervised AFAMAP recursive fuzzy c-Means + HMMs 6 1/600 79
[35] un-supervised HMMs Markov chain + mean-shift clustering 5 1/6 74.4
[36] un-supervised HMMs activity Markov chain 8 1/900 N/A
[37] un-supervised HMMs additive Factorial HMMs 5 1/60 76.76
[38] semi-supervised HMMs factorial HMMs + recurrent SDTW + SDTW 11 1/60 61
[40] un-supervised HMMs factorial HMMs 6 1/120 N/A
[39] un-supervised HMMs difference factorial HMMs N/A 1 95
[41] un-supervised HMMs variant of factor HMMs 7 N/A 92.78
[42] supervised HMMs viterbi decoding + HMMs 12 1/3 96
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[69], a two-step feature collection approach is proposed where candi-
date events are firstly selected, then a filtering process is performed at
TD to extract power fingerprints. In [8], a linear time-invariant method
is proposed to describe aggregated on/off events of each device. In
[70], a spatio-temporal analysis is conducted to retrieve multivariate
time-series characteristics of load usage. In [71], an empirical mode
decomposition (EMD) based feature extraction scheme is proposed.
After obtaining the intrinsic mode functions (IMFs) patterns using the
EMD, the pertinent features are extracted via analyzing their time-fre-
quency space. In [72], shapelet features are extracted from time-series
current envelopes, which are already determined from initial current
trajectories through capturing and connecting peak points of every
sample. In addition to the aforementioned works, a statistical feature
extraction technique for normalized current data is proposed in [73].
Supervised classifiers are then applied to detect each appliance class. In
[74], Jimenez et al. propose an NILM system using the S-Transform to
extract appliance features that are then fed into an SVM classifier to
recognize each electrical device. The performance of the S-Transform
has been compared to a wavelet packet tree (WPT), in which only 3
level of decompositions are used. however, this is not sufficient to ex-
tract pertinent appliance features. However, in this framework, the
proposed MSWPT is used using 7 level of decomposition and a feature
selection in each sub-band to construct the final feature vector. This
leads to a better performance in terms of the accuracy and F-score.

2.4. Deep neural network (DNNs)

One of the popular and recent learning solution focuses on the use of
deep neural networks (DNNs). Three main architectures are mostly
investigated in the state-of-the-art, deep convolutional neural network
(CNN), recurrent neural networks (RNN) and denoising autoencoder
(dAE). In addition, various variants of these architectures are proposed
as well.

Learning models can also be classified based on the nature of the
training process required for their implementation, and hence it can be
either supervised or unsupervised. Although the supervised models are
the most targeted techniques, unsupervised solutions have also at-
tracted a growing attention because the training of NILM frameworks is
usually avoided. Thus, unsupervised learning models require less effort
from the end-user compared to the supervised solutions [75].

In [27,28], conventional CNN-based architectures with various
kernels is proposed to solve the NILM problem. Mauch et Yang [30]
propose a supervised NILM technique based on a deep recurrent long
short-term memory (LSTM) network. In [31], a CNN with gradient
descent architecture is used to train voltage-current (V-I) trajectories
and classify appliances in an NILM system. In [44], a gated CNN is

introduced to segregate aggregated power signals. Specifically, the
gated-linear-unit (GLU) was deployed in convolutional layers for clas-
sifying the activations of target devices in each time interval. In [55], to
address the context dependencies of load usage footprints, Chen et al.
design an improved CNN architecture on a scale-and-context-aware
network, which helps enhance the disaggregation accuracy in com-
parison with traditional CNN. In [56], a deep CNN architecture based
on the rectified linear units (ReLU) with a data augmentation and
preprocessing approach is proposed to disaggregate electricity con-
sumption signals. Authors in [58], proposed an NILM system based on
CNN and gated recurrent unit (GRU) with the object of classifying ap-
pliances’ states and estimating power consumption. A semi-supervised
multi-label CNN system was introduced in [49] to draw high-level
power consumption fingerprints using bidirectional LSTM (BiLSTM).

In [45], an NILM system is implemented using a CNN based varia-
tional autoencoder (VAE) with the ReLU as the activation function. In
[50], synthetic aggregated patterns were used to train a CNN algorithm
based on AlexNet architecture, then background filtering was also in-
troduced to generate data to further train the CNN to collect appliance-
level footprints. In [51], a causal 1D CNN based on wavelet and neural
networks (WaveNet) architecture is presented to reduce the complexity
and achieve a better energy disaggregation performance. In [48], a
CNN is trained using elliptical Fourier features of devices’ V-I trajec-
tories that are represented as images. In [52], a CNN based NILM
system was developed using a dilated-convolution residual network
(DCRN). The latter is used with a view of facilitating the network-op-
timization task and further solving the vanishing gradient issue. In [76],
the authors train a group of autoassociative neural networks (AANNs)
in the way that every network is adjusted using the features of a specific
household device. After that, the AANNs are implemented in parallel
architecture where a candidate device can be recognized through
making a competition between the AANNs in which the closest iden-
tification is approved. In [47], the NILM process was considered as a
noise mitigation issue and a denoising autoencoder structure was de-
ployed. Specifically, the authors attempted to reconstruct disaggregated
signals (appliance-level data) from their aggregated representation
(considered as the noisy signal).

Table 2 summarizes the characteristics of the aforementioned
DNNs-based NILM systems and specifies a useful comparison in terms of
their accuracy performances and other relevant parameters such as the
adopted architecture, number of monitored appliances and frequency
resolution.

Although the presented DNNs-based NILM architectures have been
deeply investigated in the literature, they still suffer from several
drawbacks and limitations that (i) hinder developing robust NILM
systems, (ii) make it difficult to implement real-time solutions and

Table 2
An overview of the existing NILM systems based on deep neural networks.

Work Category Sub-category Architecture # appliances Resolution Accuracy
(Hz) in (%)

[43] supervised RNN LSTM 18/9 1 N/A
[44] supervised Gated CNN gated linear unit (GLU) 6 1/3 N/A
[45] supervised CNN ReLu + variational autoencoder 6 1/6 N/A
[46] supervised CNN CNN with gradient descent 11/15 30, 44 k 77.6/75.4
[47] supervised CNN denoising autoencoder 5 1/3, 1/6, 1/60 N/A
[48] supervised CNN elliptical Fourier features 12 30 k 80.4
[49] semi-supervised CNN BiLSTM + temporal ensembling CNN 4 1/3 97.45
[50] supervised CNN background filtering 4 1/6 96.92
[51] supervised Causal CNN 1D CNN + dilated causal layers 20 1/60 94.7
[52] supervised CNN ResNet + DCRN 5 1/6 96.67
[53] supervised CNN CNN with Differential Input 3 1 N/A
[54] supervised CNN CNN with residual unit 21 4 k 97.9
[55] supervised CNN scale- and context-aware network 3 1/3 83
[56] supervised CNN ReLu + data augmentation/pre-processing 2 N/A 76.83
[57] supervised CNN siamese neural networks 11/15 30, 44 k 90/85
[58] supervised CNN + RNN ReLu + GRU 4 1/3, 1/6 76/82
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further most of them have not yet been overcome. Moreover, one of the
main drawbacks of DNNs is their high computational complexity, which
makes it difficult to implement real-time NILM systems based on these
algorithms.

For non-event NILM models, although they can be considered as a
promising concurrent solution to event-based techniques, their major
limitation is related to the fact that most of them still have a low
identification performance, in which most of them have an accuracy
below 90%. Therefore, these approaches still need deep investigations
in order to improve their accuracy. Further, since they rely mainly on
complex probabilistic estimation and prediction, their implementation
on embedded systems is difficult, even impossible. From another side, it
is worth noting that in most of existing NILM frameworks, large-scale
datasets with different sampling rates are adopted with selective spe-
cific houses, devices and time periods, making empirical performance
outputs very difficult to reproduce.

3. Proposed system

Under this section, an elaborate description of the proposed NILM is
presented. The main steps used to develop the proposed architecture
are explained in the following sub-sections, including data pre-proces-
sing, event detection, feature extraction based on a MSWPT descriptor
and appliance classification using an EBT classifier. The block diagram
of the proposed NILM system is depicted in Fig. 1.

3.1. Data pre-processing

The raw data collected from the GREEND and REDD experimental
campaigns are incomplete and they cannot be fed to the event-detection
and feature extraction modules directly without preliminary processing.
Consequently, it may be required to clean the data through checking for
missing observations (NaN samples) and thus replacing them by zeros.
Moreover, up to 80000 samples are recorded from daily energy con-
sumption of each electrical device. A re-sampling process is performed in
all power consumption signatures and thereby fingerprints with a length
of 30000 patterns are then used under this framework.

3.2. Event detection

Event detection contributes significantly in developing a robust
NILM system because it aims at accurately detecting state-transitions of
electrical devices (events) from aggregated power signals collected in
household environments.

In this framework, the event detection task is performed using a
simple yet effective technique, which works in the frequency-domain
and uses a Cepstrum filtering to suppress the noise that can hinder
detecting transition changes effectively. The main advantage of this
scheme is that no additional information about electrical devices is
needed, and further nor training tests are required. The event detection
steps are summarized in Algorithm 1 and Fig. 2.

Algorithm 1. The event detection algorithm used in the proposed NILM
system.
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3.3. Feature extraction using multi-scale Wavelet Packet Tree

In order to recognize the events detected in the previous step, a
powerful feature extraction should be used that can easily discriminate
between different events pertaining to different appliance classes, and
on the other hand helps correlate between events pertaining to the same
appliance categories. Multi-scale analysis of the MSWPT is regarded
pertinent for exploring and extracting features from similar signals. It
manifests proper frequency resolution as well as a finite temporal re-
solution, and thereby it can easily retrieve low frequency elements
(approximation) and specify high frequency samples (detail). Further,
the MSWPT is implemented through disseminating the liaison among
the multi-resolution approximations and wavelet filters.

Using the MSWPT, the event space extracted using the Algorithm
1 from each electrical power signal is split into lower frequency coef-
ficients +Lj 1 (approximation) and high frequency coefficients +Hj 1 (de-
tails). Where i is the decomposition level (scale resolution) and j is the
index of the sub-band. The splitting process is realized by breaking up
the orthogonal base t J{ ( 2 )}i

i
i Z of i j, (where 0, 0 is the initial

event space) into two novel orthogonal bases +
+t J{ ( 2 )}i

i
i Z1

1 of
+i j1,2 and +

+t J{ ( 2 )}i
i

i Z1
1 of + +i j1,2 1, while () is the function used

for resizing and () represents the wavelet filters, they are given as

=t t J( ) 1
|2 |

2
2i j i

i

i, (7)

=t t J( ) 1
|2 |

2
2i j i

i

i, (8)

It is worth noting that the parameter 2i represents the resizing cri-
teria and it defines the rate of compression or resizing.

The main difference between MSWPT and conventional wavelets is
that MSWPT splits the low frequency samples as well as the high fre-
quency coefficients using a quadrature mirror filter (QMF) bank. The
operation is then restarted I times, with I Nlog2 , and N represents the
length of the original event. Consequently, ×I N observations are ob-
tained. Therefore, at decomposition state i = …i I( 1, 2, , ), the tree
produces N/2i observations. This recursive splitting scheme creates the
MSWPT structure, which is specified with various frequency localiza-
tion properties. Fig. 3 depicts a three level splitting process using the
MSWPT. When the desired scale i is reached, the pertinent features are
finally extracted by combining the first half of samples from each band.
Consequently, a feature vector G having half the length of the initial
event vector 0,0 is constructed. After applying the MSWPT process to
all appliance power signals in a specific dataset, the feature vectors
extracted will be then used to train the EBT classifier in the next step.

3.4. Ensemble bagging tree classifier

A detailed description of the EBT algorithm used in under this fra-
mework is given in this section. EBT is a machine learning architecture
where various weak learners are used in the training process to fix si-
milar issue and then fused to obtain better prediction performance [77].

3.4.1. Bagging theory
For a classification problem, a prediction function g v G( , ) forecasts

a class …c l{ , 2, 3, , C}

Fig. 2. Flowchart of the event detection scheme.

Fig. 1. Flowchart of the proposed appliance recognition system based on MSWPT and EBT.
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I = =c v P g v G c( | ) ( ( , ) ) (9)

I c( | x) can be interpreted as: for several independent duplicates of the
learning group G g, forecasts the class tag j for the input vwith pro-
portional occurrence I c( | v). Also, if P c v( / ) stands for the probability,
the observation v triggers the class c. Afterward, the probability of
properly classifying the produced event at v is

I c v P c v( | ) ( | )
c (10)

and the total probability of accurate classification is estimated ac-
cording to

I=T c v P c v P dv[ ( | ) ( | )] ( )C
c

V
(11)

where P dv( )V depicts the probability distribution of v. Also, by con-
sidering Eq. 10, it is worth to mention that for every I c( | v), we have

I c v P c v P c v( | ) ( | ) max ( | )
c c (12)

and the equality is reached only if

I =
=

c v
P c v P i v

( | )
1 if ( | ) max ( | )

0 else
i

(13)

Interpreting I c v( | ) means that the conditional probability under the
predicted class can reach the global accuracy according to formula 11.
The total probability of true classification is given as

Fig. 4. Flowchart of the EBT Algorithm used to classify the appliances.

Fig. 3. Example of the MSWPT splitting of 0,0 into tree structured subspaces.
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= + =T P c v P v I K v c P c v P vmax ( | ) ( ) ( ( ) ) ( | ) ( )r v S c
v v S

c
A v

(14)

where S represents the total set of input v where K is order-correct. As a
consequence, if a classifier has good performance in the direction of
being order-correct for almost all inputs v, accordingly the aggregation
helps turn it into a roughly optimal classifier.

3.4.2. Ensemble bagging tree
In practice, the EBT is founded upon the bagging theory. Puts dif-

ferently, it is based on extracting a large amount of variables from in-
itial data samples, organizing them in various sets, and thus a specific
technique is implemented to every bootstrap set. After that, a
straightforward vote process for classification is used to fuse the out-
puts. Fig. 4 describes the implemented EBT algorithm.

Towards this regard, considering M sub-groups of the feature group
G extracted using the MSWPT and M weak decision tree classifiers

= …D m M, 1, 2, ,m , and allowing the classifiers making J cycles of
training. Every cycle group compounds an ensemble of primary training
patterns, which are randomly drawn from training variables.
Subsequent to primary training, variables appearing multiple times in
each subset training cycle provide finally a succession of prediction
functions …C C C C, , , , M1 2 3 . Therefore, the total prediction C V( ) has
been just the fusion of these predictions using a voting process.

4. Experimental results

In order to help energy researchers and scientists testing their al-
gorithms and solutions under realistic conditions, a set of publicly ac-
cessible databases has been proposed in the literature for different ap-
plications and using various sampling frequencies. As it can be found in
literature, the datasets that are collected at low sampling rates are the
most popular nowadays since they can economize the power usage and
data storage even if they hinder the recognition task. However, in this
study, we will prove that by handling the low sampling rate con-
sumption patterns, the proposed solution can not only capture the most
prominent features of each device, but also provides a high appliance
recognition rate in addition to saving storage and power. To that end,
two datasets, namely the GREEND and REDD are considered in this
work to evaluate the proposed NILM system.

4.1. Evaluation metrics

The selection of criteria for evaluating an appliance recognition
system is utmost importance given that this choice impacts the measure

and comparison of the recognition scheme. The accuracy (acc) and F1
score are considered in this study. Further, the confusion matrix is
considered as a simple yet efficient measure that may deserve to be
inspected when treating a classification question. In fact, this factor
provides a valuable synthesis of how good the classification archi-
tecture is performing. As such, it represents a useful and needful eva-
luation metric for any classification system. In addition, we have also
used the normalized cross-correlation (NCC) for measuring the simi-
larity of the raw events and MSWPT features extracted from the original
events. The normalized correlation can be represented as the compu-
tation of the cosine of the angle among two signals (or feature vectors)
x and y:

= = =NCC Cos x y
x y

x y
x y

NCC( ) ·
| || |

·
, 1 1i i i

i i i i (15)

4.2. Dataset description

In the first stage of the evaluation, the GREEND [23] dataset is
considered to investigate the performance of the proposed NILM
system. The GREEND repository encompasses electricity consumption
profiles (in Watts) measured at the appliance level during an experi-
mental campaign implemented in 8 different households in Austria and
Italy. This database is collected for a period ranging from 4 to
13 months at a sampling frequency of 1 Hz. The performance validation
over this framework is managed using the six ensuing house config-
urations, which are selected randomly:

• Household 0: represents a separate domestic resident, including two
floors in the region of Spittal an derDrau (Austria). This house was
occupied by a retired couple that spent nearly all of their time on
household labor.
• Household 1: describes an apartment dwelling containing only one
floor in the region of Klagenfurt (Austria). It was inhabited by a
couple, expending most of their time working, especially on week-
days, while at the weekends they were mainly being at the house.
• Household 2: is a separate residence villa containing two floors in
the region of Spittal an derDrau (Austria). This home included three
occupants, a husband that worked full time, a housewife and a
28 year old son that spent most of the time working.
• Household 4: represents a dwelling apartment containing two floors
in Udine (Italy). This apartment was inhabited by a young working
couple, passing almost of their time outside, they were just being
indoors at nights and weekends.
• Household 5: describes an apartment dwelling a separate domestic
resident encompassing two floors in Colloredo di Prato (Italy). This
house was occupied by 3 persons; an employed husband, a house-
wife and an adult son that worked and spent most of the time out-
side.
• Household 7: stands for a separate villa incorporating two floors in
the region of Basiliano (Italy). This resident was occupied by a re-
tired couple that spent almost of their daylight time in the house-
hold.

Furthermore, each house contains a set of appliances that were
observed for a period of more than four months and less than
13 months. The monitored appliances in each domestic building are
reported in Table 3. As it can be shown, each household contains at
least three different devices. Since the GREEND dataset includes ap-
pliance-level consumption fingerprints, the exaggerated signal is as-
sumed to be the aggregation of energy consumed by the component
appliances in each household as explained in [23,78]. In this regard, if
N devices are considered in each house, and for every device the power
signal at time t is described as = …S s s s( , , , )i t i i i T, ,1 ,2 , , where s Ri t, +.
The aggregated power consumption is represented as Zt = += si

N
i t t1 , ,

Table 3
Description of the appliances monitored in each household.

Household # appliances Period Appliance description
(days)

0 6 242 Coffee machine, radio, fridge w/freezer,
dishwasher, kitchen lamp, TV

1 3 474 Fridge, dishwasher, microwave
2 5 258 network attached storage (NAS), washing

machine, drier, dishwasher,
coffee machine

3 3 412 fridge w/o freezer, computer, TV
4 5 225 Total outlets, fridge w/freezer, electric

oven, computer w/scanner and
printer, washing machine

5 5 340 Lamp, stove, iron, LCD TV, fridge w/freezer
6 3 258 Plug 1 (Total ground and first floor), Plug 2

(total garden and shelter)
and plug3 (total third floor)

7 6 138 TV w/decoder, fridge w/freezer, kitchen
TV, ADSL modem, freezer,
laptop w/scanner and printer
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where t is a noise term. The main object of the NILM, is to recover the
unknown signals Si t, given only the observed aggregated readings Zt
[78].

On the other hand, the REDD dataset [24] is also used in this fra-
mework to mainly compare the performance of the proposed NILM
system with state-of-the-art. In this dataset, power consumption fin-
gerprints of six different households are collected at the appliance-level
and aggregated circuit. A sampling rate of 3 s has been adopted for a
duration of 3–19 days to record consumption data.

4.3. Event detection performance

In this section, we first discuss the selection of the threshold = 10
used in the proposed event detection scheme (Algorithm 1). In practice,
when Cepstrum coefficients are used, different threshold values can be
adopted, e.g. = 5, 10, 15, 20, 25, 30. Consequently, selecting the ap-
propriate threshold value is an important step that can affect the event
detection performance and further the final performance. To that end,
the impact of threshold variation on the event detection performance in
terms of the F1 score is assessed in Table 4. It can be noticed that by

Table 4
Impact of the threshold variation on the performance of the proposed event detection scheme.

GREEND REDD

Threshold ( ) 5 10 15 20 25 30 5 10 15 20 25 30

Home 1 96.13 97.59 99.07 98.31 97.67 97.01 97.36 97.96 98.53 98.14 97.6 97.01
Home 2 97.55 98.37 99.42 98.11 97.43 96.22 97.51 98.22 98.68 97.83 97.49 97.17
Home 3 96.25 97.14 97.86 96.88 96.38 95.77 95.95 96.76 97.31 96.88 96.10 95.64
Home 4 97.59 98.30 98.73 98.12 97.35 96.42 96.86 97.58 98.20 97.71 97.16 96.40

Table 5
Average performance of proposed event detection method with reference to other detectors.

Dataset GREEND REDD

Detector 2 Sobel On-ff Hybrid Our 2 Sobel On-off Hybrid Our
pairing pairing

F-score (%) 98:06 87.89 97.07 98.81 98.93 97.17 83.42 96.23 97.75 98.01
Time (sec) 12.7 4.11 41.1 577.8 0.37 9.8 3.34 39.7 572.4 0.32

Table 6
Performance investigation of the proposed NILM system using the EBT classifier in comparison to various other machine learning algorithms.

ML Classifier house 0 house 1 house 2 house 3 house 4 house 5 house 6 house 7

algo parameters acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

SVM Linear Kernel 92.6 90.76 48.28 30.43 88.53 88.24 92.3 91.43 91.39 89.67 90.41 89.33 90.51 89.62 85.39 84.86
SVM Quadratic kernel 91.81 89.77 21.05 10.23 89.32 89.14 91.86 90.1 90.17 89.23 90.61 90.57 90.1 89.68 81.64 72.83
SVM Gaussian kernel 92.63 90.95 76.52 65.63 88.21 88.24 92.08 91.37 88.63 75.94 90.24 89.81 88.64 93.3 79.32 70.24
KNN K = 1, Euclidean dist 80.47 77.86 88.71 87.9 89.90 89.57 83.69 80.97 54.17 54.32 74.09 71.36 74.39 72.54 82.57 81.54
KNN K = 10, Weighted 69.38 65.2 70.34 65.98 87.16 86.02 76.28 74 91.49 74.7 71.9 66.78 73.49 71.26 85.28 84.69

Euclidean dist
KNN K = 10, Cosine dist 88.43 87.69 92.48 91.93 89.71 89.08 92.63 88.47 76.08 70.3 88.65 86.19 88.12 87.36 85.26 85.73
DT Fine, 100 splits 87.22 87.1 91.8 90.11 88.66 87.30 88.11 86.35 91.78 91.36 86.39 85.74 88.65 87.73 85.31 84.74
DT Medium, 20 splits 87.71 68.98 92.71 92.16 54.78 50.14 88.23 85.94 91.05 91.16 88.61 87.58 89.91 87.82 84.15 84.03
DT Coarse, 4 splits 67.55 62.83 92.55 92.29 89.35 88.2 77.25 74.03 80.34 80.68 72 70.24 74.23 71.36 68.17 63.6
DNN 10 hidden layers 87.33 85.07 89.67 88.3 91.23 90.95 89.67 87.2 90.28 89.96 89.37 88.09 88.74 88.2 89.91 88.64
EBT 30 learners, 42 k 97.65 97.54 98.23 98.09 95.73 95.61 97.91 97.75 96.69 96.61 95.84 95.88 97.8 97.51 96.23 96.15

splits

Table 7
Performance investigation of the proposed MSWPT feature extraction vs. other descriptors using the EBT classifier.

Feature house 0 house 1 house 2 house 3 house 4 house 5 house 6 house 7 Time
extraction (sec)

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 acc F1

Raw data 51.43 46.11 51.97 47.08 49.27 44.66 50.19 46.35 50.81 47.1 49.87 46.42 51.13 47.63 50.8 47.22 /
RMSF 90.74 89.07 92.32 91.19 89.78 88.2 90.92 89.27 90.4 89.77 88.93 88.49 90.15 88.76 89.52 89.04 0.41
MADF 89.32 88.19 90.70 90.22 89.07 87.45 88.93 88.64 89.67 89.14 88.71 86.86 90.27 89.7 89.4 88.56 0.24
WLF 85.16 84.3 85.76 84.79 83.80 83.43 84.87 84.37 83.91 81.58 83.50 82.46 84.07 83.23 83.96 82.67 0.29
ZCF 76.18 75.28 77.23 76.11 73.32 71.37 76.49 76.03 75.41 74.65 73.3 70.98 74.44 73.8 75.81 74.6 0.37
SSC 86.57 86.24 86.90 86.51 84.97 84.39 86.89 86.72 85.51 84.83 85.27 83.71 85.94 85.2 85.33 84.65 2.6
ARF 91.25 89.76 91.7 90.28 89.69 89.19 91.28 90.5 90.91 88.73 89.84 89.9 91.77 91.38 90.5 90.29 13.52
DWTF 92.31 90.78 92.84 91.17 91.06 89.85 92.97 91.3 90.46 90.32 91.12 90.71 91.77 90.6 91.09 89.74 0.33
S-Transform 95.34 95.28 96.17 95.49 93.6 93.44 95.25 95.08 94.58 93.97 94.05 93.86 95.85 95.52 93.96 94.12 0.20
MSWPT 97.65 97.54 98.23 98.09 95.73 95.61 97.91 97.75 96.69 96.61 95.84 95.88 97.8 97.51 96.23 96.15 0.21
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increasing the value of threshold, the F1 score performance improves as
well until = 15 is reached, in which the best performance is achieved.
Following, the performance drops as the value of the threshold has
increased more than 15. Consequently, = 15 was selected as the op-
timal value and hence used in collecting the results obtained in the rest
of this framework.

In order to evaluate the performance of the proposed event detec-
tion scheme with state-of-the-art, a comparison is conducted with the
chi-squared goodness-of-fit ( 2 GOF) detector [79] and the Sobel de-
tector [80]. The 2 is based on detecting the events through the

assumption that two consecutive timeframes are usually sharing a si-
milar distribution. Following, an x2 statistic is then performed and a
positive detection of an event is occurred if the null hypothesis is re-
jected. While in [80], the Sobel edge detector is used to detect events in
the power signals. In [81], an unsupervised event detector using an on-
off pairing and k-nearest neighbors (KNN) model is proposed. In [82], a
hybrid event detection approach is introduced, which is based on three
main steps defined as: (i) capturing the events using a moving average
change with time limit; (ii) adopting a derivative analysis to process
devices having long transitions; and (iii) using a filtering process to

Fig. 5. Correlation matrices measured between: (a) raw events pertaining to the same appliance classes and (b) their MSWPT features.
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treat devices with a high fluctuation rate.
Through this comparison, for the case of our event detection module

and as discussed above, the threshold parameter = 15 is adopted to
efficiently detect the events. Table 5 presents the average F1 score and
time execution results of the proposed event detection scheme com-
pared to the 2, Sobel, on-off pairing and hybrid detectors under the
GREEND [23] and REDD [24]. These results are collected from the first
four houses in each dataset.

It is clearly seen that the proposed Ceptsrum based event detection
scheme achieves better performance than 2, Sobel and on-off pairing

detectors. Specifically, F1 score rates of 98.93% and 98.01 have been
attained on the GREEN and REDD datasets, respectively. Moreover, our
event detection scheme has a lower time computation in comparison to
the other detectors, in which time executions of 0.37 s and 0.32 s have
been reported on the GREEND and REDD datasets, respectively.
Moreover, it is worth mentioning that the hybrid detection scheme has
a comparable performance with our detector, however it shows the
highest time computation, where up to 577.8 s and 572.4 s execution
times have been reported under the GREEND and REDD datasets, re-
spectively.

Fig. 6. Example of confusion matrices collected on the GREEND using the proposed NILM system at different households; (a) house 0, (b) house 1, (c) house 2, (d)
house 4, (e) house 5 and (f) house 7.
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4.4. Investigating machine learning algorithms

After conducting the event detection stage, a vector with a length of
16384 samples is obtained. The latter is then fed to the MSWPT de-
scriptor that results in another vector with 8192 samples. More speci-
fically, when the MSWPT is considered, moving from a level to the next
one, the data are split into two parts, one is considered as base fre-
quencies and the second refers to high frequencies. This was possible
with the use of low-pass and high-pass filters. The operation is repeated
until the desired level ( =i 7) is reached. Finally, 128 vectors of 128
samples are obtained while 64 of them refer to base frequencies and the
other 64 represent high frequencies. The pertinent features are finally
extracted by combining the first 64 samples from each vector, in which
the pertinent features of each subband are spread. In this context, the
final MSWPT feature vector with 8192 samples is constructed.

Through this subsection, the recognition efficiency of the EBT to-
gether with various machine learning schemes, including KNN, deep
neural network (DNN), SVM, decision tree (DT), is reported in terms of
the classification accuracy, F1 score and confusion matrix. As pointed
out in Section 3.4, the EBT classifier fuses the classification rates of
many separate DT classifiers trained using bagging tree. The classifier
parameters are adjusted empirically through varying the number of the
weak learners and root splits, and then observing the output perfor-
mance. Following, the parameters showing the higher accuracy and F1
score rates are finally set as the personalized parameters for this case
study. Consequently, in this framework, we combine 30 weak learners
using 42 k splits in bagging tree and thus a final robust decision is
collected through the combination of these decisions.

Table 6 depicts a comparison between the EBT and the other ma-
chine learning algorithms with different classification parameter set-
tings in terms of the accuracy and F1 score.

Overall, it can be witnessed that the EBT scheme has shown pro-
mising performances in comparison with the other machine learning
algorithms. And by the way, it outperforms all of them in terms of
accuracy and F1 score percentages for the six households assessed in
this study.

4.5. Comparison with other descriptors

In addition, the proposed MSWPT-based feature extraction is com-
pared to other well-known descriptors, which are based on extracting
different kind of power characteristics, including root mean square
features (RMSF), absolute deviation features (MADF), zero crossing
features (ZCF), waveform length features (WLF), slope sign change
features (SSCF), auto-regressive feature (ARF), discrete wavelet trans-
form features (DTWF) [83] and S-Transform. Table 7 depicts the
comparison outputs in terms of the accuracy, F1 score and execution
time. It can be clearly seen that the proposed MSWPT outperforms the
other descriptors on all the households considered in the evaluation in
terms of the three evaluation metrics. Furthermore, the S-Transform
performs well under all the 8 houses considered in the evaluation, its
performance is lower than the MSWPT by an average of 2–3% in terms
of the accuracy and F1 score. In terms of time complexity, the MSWPT
has the best performance, however the S-transform has almost the same
execution time with a very slight difference of 0.01 s.

4.6. Correlation study

To easily comprehend why the proposed feature extraction ap-
proach based on MSWPT can achieve good performance for appliance
recognition as compared to the other solutions, the normalized corre-
lation between power consumption signals belonging to the same class
is explored in this section. To that end, six power consumption signals

…s s s1, 2, , 6 are selected randomly from each class and thereby the
correlation coefficients between the various signals are thus measured
to illustrate how the MSWPT can help correlate between the signals
pertaining to the same class.

Fig. 5 illustrates the NCC matrices estimated between the six raw
signals and the respective MSWPT descriptions from four appliance
classes, including coffee machine, fridge w/freezer, radio and Dish-
washer. As it is shown, the plots at the left side of Fig. 5 portrays the
correlation between the original power signals. It can clearly be seen
that NCC values are very low and change randomly when comparing

Fig. 7. Impact of varying the event detection threshold on the final performance of the proposed NILM system in terms of the: (a) Accuracy and (b) F1 score.

Table 8
Time complexity comparison of the EBT and other machine learning algorithms used in the proposed NILM system.

Algorithms SVM KNN DT DNN EBT

Time 4.83 s 0.29 s 0.31 s 5.67 s 0.33 s
complexity (Linear Kernel) (K = 1, Euclidean dist) (Fine, 100 splits) (10 hidden layers) (30 learners, 42 k
(with 4.69 s 0.28 s 0.28 s splits)
parameter (Quadratic kernel) (K = 10, W. Euclidean dist) (Medium, 20 splits)
settings) 5.32 s 0.32 s 0.3 s

Gaussian kernel (K = 10, Cosine dist) (Coarse, 4 splits)
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two signals, there is no specific interval that can limit NCC measures.
This results in a high difficulty to classify raw signals. However, for the
case of MSWPT descriptions on the right of Fig. 5, the NCC values
clearly outperforms those obtained from the raw power signals. More
specifically, NCC values for MSWPT descriptions are more than 0.5,
062, 0.53 and 0.45 for coffee machine, fridge w/freezer, radio and
Dishwasher appliance classes, receptively. Therefore, this leads to
better results when the MSWPT is adopted because it can increase the
correlation between power signals belonging to the same appliance
class.

4.7. Confusion matrices

The confusion matrices obtained using the proposed NILM system
for six households considered in this study are presented in Fig. 6. For

each particular sub-figure, the performance of the proposed classifier
for each appliance class is portrayed. Every unit illustrates the number
of samples pertaining to the tag of its corresponding row, which are
categorized as can be seen by the tag of its column. The correct clas-
sifications are represented by the diagonal units, whereas the other ones
reveal the ratio of incorrect classifications. In other words, each unit
outward the matrix diagonal exhibits a misclassification. To a large
extent, it can be seen that for all of the appliances identified in each
household a high percentage of correct classification is achieved using
the proposed NILM solution.

4.8. Time complexity

To check the possibility of developing the proposed NILM system as
an industrial application in future works, the time complexity of this

Fig. 8. Accuracy and F1 score performance of the proposed NILM system using the MSWPT feature extraction vs. other descriptors under the REDD dataset: (a) House
0, (b) House 1 and (c) House 2.
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solution versus the other machine learning based on the MSWPT has
also been investigated. In this respect, the algorithms considered in this
comparison are implemented using Python 3.7, they have been running
on a desktop, having a Core i7-3770S processor, 16 GRAM and 3.1 GHz.
Consequently, the obtained complexity results will be closer to the final
solution that can be implemented on multi-core embedded platforms
such as Jetson Nano, Jetson TX1, Jetson TX2 and ODROID. The power
consumption fingerprints collected from house 1 which contains six
different appliances are utilized to check the computational complexity.
The time complexity of recognition step based on the EBT is compared
with the other algorithms through analyzing the power consumption
footprints gathered during a period of 10 days. Obtained computational
performances in seconds are then presented in Table 8. Henceforth, it
can be spotted that the K-NN consumes the lowest complexity, also the
EBT has a low time execution that is comparable to the DT. Specifically,
the execution time is about 0.33 s, which is less than the sampling rate
of data collection. Further, if the system will be implemented on em-
bedded systems with GPU cards the time complexity can be reduced as
well. In addition, time computation can also be reduced through re-
sampling the collected data to lower sampling rates, e.g. 30 s, 1 min,
2 min, etc.

4.9. Impact of the event detection on the classification performance

In order to investigate the impact of the detection event scheme on
the final classification performance, the threshold parameter is varied
in a range of 5–30 ( = 5, 10, 15, 20, 25, 30) and then the accuracy and
F1 score performance of the final classification is assessed. Fig. 7 pre-
sents an example of the obtained results on home 0, home 1, home 2
and home 3 from the GREEND dataset. It is clearly seen that by varying
the threshold values, the accuracy and F1 score are directly affected.
Specifically, by increasing the value of the threshold , the performance
is also increased until = 15 is reached, in which the best performance
is obtained. However, if the value of the threshold is increased further,
the accuracy and F1 score drop significantly.

4.10. Comparison with other descriptors

In order to test the performance of our scheme with other state-of-
the-art works, an empirical evaluation is conducted on the REDD da-
taset [24] that can allow a better comparison since a set of frameworks
have been evaluated on it. Aiming at comparing the performance with
previous works, we assess the performance the proposed algorithm on
three aggregated power signals from three houses, where each house-
hold includes a set of electrical appliances. The NILMTK, the open
sourced non-intrusive load monitoring toolkit [84], has been used to
clean up the null records. Moreover, our models have been trained
using the first week of collected footprints from every household for
making sure that ON/OFF events of each electrical device are captured
at least once.

Fig. 8 illustrates a comparison between the proposed MSWPT based
NILM method and other systems built using different descriptors

described previously in Section 4.5. It clearly seen that the proposed
MSWPT keeps promising performance under the REDD dataset, in
which it outperforms other descriptors. Specifically, accuracy levels of
95.61%, 96.86% and 95.97% are obtained on house 1 (18 devices
620 h), house 2 (9 devices, 258 h) and house 3, respectively. Moreover,
it is worth noting that the average performance under the REDD dataset
(accuracy = 96.36 %, F1 score = 95.84%) has been slightly dropped in
comparison to that obtained on the GREEND dataset (accu-
racy = 97.87% and F1 score = 97.83%). This can be justified by the
fact that the aggregated data used in the REDD dataset are collected
directly from the main supply; however, in the GREEND, the aggregated
data are gathered through summing the individual appliance footprints.
Furthermore, the S-Transform performs well on the REDD dataset, in
which their accuracy and F1 score performances are less than those of
the MSWPT by 2–3.5%. For example, accuracies values of 93.39%,
93.89%, 93.13% and F1 scores of 92.97%, 93.67% and 92.71% have
been achieved on house 1, house2 and house 3, respectively.

4.11. Comparison with existing NILM systems

In addition to investigations executed in the aforementioned sec-
tions, a comparative study with other state-of-the-art NILM systems has
been conducted in this subsection. To this effect, a comparative analysis
is managed in terms of the classification accuracy with reference to the
used architecture, number of monitored appliances and the nature
learning model (supervised or unsupervised). Table 9 summarizes the
comparison outputs. It is clearly seen that the proposed system has
better performances than almost techniques considered in this study.
Only the performance of the framework proposed in [76] outperforms
the performance of our NILM system. However, it is worth noting that
the work presented in [76] can only identify 5 appliances, in contrast to
our NILM model, in which up to 20 electrical devices are recognized
under the REDD dataset.

4.12. Hardware implementation and its time complexity

To clarify the time complexity of our approach via the experiment,
we have implemented the MSWPT-EBT on a Raspberry PI 4 (RPI4)
model B [87] and Jetson TX1 [88]. The former has a 64-bit quad-core
processor and up to 4 GB of RAM, while the latter has an NVIDIA
Maxwell graphics processing unit (GPU) with 256 NVIDIA CUDA Cores
and 16 GB, hosted on an Ubuntu environment. The overall REDD da-
taset has been used to evaluate the training and test times.

Table 10 presents the training and test times (in sec) of the proposed
NILM system on the RPI4 model B and the Jetson TX1 using multicore
central processing unit (CPU) and GPU. It can be clearly seen that PRI4
model has the highest time execution for the training and test proce-
dures, in which the training has been executed in 133.68 s while the test
has been achieved in 0.58 s. However, by considering the Jetson TX1
the execution time has been widely reduced, especially when the
multicore GPU is used. In this case, the training has been executed in
9.37 s, while the test has been achieved in 0.039 s, i.e. to identify a
candidate appliance, only 0.039 s is required on the Jetson TX1 with
multicore GPU, which is much lower than the sampling frequency of
the REDD datset (1/3 s). This proves that the proposed algorithm can be
used for real-time NILM applications.

Table 9
Performance comparison of the proposed solution with other state-of-the-art
approaches under the REDD dataset.

Work Architecture Learning # device Accuracy
scheme classes (%)

[85] Bayesian Hidden Semi-Markov
Models

un-supervised 4 81.5

[86] Karhunen Loéve supervised N/A 87
[32] HMMs + Iterative k-Means un-supervised N/A 85
[76] AANN supervised 5 98.7
[58] CNN + RNN supervised 20 77.1
Our MSWPT + EBT supervised 20 96.36

Table 10
Time complexity of the MSWPT-EBT using the hardware implementation.

Training Test

RPI4 Model B Jetson TX1 RPI4 Model B Jetson TX1

CPU GPU CPU GPU

133.68 45.11 9.37 0.58 0.231 0.039
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5. Conclusion

This framework reports a powerful non-intrusive load monitoring
system designed based on (1) using a powerful frequency-based tech-
nique relying on a Cepstrum filtering to detect appliance events, (2)
introducing a novel multi-scale wavelet packet tree descriptor to extract
relevant features from detected transition changes, and (3) applying an
improved architecture of the ensemble bagging tree to identify elec-
trical devices. The empirical evaluation is conducted on two well-
known realistic datasets, namely the GREEND and REDD, which are
gathered at 1 Hz and 1/3 Hz, respectively. In addition, an extensive
survey of recent non-intrusive load monitoring techniques has been
conducted, in which their characteristics, performances and drawbacks
are presented.

The proposed non-intrusive load monitoring system accomplishes
very satisfying appliance recognition performances in terms of the ac-
curacy, F1 score and computational complexity. Specifically, up to 29
domestic appliances are well identified with an average accuracy of
97.87% in the case of the GREEND dataset. Whereas, up to 96.36% of
the accuracy is achieved on the REDD dataset, in which 20 appliance
groups are considered in the evaluation study. Consequently, this as-
certains the efficiency and applicability of the solution presented over
this framework.

A limitation of the proposed NILM system that will be addressed in
our future work is mainly the identification of unknown appliances
(that do not pertain to any class in the reference dataset). Specifically,
because we use a supervised classifier, if an unknown appliance appears
it will be affected to one of the classes in the reference dataset. In this
context, it will be a false negative detection. To resolve this problem,
another identification stage could be deployed to check the similarity of
the unknown appliance feature with all the features in the reference
dataset and then a threshold parameter can be set to decide whether an
appliance effectively belongs to one of the classes in the reference da-
taset.

Additionally, other challenges still need to be investigated in future
works, among others developing an automatic recommendation system
for reducing wasted energy based on the use of the proposed non-in-
trusive load monitoring system, which provides specific appliance
consumption rates. Therefore, analyzing those data helps detecting
abnormal or anomalous consumption, and hence appropriate re-
commendations can be generated to promote end-users adopting an
energy efficiency behavior.
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