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Abstract

Clustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC)
algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering
quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC) algorithm represents
data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and
precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on
cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more
concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC
frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces
a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC
as an alternative tool for studying gene expression data. The implementation of GBHC is available at https://sites.
google.com/site/gaussianbhc/
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Introduction

Clustering analysis is an important tool in studying genomic

data such as gene expression profiles and can be used to infer

biological function and regulation of genes. Eisen et al. [1] found

that in yeast S. cerevisiae, genes that are clustered together often

share similar biological function or are co-regulated, leading to

the recognition that genes in the same cluster can be

functionally related or regulated by a common set of transcrip-

tion factors. It has been shown in the literature that biological

function of a cluster can be inferred from ontology annotation of

its genes [2], and biological function of an uncharacterized gene

can also be inferred from the knowledge of genes in its cluster

[3,4]. Moreover, in modern medical research, clustering analysis

has been used to identify disease subtypes based on genetic

variation [5,6], and to identify a gene expression signature that

can be used as a prognostic marker for known disease subtypes

[7–9]. This aids stratification of patients for personalized

medicine.

Numerous commonly used clustering algorithms have a

significant limitation in that they rely on ad hoc methods to

identify the number of clusters within the data. In hierarchical

clustering algorithms [10–12], for example, identifying the

number of clusters mainly depends on visual identification,

whereas the number of clusters is required as an input to other

algorithms such as k-means [13] and self-organizing map [14].

Furthermore, many clustering algorithms require the choice of a

distance metric to indicate the strength of similarity/dissimilar-

ity between data points or clusters. However, there is little

systematic guidance about how to choose a metric for data such

as gene expression measurements that reflects reasonably well

the relationship between data. Often, it is difficult to define the

relationship, especially in high-dimensional space. Two com-

mon choices of metrics in gene clustering analysis literature are

Euclidean distance and Pearson correlation coefficient [15].

However, Euclidean distance is sensitive to scaling and

differences in average. Pearson correlation coefficient can only

capture linear relationship between data, and it is not robust to

outliers and non-Gaussian distribution [16]. Model-based

clustering algorithms can address both of these problems. In

model-based algorithms, data are represented by a mixture

model [17,18] of parameterized distributions, in which each

component represents a different cluster. The problems of how

to identify the number of clusters and the distance metric can

therefore be cast as a model selection problem - how to choose a

statistical model that best describes the data.

Bayesian hierarchical clustering (BHC) [19,20] is a model-

based clustering algorithm based on the Dirichlet process
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mixture model (DPM) [18,21,22]. It has strong advantages over

other model-based approaches. First, it produces a hierarchical

clustering structure which is more informative than a flat one.

Second, it uses Bayesian model selection to determine the

hierarchical structure, rather than an ad hoc distance metric,

thereby increasing the quality of resulting clusters. Multinomial

BHC (MBHC) [23] represents the data in each mixture

component as a product of multinomial likelihoods, subject to

a Dirichlet prior, and has been shown to produce higher

dendrogram purity and more biologically meaningful clusters

than other commonly used algorithms for the Arabidopsis

thaliana microarray dataset [23]. However, by using multino-

mial likelihoods, the algorithm requires a categorical approx-

imation of a continuous variable. This may not, therefore,

fully capture the underlying structure of continuous gene

expression data. Gaussian likelihoods are an obvious alterna-

tive here, as they do not require data approximation and have

been used for describing gene expression data in many

clustering analyses. Previous work on expression datasets of

ovary and yeast cell cycle show that model-based clustering

algorithms that use finite Gaussian mixture model produce

comparable quality clusters to a leading heuristic clustering

algorithm, even if the data do not totally satisfy Gaussian

mixture assumption [24]. In a comparative study of clustering

algorithms for cancer gene expression data, given the actual

number of clusters, finite Gaussian model approach is the

leader in assigning data to the correct cluster [25]. Rasmussen

et al. [26] propose a model-based clustering algorithm with

infinite Gaussian mixture model to study Rosetta compendium

of expression profiles of S. cerevisiaie, and find that clustering

results not only confirm previously published clustering

analyses but also reveal finer clustering level that are novel

and biologically consistent.

In this paper, we propose an extension of the BHC

algorithm for gene expression data which we term as the

Gaussian BHC (GBHC). GBHC offers several advantages over

other clustering algorithms: first, it assumes an infinite

Gaussian mixture model for gene expression data, which has

been shown to be biologically plausible in literature [24–26];

second, it employs the mixture model in a Bayesian

framework to perform a model-based hierarchical clustering

of gene expression data revealing hierarchical structure

present in the data; third, it infers the number of clusters

automatically from the data; and fourth, it uses the Gaussian

mixture assumption to describe the data and uses a normal-

gamma distribution as a conjugate prior on unknown means

and precisions of the Gaussian likelihoods. We introduce two

variants of GBHC: one with hyperparameter optimization over

the whole tree (GBHC-TREE), and another with hyperpara-

meter optimization at every merger (GBHC-NODE). Further,

we derive a tractable formulation for speeding up the

hyperparameter optimization in case of GBHC-NODE, result-

ing in a speedup factor of up to 11 over GBHC-TREE. We

compare these two algorithms with a range of other clustering

methods, performing a study over 3 synthetic datasets and 11

cancer gene expression datasets. The results show that although

the data are not very well-represented by a mixture of Gaussian

distributions, both variants still improve the clustering quality if

the data are normalized and do not have strong correlation

between variables. On average, both flavors of our GBHC

algorithm produce clustering results which compare favorably to

the existing approaches.

Materials and Methods

Notations

Bayesian Hierarchical Clustering Algorithm
BHC [19] assumes that data are generated from a mixture

model, in which each cluster within the data corresponds to a

different distribution component of the model. Suppose that data

points x(i) in a cluster Dk are independently and identically

generated from a probabilistic model P x hjð Þ with unknown

parameters h, and h are governed by a prior P(hDj) with

hyperparameters j. Thus, the marginal likelihood of Dk can be

expressed by

P Dk jjð Þ~
ð

P
x ið Þ[Dk

P x ið Þ hj
� �" #

P h jjð Þdh: ð1Þ

The algorithm initially places each data point into its own trivial

cluster and iteratively merges the two most similar clusters, until all

the data points are put into a single cluster. This merger process

can be represented by a dendrogram (Figure 1A).

The notion of similarity between clusters is related to the

probability that they should be merged. This is defined based on

Bayesian hypothesis testing as follows. To merge clusters Di and

Dj into Dk (Figure 1B), BHC considers the null hypothesis H0: Di

and Dj belong to Dk and the alternative hypothesis H1: Dk

consists of two or more clusters. The probability that Di and Dj

should be merged is calculated via the Bayes’ rule:

rk~
pkP(Dk DHk

0)

P(Dk DTk)
, ð2Þ

where a marginal likelihood P(Dk DTk) is defined recursively by

h unknown parameters of a probabilistic model component in a
mixture model

j hyperparameters of a prior on h

i,j,k indices

x
(i)
j

a data value of the jth variable from the ith observation

d total number of data variables

x(i) a data point x(i)~(x
(i)
1 ,:::,x(i)

d )

Di,Dj ,Dk the ith, jth, kth cluster of data points, respectively

Ti ,Tj ,Tk a merger that makes Di,Dj ,Dk , respectively

nk number of data points in Dk

a concentration parameter of the Dirichlet process mixture model

rk merger probability

l0,b0,k0 hyperparameters of the marginal likelihood for a Gaussian
distribution with a normal-gamma prior

P(:) probability

C(:) gamma function

y(:) digamma function, defined by y(x)~ d
dx

lnC(x)

N (:) probability density function of a Gaussian distribution

NG(:) probability density function of a normal-gamma distribution

Ga(:) probability density function of a gamma distribution

doi:10.1371/journal.pone.0075748.t006
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P(Dk DTk)~pkP(Dk DHk
0)z(1{pk)P(Di DTi)P(Dj DTj), ð3Þ

P(Dk DHk
0) is a marginal likelihood of Dk given in Equation (1), and

pk is a prior that Di and Dj should be merged and is defined

recursively by

pk~
aC(nk)

rk

, ð4Þ

rk~aC(nk)zrirj , ð5Þ

where we set pi~1 and ri~a for every initial cluster i. We note

that the definition of pk defined here makes Equation (3) an

approximation of a marginal likelihood of DPM. Moreover, the

value of concentration parameter a is connected to the expected

number of clusters that BHC infers. An increase in a implies an

increase in the expected number of clusters.

At rk§0:5, Di and Dj are more likely to belong to the same

cluster than at rkv0:5. Consequently, we obtain the final number

of clusters and partition when all the remaining pairs of merger

have rkv0:5 (Figure 1C).

The Marginal Likelihood for Gaussian Distribution with
Unknown Mean and Precision

Consider a dataset in which each observation x(i) consists of

d variables, i.e. x(i)~(x
(i)
1 ,:::,x(i)

d ). We assume that

A 1 the dataset is normalized, i.e. it has mean zero and a

unit variance;

A 2 for each observation x(i), its variables fx(i)
j g

d
j~1 are

independent and generated from different Gaussian distri-

butions;

A 3 the realizations of each variable j, fx(i)
j g

nk

i~1 in cluster Dk

are independent and identically distributed and drawn from

Gaussian distribution with unknown mean mj and precision

s{2
j , and the prior on (mj ,s

{2
j ) is a normal-gamma

distribution with hyperparameter m0,s0,b0,k0.

The probability density function of a Gaussian distribution is

defined as

N (xDm,s{2)~

ffiffiffiffiffiffiffiffi
s{2

2p

r
exp {

s{2

2
x{mð Þ2

� �
, ð6Þ

and the probability density function of a normal-gamma

distribution is defined as

NG(m,s{2jm0,l0,b0,k0)~

b
l0
0

C(l0)

k0

2p

� �1
2
s{2(l0{1

2
)
exp {

s{2

2
(k0(m{m0)2z2b0)

� �
:

ð7Þ

From the above assumptions, the marginal likelihood of Dk can

be expressed as

P(Dkjl0,b0,k0)

~Pd
j~1

ð
P

nk
i~1N (x

(i)
j jmj ,s

{2
j )

h i
NG(mj ,s

{2
j jl0,b0,k0)d(mj ,s

{2
j )

~Pd
j~1

C(lnk
)

C(l0)

b
l0
0

b
lnk
nk ,j

k0

knk

 !1
2

(2p)
{

nk
2

2
4

3
5,

ð8Þ

where

l0,b0,k0w0, ð9Þ

and

knk
~k0znk, ð10Þ

Figure 1. Bayesian hierarchical clustering. A) A dendrogram represents the merger process of BHC. Each vertical line represents a cluster. A
horizontal line connecting between any two vertical lines represents the merger of clusters, where its height is related to the dissimilarity measure
between the merged clusters. B) A schematic shows datasets Di and Dj merged into Dk , where Ti ,Tj , and Tk are the associated mergers that make
Di ,Dj , and Dk , respectively. C) BHC prunes the dendrogram at rk~0:5, resulting in the final partition.
doi:10.1371/journal.pone.0075748.g001
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lnk
~l0z

nk

2
, ð11Þ

�xxj~
1

nk

Xnk

i~1

x
(i)
j , ð12Þ

bnk ,j~b0z
1

2

Xnk

i~1

(x
(i)
j {�xxj)

2z
k0nk(�xxj)

2

knk

" #
: ð13Þ

In deriving (8), the hyperparameter m0 which indicates the mean of

parameter mj is set to 0 to reflect Assumption A1. Equation (8) is all

that is required for P(DkDHk
0) in GBHC.

Hyperparameter Optimization
GBHC infers the values of hyperparameters l0,b0,k0 by using

the information from P(Dk DTk) which tells us how well the

clustering hierarchy fits the data. This inference can be done via

two optimization schemes as follows.

(i) Optimization globally over the whole tree (TREE).
GBHC-TREE finds only one set of optimal hyperparameters

(l�0,b�0,k�0) that fits the whole data, and is given by

(l�0,b�0,k�0)~ argmax

l0w0,b0w0,k0w0

ln P(Dklast
DTklast

), ð14Þ

where P(Dklast
DTklast

) is the marginal likelihood (3) of the

final merger in BHC. To learn the optimal hyperparameters

in this case is costly since the gradients of P(Dklast
DTklast

) with

respect to hyperparameters are analytically intractable, unless

the structure of the clustering hierarchy is fixed. (See [19] for

more details on optimization of P(Dklast
DTklast

) in the case

that the clustering hierarchy is fixed.)

(ii) Optimization at every merger (NODE). GBHC-

NODE finds optimal hyperparameters l�0, b�0,k�0 for each

merger Tk in BHC by performing

(l�0,b�0,k�0)~ argmax
l0w0,b0w0,k0w0

ln P(l0,b0,k0DDk), ð15Þ

where

ln P(l0,b0,k0DDk)~ln½P(DkDl0,b0,k0)P(l0)P(b0)P(k0)�,ð16Þ

and we assume that

l0*Ga(al,bl), ð17Þ

b0*Ga(ab,bb), ð18Þ

k0*Ga(ak,bk): ð19Þ

The probability density function of a Gamma distribution is

defined by

Ga(xDa,b)~
ba

C(a)
xa{1e{xb, aw0,bw0: ð20Þ

Thus the log-likelihood function in (16) can be written as,

ln P(l0,b0,k0jDk)

~d ln C(lnk
){ln C(l0)zl0 ln(b0)z

1

2
ln(k0){

1

2
ln(knk

)

� �

{lnk

Xd

j~1

ln(bnk ,j)z(al{1)ln(l0){bll0z(ab{1)ln(b0){bbb0

z(ak{1)ln(k0){bkk0zconstant,

ð21Þ

and its gradients with respect to hyperparameters are

L
Ll0

ln P(l0,b0,k0jDk)~

d y(lnk
){y(l0)zln(b0)

h i
{
Xd

j~1

ln(bnk ,j)z
(al{1)

l0
{bl,

ð22Þ

L
Lb0

ln P(l0,b0,k0DDk)~
l0d

b0

{lnk

Xd

j~1

1

bnk ,j

z
(ab{1)

b0

{bb, ð23Þ

L
Lk0

ln P(l0,b0,k0jDk)~

nkd

2k0knk

{
lnk

2

nk

knk

 !2Xd

j~1

(�xxj)
2

bnk ,j

z
(ak{1)

k0
{bk:

ð24Þ

See Section S1 in Material S1 for derivations of Equations (22)–

(24). We use weakly informative priors over hyperparameters in

Equations (17)–(19), assuming that the data are normalized,

al~4,bl~0:1,ab~1:5,bb~0:1,ak~2,bk~1: ð25Þ

We note that Equation (15) is related to the optimization of

P(DkDTk), in which approximation P(DkDTk)&pkP(Dk DHk
0)~

pkP(DkDl0,b0,k0) and the maximization of its posterior distribu-

tion is considered. We can see that GBHC-NODE finds the

optimal structure of the clustering hierarchy in a single run by

searching for the best merger at each level while the hierarchy is

constructed. So, it is more time-efficient than GBHC-TREE.

The possible limitation of both optimization schemes is that

the optimization objective functions (14),(15) can be non-

convex. This will result in GBHC-TREE and GBHC-NODE

only finding hyperparameters that are locally optimal. Never-

theless, in our experiments with clustering synthetic data and

gene expression data, both schemes have produced promising

results.

Other Clustering Algorithms
We compare GBHC-TREE and GBHC-NODE to other

clustering algorithms in Table 1. The algorithms and their

Model-Based Clustering for Studying Cancer Data
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similarity/dissimilarity measure will be referred to by the

abbreviations given in the table. For instance, APE stands for

affinity propagation using negative Euclidean distance. Further-

more, we employ L-methods [27] to infer the number of clusters in

AC,AE,CC,CE,KC, and KE, which are the algorithms that

require pre-specified number of clusters.

In this work, we implement GBHC-TREE, GBHC-NODE and

MBHC in MATLAB. We use AP which is publicly available at the

authors’ webpage (http://www.psi.toronto.edu/index.php?q =

affinity\%20propagation). All the remaining algorithms could be

found as MATLAB’s built-in functions.

The Datasets
Synthetic Datasets. GBHC-TREE and GBHC-NODE

should perform very well if the Assumptions A1–A3 are satisfied.

However, real expression data are expected to be not fully satisfied

Gaussian mixture assumption, and the correlation between data

variables is possible. It is very important to evaluate the

performance of GBHC-TREE and GBHC-NODE in comparison

to the other clustering algorithms when some of the assumptions

are violated. Here, we use synthetic datasets to study GBHC-

TREE and GBHC-NODE in three different scenarios as follows

(see Section S2 in Material S1 for more details on how the data are

generated).

Synthetic Dataset1: Mixture of Gaussian Distributions

and Independent Data Variables. 1000 observations of 10-

dimensional random vector are drawn from a mixture of 7

multivariate Gaussian distributions, where each multivariate

Gaussian distribution has diagonal covariance matrix. Then the

data are normalized.

Synthetic Dataset2: Mixture of Gaussian Distributions

and Correlated Data Variables. Similar to the first scenario,

1000 observations of 10-dimensional random vector are drawn

from a mixture of 7 multivariate Gaussian distributions, but the

covariance matrix of each multivariate Gaussian distribution has

non-diagonal entries which are non-zero. Then the data are

normalized.

Synthetic Dataset3: Mixture of Several Distributions. We

generate 1000 observations of 10-dimensional random vector from

a mixture of 7 different multivariate distributions. For the first 6

multivariate components of a mixture, namely Gaussian, gamma,

uniform, student’s t, Weibull, and chi-squared distributions, random

variables in different dimensions are independent. For the last

multivariate component of a mixture which is a Gaussian

distribution, there is correlation between random variables in

different dimensions. This dataset is normalized prior to the

use.

Gene Expression Datasets. The performance of all the

aforementioned clustering algorithms is assessed through 11

cancer datasets, as described in Table 2. Blood1, Blood2, Bone

Marrow, Brain1, Brain2, Colon, Multi-tissue1, Multi-tissue2,

Prostate1 are downloaded from http://algorithmics.molgen.mpg.

de/Static/Supplements/CompCancer/datasets.htm. These data-

sets are already filtered according to the protocol described in [25].

We transform every dataset by log2 and normalize it before using.

Prostate2 is downloaded from Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/) (GDS1439). The dataset is

transformed by log2 and then filtered by the Wilcoxon rank-sum

test at significance level 0.001. The test is carried out between a

group of benign and a group of primary and metastatic. The

dataset is normalized before using.

Lung is available at Gene Expression Omnibus (GSE44447).

The microarray experiment of this data was conducted on Agilent

SurePrint G3 Human Gene Expression 8660 K microarrays

(AGilent Technologies, Wokingham, UK), using lung tissues

that were ethically approved under the Multicentre Research

Ethics Committee (MREC) approval. The experiment was

designed to compare the gene expression profiles of two types of

closely related high grade neuroendocrine carcinomas, small

cacinoma and large cell neuroendocrine carcinoma, which are

difficult to classify correctly even for pulmonary pathologists.

The raw expression data was processed using R Bioconductor

package limma (http://www.bioconductor.org/packages/2.10/

bioc/html/limma.html), loess and quantiled normalized and

corrected for batch effect using ComBat (http://www.bu.edu/

jlab/wp-assets/ComBat/Abstract.html). We filter this dataset

using Wilcoxon rank-sum test for testing the difference between

normal and cancer groups at significance level 0.001, and

normalize it prior to clustering.

Clustering Performance Indices
We use two metrics to evaluate the clustering performance: (i)

adjusted Rand index (ARI) [28] and, (ii) biological homogeneity

index (BHI) [29]. In the clustering of synthetic data, since the true

partition of data classes is known, ARI is used as a measure of

agreement between clustering partition and the true partition. ARI

scores a pair of partitions between 0 and 1, and a higher ARI score

indicates higher agreement. We also use ARI in sample clustering

experiment of gene expression data.

In gene clustering of gene expression data, we are interested in

how biologically meaningful the clustering results are. BHI is used

to measure the biological plausibility of gene clustering results

generated by an algorithm. It scores a partition between 0 and 1,

where a higher score will be assigned to the more biological

homogeneous partition based on a reference set of functional

classes. In this case, we use Gene Ontology (GO) annotation in

Bioconductor package (Section S3, Table S1 in Material S1), while

the BHI is calculated using the R package clValid [30].

Results and Discussion

Synthetic Datasets
ARI scores of clustering algorithms are shown in Table 3, and

the numbers of clusters inferred by the algorithms are given in

Section S5, Table S2 in Material S1. Details of the experimental

setting can also be found in Section S4 in Material S1. For visual

inspection of clustering results, we employ a dimension reduction

approach called t-Distributed Stochastic Neighbor Embedding (t-

SNE) [31] algorithm to reduce the dimension of the original

synthetic data into 2-dimensional Euclidean space. t-SNE maps

data by preserving the local structure; thus data which are in the

same cluster will be placed close by each other in the lower-

dimensional space. The visualizations of clustering results are

shown in Figures 2, 3, 4.

Synthetic Dataset1: Mixture of Gaussian Distributions

and Independent Data Variables. When Assumptions A1–

A3 are satisfied, GBHC-TREE and GBHC-NODE outperform

the others by correctly infer the membership of data points as

well as the number of clusters. On the other hand, there are

some minor to high degradation in clustering results from the

other algorithms.

Synthetic Dataset2: Mixture of Gaussian Distributions

and Correlated Data Variables. In the case where Assump-

tion A2 is violated, the performances of GBHC-TREE and

GBHC-NODE are highly effected by the correlation between data

variables. From Figure 3, we can see that GBHC-TREE and

GBHC-NODE infer many sub-clusters of the actual one. The

reason is that a bigger cluster of correlated data provides a

Model-Based Clustering for Studying Cancer Data
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stronger evidence that the data are not generated from the model

underlying GBHC-TREE and GBHC-NODE. Thus, the mar-

ginal likelihood (8) gets smaller as the cluster gets bigger, and

consequently, GBHC-TREE and GBHC-NODE are in favor of

not merging smaller clusters into a bigger one according to Bayes’

rule (2). In our experiment, we found that the degradation depends

on both the number of correlated pairs of variables and the degree

of correlation. The increase in either factor results in the increase

in the number of inferred sub-clusters (see Section S5, Tables

S3,S4 in Material S1 for details).

Synthetic Dataset3: Mixture of Several

Distributions. GBHC-TREE and GBHC-NODE are able to

recognize all the clusters generated from non-Gaussian distri-

butions even if the distributions are highly deviated from the

Gaussian distribution, given that Assumptions A1, A2 are

satisfied.

It is apparent that the strong correlation between data variables

is the main factor that limits the performance of GBHC-TREE

and GBHC-NODE. One could try to transform the data to reduce

the correlation between variables before clustering, but one has to

bear in mind that the transformation might destroy the meaning of

original data variables. Despite the degradation in clustering

results, GBHC-TREE and GBHC-NODE still outperforms all the

other methods on a whole.

Gene Expression Datasets
We compare sample clustering and gene clustering perfor-

mances of GBHC-TREE and GBHC-NODE to those of other

algorithms. Note that, in gene clustering, we treat probes as

observations and the expression levels across different samples as

variables. In sample clustering, on the other way round, samples

are treated as observations and the expression levels across

different probes are treated as variables.

In sample clustering, Table 4 shows that GBHC-NODE and

GBHC-TREE give the highest ARI in 4 datasets (Blood2, Multi-

tissue2, Prostate1, Prostate2) and 2 datasets (Bone Marrow,

Prostate2), respectively. The other algorithms give the highest

ARI in at most 2 datasets. The first three algorithms with the

highest mean ARI are GBHC-NODE, GBHC-TREE, and CC.

However, there are no significant differences between them (p-

Table 1. Clustering algorithm.

Algorithm Similarity/Dissimilarity Metric Ability to Infer # Clusters Reference

AP: affinity propagation C: negative one minus Pearson’s correlation
coefficient; E: negative Euclidean distance

yes [32]

MBHC: multinomial BHC - yes [19,23]

A: average-linkage hierarchical
clustering

C: one minus Pearson’s correlation coefficient;
E: Euclidean distance

no [10]

C: complete-linkage hierarchical
clustering

C: one minus Pearson’s correlation coefficient;
E: Euclidean distance

no [11,12,33]

K: k-means C: one minus Pearson’s correlation coefficient;
E: square Euclidean distance

no [13]

doi:10.1371/journal.pone.0075748.t001

Table 2. Dataset detail.

Dataset Name # Total Samples # Classes Classes # Total Probes
# Remaining
Probes

Blood1 [34] 72 2 24 ALL, 48 MLL 12,582 1,081

Blood2 [35] 77 2 58 DLBCL, 19 FL 7,129 798

Bone Marrow [36] 72 2 47 ALL, 25 AML 7,129 1,868

Brain1 [37] 28 2 14 CG, 14 NG 12,625 1,070

Brain2 [38] 42 5 10 MD, 10 Mglio, 10 Rhab, 4 Ncer, 8 PNET 7,129 1,379

Colon [39] 37 2 8 serrated CRC, 29 conventional CRC 22,883 2,202

Lung 16 3 7 NL, 5 LCNEC, 4 SCLC 42,545 2,995

Multi-tissue1 [40] 190 14 11 BR, 10 PR, 11 LU, 11 CRC, 22 LY, 10 ML, 11 BL,
10 UT, 30 LE, 11 RE, 11 PA, 11 OV, 11 ME, 20 CNS

16,063 1,363

Multi-tissue2 [41] 174 10 26 PR, 8 BL, 26 BR, 23 CRC, 12 GA, 11 KI, 7 LI, 27
OV, 6 PA, 28 LU

12,533 1,571

Prostate1 [42] 102 2 50 NP, 52 PR 12,600 339

Prostate2 [43] 19 3 6 benign, 7 primary, 6 metastatic 54,675 1,348

ALL: acute lymphoblastic leukemia; AML: acute myelogenous leukemia; BL: bladder/ureter cancer; BR: breast cancer; CG: classic glioblastoma; CNS: central nervous
system; CRC: colorectal cancer; DLBCL: diffuse large B-cell lymphoma; FL: follicular lymphoma; GA: esophageal cancer; KI: kidney cancer; LCNEC: large cell
neuroendocrine carcinoma; LE: leukemia; LI: liver cancer; LU: lung cancer; LY: lymphoma; MD: medulloblastoma; ME: pleural mesothelioma; Mglio: malignant glioma; ML:
melanoma; MLL: lymphoblastic leukemia with myeloid/lymphoid or mixed-lineage leukemia (MLL) translocations; Ncer: normal cerebella; NG: nonclassic glioblastoma;
NL: normal lung tissue; NP: normal prostate tissue; OV: ovarian cancer; PA: pancreatic cancer; PNET: primitive neuroectodermal tumour; PR: prostate cancer; RE: renal cell
carcinoma; Rhab: atypical teratoid/rhabdoid tumour; SCLC: small cell lung carcinoma; UT: uterine cancer;
doi:10.1371/journal.pone.0075748.t002
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Figure 2. Clustering Results of Synthetic Dataset1. Clusters are represented by different colors or types of marker. A) 7 actual clusters. B)
Clustering result produced by GBHC-TREE has 7 clusters. C) Clustering result produced by GBHC-NODE has 7 clusters. D) Clustering result produced
by AE has 7 clusters.
doi:10.1371/journal.pone.0075748.g002

Figure 3. Clustering Results of Synthetic Dataset2. Clusters are represented by different colors or types of marker. A) 7 actual clusters. B)
clustering result produced by GBHC-TREE has 14 clusters. C) clustering result produced by GBHC-NODE has 37 clusters. D) clustering result produced
by KE has 4 clusters.
doi:10.1371/journal.pone.0075748.g003
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value v0:05; Section S6, Table S5 in Material S1). In terms of

accuracy in inferring the number of sample classes (Section S6,

Tables S6,S7 in Material S1), the first three algorithms on average

are GBHC-TREE, KE, and GBHC-NODE, but there are no

significant differences between them (p-value v0:05; Section S6,

Table S8 in Material S1).

For gene clustering, Table 5 shows that GBHC-NODE and

GBHC-TREE give the best BHI in 2 datasets (Brain1, Multi-

tissue2) and 1 dataset (Lung), respectively, while the maximum and

the mean of number of datasets that each algorithm gives the best

BHI are 3 and 1.17, respectively. On average, the first three

algorithms with the highest mean BHI are APE, GBHC-NODE,

and GBHC-TREE. Again, there are no significant differences

between them (p-value v0:05; Section S7, Table S10 in Material

S1). The number of gene clusters inferred by the algorithms can

also be found on Section S7, Table S11 in Material S1.

In terms of execution time (Section S6, Table S9 and Section

S7, Table S12 in Material S1), GBHC-TREE and GBHC-NODE

are slower than non-BHC methods because of their high

computational load, contributed from the statistical model and

the hyperparameters optimization. As expected, GBHC-TREE

and GBHC-NODE will not always perform better than other

clustering algorithms in every dataset since underlying structure of

natural data is more complicated and in general do not comply to

the Assumptions A1–A3. Nonetheless, we can see from the results

that GBHC-TREE and GBHC-NODE are the only algorithms

that on average produces higher quality results in both sample and

gene clustering. Moreover, they are more likely to infer the

number of sample classes which are close to the actual one.

Comparison between BHC algorithms. In comparison to

MBHC, for sample clustering, GBHC-NODE and GBHC-

TREE produce higher ARI than MBHC, but GBHC-NODE

Figure 4. Clustering Results of Synthetic Dataset3. Clusters are represented by different colors or types of marker. A) 7 actual clusters. B)
Clustering result produced by GBHC-TREE has 22 clusters. C) Clustering result produced by GBHC-NODE has 12 clusters. D) Clustering result produced
by KE has 5 clusters.
doi:10.1371/journal.pone.0075748.g004

Table 3. Adjusted Rand Index from Synthetic Data Clustering Experiment.

Dataset APC APE GBHC-TREE GBHC-NODE MBHC AC AE CC CE KC KE

Synthetic
Dataset1

0.317 0.230 1.000 1.000 0.648 0.938 0.996 0.932 0.954 0.547 0.851

Synthetic
Dataset2

0.106 0.095 0.467 0.270 0.143 0.324 20.000 0.132 0.088 0.312 0.413

Synthetic
Dataset3

0.295 n/a 0.897 0.921 0.643 0.479 0.002 0.710 0.506 0.495 0.750

mean 0.239 0.163 0.788 0.730 0.478 0.581 0.333 0.592 0.516 0.451 0.671

n/a: not applicable since the algorithm does not converge. Bold number(s) in each dataset highlight(s) the maximum ARI value. Bold underlined numbers highlight the
first three highest average ARIs.
doi:10.1371/journal.pone.0075748.t003
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gives significantly higher result (Section S6, Table S5 in

Material S1). Moreover, they give significantly lower differ-

ence between inferred and actual number of sample classes

than MBHC (Section S6, Table S8 in Material S1). Regarding

the execution time, GBHC-NODE runs around 4 times faster

than MBHC, and around 11 times faster than GBHC-TREE

in sample clustering (Section S6, Table S9 in Material S1).

For gene clustering, GBHC-NODE runs around 1.2 times

faster than MBHC and around 6.3 times faster than GBHC-

TREE (Section S7, Table S12 in Material S1). We note that

GBHC-TREE and MBHC run slower than GBHC-NODE

because their hyperparameter optimizations are more compu-

tationally intensive, as they require the clustering result of the

whole data to evaluate the objective function. Thus, GBHC-

TREE and GBHC-NODE gain improved clustering quality,

and GBHC-NODE also gains a speed-up.

Conclusions

In this paper, we presented a model-based clustering algorithm

which employs a Gaussian mixture model to model the gene

expression profiles in a Bayesian framework. The proposed

algorithm, termed as the Gaussian BHC or GBHC, uses a

Gaussian mixture model together with a normal-gamma prior for

the unknown mean and precision parameters of the mixture

components in order to capture the intrinsic structure of the data.

We proposed two variations of the GBHC algorithm: GBHC-

TREE and GBHC-NODE, according to two different hyperpara-

Table 4. Adjusted Rand index from Sample Clustering Experiment.

Dataset APC APE GBHC-TREE GBHC-NODE MBHC AC AE CC CE KC KE

Blood1 [34] 0.246 0.147 0.551 0.474 0.382 0.175 0.206 0.533 0.175 0.576 0.544

Blood2 [35] 0.052 0.049 0.066 0.100 0.053 0.013 0.034 0.038 20.017 0.014 0.006

Bone Marrow [36] 0.044 0.036 0.095 20.013 0.025 0.031 20.037 0.040 0.051 0.050 0.081

Brain1 [37] 20.018 0.159 0.129 0.194 0.200 20.017 20.013 20.036 0.107 20.026 0.103

Brain2 [38] 0.433 0.497 0.460 0.525 0.419 0.575 0.483 0.421 0.400 0.480 0.401

Colon [39] 0.017 0.068 0.000 0.000 0.021 20.093 0.110 0.039 20.044 0.078 0.078

Lung 0.660 0.660 0.660 0.660 0.540 0.642 0.642 0.844 0.844 0.657 0.728

Multi-tissue1 [40] 0.466 0.190 0.310 0.394 0.476 0.179 0.007 0.406 0.110 0.179 0.139

Multi-tissue2 [41] 0.216 0.215 0.243 0.253 0.215 0.087 0.005 0.215 0.162 0.142 0.216

Prostate1 [42] 0.067 0.047 0.036 0.136 0.097 0.026 0.026 0.013 0.030 0.014 0.024

Prostate2 [43] 1.000 1.000 1.000 1.000 0.836 1.000 0.788 0.883 0.836 1.000 1.000

mean 0.289 0.279 0.323 0.338 0.297 0.238 0.204 0.309 0.241 0.287 0.302

SEM 0.097 0.094 0.095 0.093 0.078 0.104 0.089 0.101 0.096 0.102 0.099

SEM: standard error of the mean. Bold number(s) in each dataset highlight(s) the maximum ARI value. Bold underlined numbers highlight the first three highest average
ARIs.
doi:10.1371/journal.pone.0075748.t004

Table 5. Biological homogeneity index from Gene Clustering Experiment.

Dataset APC APE GBHC-TREE GBHC-NODE MBHC AC AE CC CE KC KE

Blood1 [34] 0.269 0.276 0.298 0.278 0.252 0.251 0.373 0.250 0.256 0.246 0.249

Blood2 [35] 0.276 0.289 0.283 0.278 0.268 0.338 0.219 0.262 0.219 0.267 0.271

Bone Marrow [36] 0.273 0.296 0.266 0.288 0.310 0.251 0.298 0.269 0.299 0.269 0.271

Brain1 [37] 0.291 0.322 0.301 0.322 0.303 0.231 0.287 0.281 0.282 0.283 0.281

Brain2 [38] 0.271 0.276 0.298 0.258 0.267 0.245 0.356 0.258 0.255 0.262 0.266

Colon [39] 0.254 0.276 0.292 0.303 0.307 0.234 0.260 0.241 0.270 0.243 0.253

Lung 0.244 0.247 0.269 0.261 0.243 0.250 0.259 0.269 0.261 0.250 0.247

Multi-tissue1 [40] 0.311 0.333 0.259 0.284 0.272 0.244 0.290 0.268 0.274 0.272 0.280

Multi-tissue2 [41] 0.293 0.336 0.294 0.342 0.302 0.259 0.257 0.250 0.246 0.257 0.256

Prostate1 [42] 0.378 0.359 0.367 0.331 0.371 0.283 0.339 0.297 0.333 0.300 0.316

Prostate2 [43] 0.257 0.276 0.263 0.276 0.289 0.265 0.088 0.254 0.267 0.264 0.262

mean 0.283 0.299 0.290 0.293 0.289 0.259 0.275 0.264 0.269 0.265 0.268

SEM 0.011 0.010 0.009 0.008 0.011 0.009 0.023 0.005 0.009 0.005 0.006

SEM: standard error of the mean. Bold number(s) in each dataset highlight(s) the maximum BHI value. Bold underlined number highlight the first three highest average
BHIs.
doi:10.1371/journal.pone.0075748.t005
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meter optimization schemes. An extensive comparison between

these variations and other well-known clustering algorithms was

conducted based on 3 synthetic datasets and 11 cancer datasets.

The experimental results on synthetic datasets showed that

GBHC-TREE and GBHC-NODE, generally outperformed the

other clustering algorithms if the data were normalized and could

be well-represented by a mixture of multivariate Gaussian

distributions where each variate was independent from the others.

Although, the data were highly deviated from a mixture of

multivariate Gaussian distributions or had moderate degree of

correlation between variables, GBHC-NODE and GBHC-TREE

still improved the clustering results. For gene expression clustering,

both GBHC-TREE and GBHC-NODE gave strong performances

on the whole. They consistently produced higher quality results in

both sample and gene clustering and were more likely than the

other clustering algorithms in inferring the number of actual

sample classes. Compared to MBHC which is a previous extension

of BHC for microarray data, the GBHC algorithms also had better

clustering performances. Further, our formulation of the log-

likelihood allowed us to use a conjugate gradient algorithm to

efficiently find optimal hyperparameters leading to the GBHC-

NODE variant being on average over 10 times faster than the

GBHC-TREE variant of our algorithm without compromising

clustering performance.

Availability
The MATLAB implementation of GBHC-TREE and GBHC-

NODE are available at https://sites.google.com/site/

gaussianbhc/

Supporting Information

Material S1 Bayesian hierarchical clustering for Study-
ing Cancer Gene Expression Data with Unknown
Statistics.

(PDF)
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