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ABSTRACT Despite significant improvements over the last few years, cloud-based healthcare applications
continue to suffer from poor adoption due to their limitations in meeting stringent security, privacy, and
quality of service requirements (such as low latency). The edge computing trend, along with techniques
for distributed machine learning such as federated learning, has gained popularity as a viable solution in
such settings. In this paper, we leverage the capabilities of edge computing in medicine by evaluating
the potential of intelligent processing of clinical data at the edge. We utilized the emerging concept of
clustered federated learning (CFL) for an automatic COVID-19 diagnosis. We evaluate the performance
of the proposed framework under different experimental setups on two benchmark datasets. Promising
results are obtained on both datasets resulting in comparable results against the central baseline where the
specialized models (i.e., each on a specific image modality) are trained with central data, and improvements
of 16% and 11% in overall F1-Scores have been achieved over the trained model trained (using multi-modal
COVID-19 data) in the CFL setup on X-ray and Ultrasound datasets, respectively. We also discussed the
associated challenges, technologies, and techniques available for deploying ML at the edge in such privacy
and delay-sensitive applications.

INDEX TERMS Distributed computing, machine learning, smart healthcare.

I. INTRODUCTION
Over the past few years, there has been an increasing inter-
est in deploying machine learning (ML) algorithms on edge
devices to reduce data exchange between edge devices and
centralized servers [1]. This enables consumers and corpo-
rations to enjoy and explore new opportunities in different
application domains, such as automotive, security, surveil-
lance, and healthcare [2]. The potential of edge-enabled ML
is particularly useful for healthcare settings where protecting
patients’ privacy and ensuring other constraints like ethical
data use are profoundly important [3]. Moreover, edge com-
puting can enable unprecedented health services, e.g., remote
healthcare delivery. In general, healthcare centers in remote

areas lack advanced medical equipment and other healthcare
facilities, resulting in poorer access to health services for
the people living there. Therefore, edge-based intelligent data
processing capabilities can significantly augment the capacity
and efficacy of healthcare while ensuring the privacy of the
data.

A typical IoT environment for smart healthcare is illus-
trated in Fig. 1 in which data collected by different sensors
is processed at the edge for different applications using ML
techniques. Once the ML predicts an event, the edge devices
trigger an action or request service in the cloud. ML algo-
rithms can also be executed concurrently in the cloud as well
as at the edge as shown in the figure. However, with local data
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FIG. 1. An illustration of AI/ML at edge in an IoT empowered healthcare
environment.

storage and processing resources (through cloud computing),
such applications enjoy a significant improvement in terms
of processing time by avoiding networking congestion. More
importantly, real-time processing at the edge improves the
performance of delay-sensitive applications, such as health-
care by avoiding any potential latency or delay occurred
during data transmission between end devices and the cloud.
In addition, ML at the edge results in increased security and
privacy as sending data back and forth from the cloud may
lead to security threats.

In this paper, we leverage the capabilities of edge com-
puting in medicine by analyzing and evaluating the potential
of intelligent processing of clinical visual data related to
COVID-19 at the edge allowing the remote healthcare cen-
ters to benefit from the multi-modal collaborative learning
paradigm without sharing any information about the modal-
ity of the local data and the data itself. A number of recent
research efforts have focused on diagnosing COVID-19 using
AI and data science methods [4]; relatively little work has
however focused on using edge AI for COVID-19 diagnosis.

To this aim, we utilize an emerging concept of clustered
federated learning (CFL) and propose a CFL-based collab-
orative learning framework for an automatic multi-modal
COVID-19 diagnosis. Our approach is well suited to the task
of COVID-19 diagnosis as visual data (i.e., CT scans, X-rays,
and ultrasound) is collected at different centers and could
be used to build a joint/shared ML model in a cloud-edge
infrastructure being able to diagnose COVID-19 in both X-ray
and Ultrasound images (without the requirement of sharing
data with a cloud or a central entity). The proposed frame-
work is evaluated on two benchmark datasets under different
experimental setups and we have achieved encouraging results
using CFL that are comparable with the baseline results (when
the model is trained with central data). We also discuss in
detail the potential applications, associated challenges, tech-
nologies, tools, and techniques available for deploying ML at
the edge in such privacy and delay-sensitive applications. We
note that we use the term multi-modal model to represent a
single model capable of diagnosing COVID-19 in both X-ray
and Ultrasound imagery when provided separately.

The main contributions of the paper are as follows:

1) To highlight the potential of intelligent processing of
clinical data at the edge, we propose a collabora-
tive learning framework for COVID-19 diagnosis by
leveraging a CFL approach enabling remote healthcare
centers to benefit from each other’s data without sharing
the data itself and associated information.

2) We also demonstrate how the performance of conven-
tional FL is affected by the divergence of the distribution
of data from different sources (i.e., X-ray and Ultra-
sound imagery), and how CFL can help to mitigate the
adverse impact.

3) We also highlight the potential challenges and enabling
factors that enable the deployment of ML/DL models to
the edge.

4) Finally, we elaborate on the open research issues related
to deploying ML at the edge for healthcare applications
that require further investigation.

Organization of the paper: The rest of the paper is orga-
nized as follows. Section II provides a broad discussion of the
related work on automated COVID-19 diagnosis as well as
the different challenges encountered in deploying ML on the
edge along with a discussion on enabling technologies. The
case study on collaborative learning for multi-modal diagno-
sis of COVID-19 is presented in Section III and results are
presented in Section IV. A discussion on the advantages and
limitations of our proposed CFL framework for multi-modal
COVID-19 diagnosis is provided in Section V. Various open
research issues that require further investigation are presented
in Section VI. Finally, we conclude in Section VII.

II. BACKGROUND
A. EXISTING AUTOMATED COVID-19 DIAGNOSIS WORK
COVID-19 has been a strong focus of the research commu-
nity in 2020, especially after it was declared in March by
the World Health Organization (WHO) to be a pandemic,
with diverse efforts focusing on diagnosis [5], treatment [6],
and the development of the potential vaccine [7]. Data
science methods—particularly, ML and data visualization
techniques—are playing a major role in the international
response against the COVID-19 pandemic with some key ap-
plications being risk assessment, contact tracking, fake news
detection, sentiment analysis, and screening and diagnosis [4].
The focus of this paper is on automated screening and diag-
nosis; we shall discuss next some of the prominent related
techniques relying on different types of information (e.g.,
audio and visual data) that have been proposed.

A number of efforts have focused on automated image anal-
ysis in a bid to speed up the COVID-19 diagnosis process [8].
To this aim, three different medical imaging modalities,
namely computerized tomography (CT), Ultrasound scans,
and X-radiation (X-ray), have been mostly exploited. To
facilitate research on image-based solutions for COVID-19
diagnosis, several datasets have been collected and made
publicly available [8], [9]. For instance, Maghdid et al. [9]
collected a comprehensive dataset containing a total of 170

VOLUME 3, 2022 173



QAYYUM ET AL.: COLLABORATIVE FEDERATED LEARNING FOR HEALTHCARE: MULTI-MODAL COVID-19 DIAGNOSIS AT THE EDGE

X-rays and 361 CT scan images from different sources. Cohen
et al. [10] also provide a collection of X-rays and CT scans
of confirmed COVID-19 patients. A collection of COVID-19
patients’ CT scans has also been made publicly available for
research purposes in [11], [12]. Born et al. [13], [14], on the
other hand, provide a lung ultrasound (POCUS) dataset that
contains samples for three classes, i.e., COVID-19, pneumo-
nia, and healthy/normal.

A vast majority of the image-based solutions for COVID-
19 diagnosis relies on CT scan images. For instance, Wan
et al. [15] proposed a deep learning model for extracting
COVID-19’s specific features/textures in CT scans of con-
firmed cases to extract useful clinical insight before the
pathogenic tests. An evaluation of a reasonable amount of
confirmed cases showed encouraging results with an average
test accuracy of 73.1%. Butt et al. [16] proposed a two-phase
solution for COVID-19 diagnosis in CT scans. Initially, a
pre-trained 3D Convolutional Neural Network (CNN) is em-
ployed to extract potential infectious regions in CT scans
followed by a CNN-based classification framework to clas-
sify the candidate regions into COVID-19, influenza, and
non-infectious regions. Li et al. [17] also proposed a 3D
CNN-based framework to extract both local and global deep
features for diagnosis COVID-19 in CT scans. One of the
key challenges to CNN-based solution is the unavailability
of a large-scale CT scans datasets. In order to deal with the
challenge, Afshar et al. [18] proposed a Capsule Networks
based deep learning framework, namely COVID-CAPS, for
COVID-19 diagnosis in X-ray images. Moreover, to further
enhance the capabilities of the proposed model, the authors
used an external dataset composed of 94, 323 frontal view
chest X-ray images for pre-training and transfer learning pur-
poses.

There are also methods relying on X-ray images for
COVID-19 diagnosis. For instance, in [19] a pre-trained deep
model is fine-tuned on X-ray images for COVID-19 diagnosis.
Similarly, Sethy et al. [20] trained a Support Vector Machine
(SVM) classifier on features extracted via ResNet-50 [21]
from X-ray images for classification of COVID-19 and non-
COVID-19 cases. Ali et al. [22] evaluated the performance of
several existing deep models in diagnosing COVID-19 in X-
ray images. Islam et al. [23] on the other hand proposed a deep
framework combining CNNs and Recurrent Neural Networks
(RNNs) for diagnosis of COVID-19 in X-ray images. Initially,
features are extracted with a CNN, which are then feed into
a Long short-term memory (LSTM) for diagnosis/detection
purposes. Kassani et al. [24] provide a detailed evaluation
of several existing deep models and classification algorithms
to find a best combination for COVID-19 diagnosis in both
X-ray and CT scans. However, both modalities are treated
individually. The deep models are used for feature extraction,
which is then fed into different classification algorithms.

Some image-based COVID-19 diagnosis methods also rely
on a recently introduced concept of Federated Learning (FL)
to ensure data privacy in a collaborative learning environment,

where several hospitals can participate in training a global
ML model. For instance, in [25] a deep model is collabo-
ratively trained in a federated learning environment on CT
scans collected from different sources. Kumar et al. [26] on
the other hand proposed a blockchain-FL-based framework
for collecting data (CT scans) from different hospitals, and
collaboratively training a global deep model. Moreover, sev-
eral exiting deep models have also been evaluated in the
proposed federated learning framework. In [27], a federated
learning technique is employed for training a global model
on electronic health records from various hospitals to pre-
dict mortality within seven days in hospitalized COVID-19
patients.

Recent works in diagnosing COVID-19 either use a single
modality, i.e., only X-ray images or only CT images. To the
best of our knowledge, there is no work done that use multiple
data modalities to learn the COVID-19 features. As described
above, most of the work uses traditional ML techniques like
using CNNs to extract the features from CNNs. Moreover,
some image-based FL techniques have been developed but
they also use a single data modality. Also, there are several
challenges in deploying ML at the edge that include privacy
and security of the data, data heterogeneity, presence of adver-
saries, non-availability of large training data at different edge
devices, and communication overheads that make it difficult
to learn a joint model with good performance. A few major
such challenges are described next.

B. CHALLENGES IN DEPLOYING ML AT THE EDGE
1) RESOURCE SCARCITY AND HETEROGENEITY
Heterogeneous edge devices with varying computational, stor-
age and communication resources are a major bottleneck
for the deployment of ML on the edge. ML algorithms in
general and deep learning (DL) in particular require a large
amount of computational and processing resources making
the deployment of ML impractical in several edge computing
applications. DL models are usually large and are computa-
tionally expensive, as both the training of a deep model and
its inferences are typically performed on power-hungry GPUs
and servers while, the edge devices are designed to be oper-
ated at low power and usually have frugal memory, therefore,
deploying DL models on the edge devices is very challenging.
One another important challenge is the availability of a power
source at edge device, i.e., a battery with long power backup
is always desirable in a typical edge computing network. In
addition, the size of the network and systems constraints is
also a major challenge that can result in only a few devices
being active at a time [28].

2) NETWORK COMMUNICATION
The heterogeneity of the computational and communication
resources also led to slow and unstable communication. In
addition to resource heterogeneity, there are other consider-
ations as well, e.g., the Internet upload speed is typically
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much slower than the download speed [2]. Therefore, in an
edge computing environment in which ML/DL models are
being trained on the client site stable and powerful Internet
connection is always desirable, otherwise, the unstable clients
will be disconnected from the network that will result in a
drop in performance. On the other hand, deploying ML at the
edge saves expensive communication, i.e., we do not require
the local (raw) data to be transmitted to the cloud/server.

3) DATA HETEROGENEITY
Medical data is generally heterogeneous in nature due to
several reasons, such as sources and modality of the health
records, dimensionality, and variation in the data acquisi-
tion devices and protocols. The literature indicates that such
heterogeneous data poses challenges for several FL algo-
rithms [29]. One of the potential directions of future research
in the domain is to propose FL algorithms capable of coping
with the challenges associated with heterogeneous data. The
literature already reports some efforts in this direction [30],
[31].

4) STATISTICAL HETEROGENEITY
The statistical heterogeneity, due to data generated by differ-
ent types of devices in an edge computing environment, can
lead to many efficiency challenges. For instance, the optimiza-
tion/training of a ML/DL hyperparameters becomes difficult,
which directly affect its performance. To address the statistical
heterogeneity techniques such meta-learning can be used that
can enable device-specific modeling [32].

5) PRIVACY AND SECURITY CHALLENGES
Despite being able to train joint models with sharing data in a
collaborative learning environment using FL, privacy and se-
curity challenges arise with the presence of malicious devices.
For instance, an adversary can learn sensitive information
using the model parameters and the shared model. As shown
in [33], privacy-related information can be inferred from the
shared weights even without getting access to the data itself.
To restrain leakage of privacy-related information from the
shared model, different privacy-preserving techniques can be
leveraged, such as cryptographic approaches and differential
privacy [34].

6) ADVERSARIAL ML
Despite the state of the art performance of ML/DL techniques
in solving complex tasks, these techniques have been found
vulnerable to carefully crafted adversarial examples [35]. In a
federated learning setup, a client or multiple clients can be
compromised to realize the attacks on the whole network.
For instance, local poisoning attacks using compromised at-
tacker devices are presented in [36]. The authors demonstrated
that their proposed attacks can increase the error rates of
the distributively trained model on four real-world datasets.

Moreover, a systematic review focused on different adversar-
ial ML attacks and defenses for cloud-hosted ML models can
be found in [37].

C. ENABLING TECHNOLOGIES: BUILDING BLOCKS FOR ML
AT EDGE
1) SCHEMES FOR DEPLOYING ML AT THE EDGE
In recent years, enormous growth has been observed in the
computational power of edge devices, allowing them to play
a more important role than just collecting data in IoTs. ML
can contribute significantly in fully utilizing the potential of
edge devices in numerous exciting applications (e.g., smart
healthcare using wearables technologies and AI-empowered
sensors, etc.) and turn them into more useful components of
an IoT environment [38]. ML could be employed at the edge
in several ways, such as inference, sensor fusion, transfer
learning, generative models, and self-improving devices. In
this section, we briefly describe some of the most commonly
used schemes.
� Inference: The inference capabilities of ML, which aims

predicting unseen objects/classes based on the previous
knowledge/trained data, help the IoTs to perform dif-
ferent activities, such as cancer prognosis, brain tumor
classification, and other clinical data analysis at the edge
devices resulting in reduced latency and bandwidth in
telemedicine [39].

� Sensor Fusion: ML in conjunction with signal process-
ing algorithms can be used for the fusion of information
from different sensors enabling efficient utilization of
the available information. With fusion capabilities, indi-
vidual sensors in an IoT environment can be converted
into sophisticated synthetic sensors to solve complex
problems more accurately. For instance, in healthcare
data from several sensors/sources can be combined ef-
ficiently to predict a clinical event, such as heart failure
[40].

� Transfer Learning: Transfer learning, which aims to re-
utilize the knowledge of one domain in another domain
by fine-tuning a pre-trained model trained on a larger
dataset, can help them to learn on a smaller dataset with
less computational resources. In an IoT environment and
in particular, in healthcare applications where the data
is scarcely available, the transfer learning technique can
be used to balance workload and latency where the pre-
trained models are put at the cloud and are shared among
edge devices to be fine-tuned for specific tasks [41].

� Generative Models: Generative learning can also be use-
ful in edge computing where generative models can be
used for the approximation of the original data at the
clouds to be used for training models at edge devices for
applications with less training samples or to solve com-
plex tasks with minimal computation from the clouds.
Generative deep models have already been explored for
the generation of synthetic medical images [42].
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� Self-improving devices: In a typical IoT environment,
ML techniques can also be used to enable end devices
to optimize their performance and improve continuously
based on the collected data and behaviors of other de-
vices. Such strategies help to configure the devices faster
which ultimately leads to faster and efficient implemen-
tation and deployment.

2) HARDWARE OPTIMIZATION TECHNIQUES
For successful deployment of ML at the edge, the two criti-
cal requirements of edge computing—namely (i) low power
consumption, and (ii) high performance—need to be fulfilled.
Thus, off-the-shelf solutions are not practical to intelligent
processing of data at the edge devices, and custom hardware
architectures need to be developed. In this section, we discuss
some hardware optimization techniques to optimize hardware
resources for deploying ML at the edge.

a) Decentrailized Distributed Computing: In edge com-
puting, computations are completely or largely performed on
end devices in a distributed computing fashion. Also, edge
computing brings data, applications, and services closer to
end devices while eliminating the need for centralized clouds
that requires infrastructure decentralization, such kind of de-
centralization can be efficiently achieved using blockchain
technologies [43]. Therefore, computational resources can be
shared among end/edge devices by employing blockchain and
smart contracts technologies thus allowing computational re-
sources demanding ML applications to be deployed at the
edge. For instance, different design requirements and chal-
lenges in designing a decentralized edge computing and IoT
ecosystem are presented in [44]. This study is specifically
focused on the need of using decentralized trust schemes
for the elimination of trust in centralized entities and high-
lights the potential of using distributed ledger technology,
i.e., blockchain for achieving the feature of decentralization.
The backbone of blockchain technologies is the distributed
consensus mechanism enabling secure communication among
trust-less participants without the intervention of a central
controlling unit. There are many facets of blockchain with
different distributed consensus methods that can be used for
edge-centric IoT systems [45].

b) AI Co-Processors: Portable intelligent and dedicated
co-processors are considered to be the driving force for
deploying AI/ML models at the edge. Different types of spe-
cialized processors can be integrated into a single system or
chip thus forming a heterogeneous computing paradigm opti-
mized for a specific type of task. In general, AI co-processors
have two common features: (1) enables parallel computing us-
ing multiple mini-cores; (2) enables accelerated data fetching
using distributed memory that is placed right to mini-cores.

D. ALGORITHMIC OPTIMIZATION TECHNIQUES
The development and advancement of ML algorithms are
promising aspects that facilitate the successful application
of ML at the edge. In this regard, various algorithms and

techniques can be leveraged to enhance and reduce the com-
putation of the parameters in ML models by exploiting
different properties such as sparsity. The widely used methods
are described below.
� Parameter Efficient Networks: To efficiently deploy ML

models at the edge, computation and memory-efficient
architectures of ML/DL models are highly desirable.
To facilitate embedded ML computing, various architec-
tures of ML models have been proposed in the literature
that can be leveraged to deploy ML models on the edge,
e.g., Mobile Net [46] and SqueezeNet [47]. These ar-
chitectures are designed with a key focus on reducing
computation costs associated with the training and in-
ferences of ML models while maintaining accuracy. An
overview of communication efficient ML approaches can
be found in [48].

� Network Pruning: The literature suggests that a penalty
of neurons in the trained model does not contribute to-
wards the final accuracy, therefore, such neurons can be
prune to save some memory. Google’s Learn2Compress1

has found that neurons can be reduced by a factor of
2 while retaining an overall accuracy of 97%. To this
aim, several algorithms have been proposed in the litera-
ture, such as learning important connections and weights
among neurons [49] and learning structural sparsity in
deep models [50]. Moreover, many ML models perform
parameter computation using 32-bit float values. On the
other hand, edge devices typically operate on 8-bit values
or less. Therefore, the model size can be significantly
reduced by reducing precision.

� Network Distillation: Network distillation is a method
for transferring knowledge learned by a larger model to
a smaller model. Together with transfer learning, which
deals with the transfer of knowledge learned from one
domain to another domain, network distillation holds
the substantial potential to significantly reduce model
size without comprising much on performances in terms
of accuracy. In addition, network distillation can be
benefited from other hyperparameters tuning algorithms
as well. For instance, the distillation method has been
successfully used for application-specific and resource-
constrained IoT platforms [51].

III. COVID-19 DIAGNOSIS USING COLLABORATIVE
FEDERATED LEARNING
In this section, we consider the problem of developing a single
ML model for classification of chest images from multiple
sources (such as X-rays and Ultrasound). Consider a clustered
federated learning (CFL) setup as shown in Fig. 2 resem-
bles the actual federated learning settings [52]. Clients in
each cluster represent the healthcare entities (remote medical
imaging facilities) and major hospitals or other government
entities (e.g., ministry of health) play the role of the cloud
server facilitating the weights aggregation and updates. The

1 https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
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FIG. 2. The proposed clustered federated learning based collaborative learning paradigm (Fig. 2(c)) versus the method of model training using central
data (Fig. 2(a)) and the conventional federated learning model training method for multiple modalities (Fig. 2(b)). The term “clients” refers to hospitals,
clinics, and medical imaging facilities.

key motivation for using clustered federated learning (CFL)
is its potential to learn a single model from data of multiple
modalities, e.g., two modalities in our case (X-ray and Ul-
trasound). Also, we note that a single multi-modal can not
be learned via conventional FL (as shown in Fig. 2, where
conventional FL requires two separate models to be learned
for each modality, i.e., X-ray and Ultrasound). The problem
formulation for collaborative learning is described below.

A. PROBLEM FORMULATION
In this task, we are interested in learning a shared model Ms

in a collaborative fashion using clustered federated learning
(CFL). As shown in Fig. 2, there are two clusters each having
different kind of imaging modality, i.e., cluster 1 (C1) has
clients having X-ray imagining facility and clients in clus-
ter 2 (C2) posses ultrasound imagining facilities, therefore,
each cluster Ck is disjoint and has different data distribu-
tion Dk . Each client m in cluster Ck has drawn its samples
zk,1, . . . , zk,m from the distribution Dk such that there are no
overlapping samples among the clients. We have formulated
the problem of collaborative learning as supervised learning
problem such that each sample zk,m contains a pair of data
sample xk,m and its corresponding class label yk,m, denoted by
zk,m = (xk,m, yk,m). Furthermore, we assume that each client
does not have any knowledge either about the identity and
data of every other client within the same cluster as well as
in the other cluster. The major hospital (aka server) shares
a shared model Ms and initial weights W0 with each client
of every cluster. After receiving the Ms and W0, each client
trains the shared model (i.e., Ms) using its own local data
Dk,m, where k = {1, 2} and m denotes the number of clients in
each cluster Ck . After that, every client in each cluster shares

the learned weights Wm,r to the server, where m represents
the client and r denotes the communication round/iteration
number. After receiving the weight updates from each client,
the server performs federated averaging using (1).

Wr = 1

n

n∑

i

wi × Wi (1)

Where, n denotes the total number of clients participating
in the CFL setup (i.e., n = |C1| + |C2|) and w is a weighting
factor that specifies the weight-age given to the weights of
each client. Then the server updates the new weights (i.e., up-
date its copy of Ms with Wr) and performs the inference using
its multi-modal test data (the two modalities, i.e., X-ray and
Ultrasound are merged to make the testing data multi-modal).
After testing the performance of Ms at the communication
round r, the server shares the updated weights Wr with all
clients in each cluster and repeats the process until the speci-
fied criteria or desired performance is achieved. The algorithm
for collaborative multi-modal learning using CFL is presented
in Algorithm 1.

B. EXPERIMENTAL SETUP
1) DATA DESCRIPTION
For this study, two datasets from different sources one con-
taining chest X-ray [10] and chest ultrasound images [13], are
used. We formulated the problem as binary classification, i.e.,
differentiating between COVID-19 chest images and normal
chest images. Each dataset is divided into two parts, i.e., a
training set and a testing set using a split of 80% and 20%,
respectively. The training portion (i.e., 80%) of each dataset is
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TABLE 1. The Distribution of Training and Testing Data of X-Ray and
Ultrasound Datasets Over Different Classes

further divided into different parts, depending upon the num-
ber of clients in that cluster. The distribution of training and
testing data of X-ray and Ultrasound datasets over different
classes is shown in Table 1. Moreover, the testing sets from
both datasets are merged to develop a joint testing set that will
be used by the server for the evaluation of the performance of
a shared model that is being trained in a collaborative fashion
using CFL.

We further note that the datasets used in this study have
inter and intra class variability in terms of image size and
quality, contrast and brightness level, and positioning of sub-
jects, an example is shown in Fig. 3. This is not surprising
as these publicly available databases are not standard datasets
for COVID-19 detection, and have been curated from different
sources and evolving with time [53]. Moreover, it is evident
from Table 1 that these datasets are highly imbalanced. These
limitations make the training of a generalized model more
difficult.

2) MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS
In our experiments, we have used the VGG16 model with
one extra convolutional layer and three fully connected layers
stacked before its original output layer having units of 128,
64, and 32, respectively. The overall architecture of modified
VGG16 has fourteen convolutional layers, six pooling layers,
and six dense layers. The output layer is modified according
to the number of classes in the problem at hand (i.e., for
binary classification) and binary cross entropy loss was used
for model optimization. Each image is first converted into a

FIG. 3. The depiction of inter and intra class variations observed in
COVID-19 datasets (X-ray [10] and Ultrasound [13]).

gray-scale image, which is then resized to a dimension of
256 × 256. Moreover, the resized images are normalized be-
fore feeding into the model. The model is trained using Adam
optimizer with a learning rate of 0.0001 at each client. We use
different types of standard data augmentation techniques for
training the models. Furthermore, to address the problem of
imbalanced classes, we propose to use focal loss [54], which
is suited for such issues in binary classification tasks. The
class imbalance also refers to the scarcity of data, i.e., when
we have a limited labeled data for a particular class. So the
class which has more data points can be easily classified with
respect to those which have few data points. Focal loss deals
with such a problem in a way that it takes the limited class
samples as hard samples and tries to improve the model’s
performance for every class so that model does not overfit on
only one class having more samples. Specifically, the focal
loss adds a modulating factor (1 − pt )γ to the standard cross-
entropy loss, where γ ≥ 0 is a tunable focusing parameter
whose values can vary in the range [0,5]. The α-balanced
variant of focal loss is defined in (2), where α balances the
importance of positive/negative examples [54]. The optimal
values for α and γ can be selected experimentally. For a
binary classification problem, alpha controls the easy and hard
examples (miss classified) and gamma controls the weights of
positive and negative classes.

FL(pt ) = −αt (1 − pt )γ log(pt ) (2)

We note that for the implementation of the proposed work
we used TensorFlow ML library, and all experiments are
performed in a simulated environment. The results of the
different experiments are described in the next section.
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FIG. 4. Comparison of clustered federated learning (CFL) with two baselines (i.e., the specialized models (trained with conventional FL independently for
each modality) and conventional federated learning (when the model is trained using multi-modal data)) in terms of average values of precision, recall,
and F1-score on X-ray and Ultrasound imagery.

TABLE 2. Parameters of Clustered Federated Learning (CFL) Experiments

IV. EXPERIMENTS AND RESULTS
In order to show the effectiveness of the proposed multi-modal
collaborative learning framework for COVID-19 diagnosis,
we performed several experiments. On one side, we aim to
evaluate and compare the performances of CFL against two
baselines, namely (i) specialized FL baseline, and the (ii)
multi-modal2 conventional FL. Since CFL aims to tackle the
convergence issues of conventional FL schemes due to the
diverse distribution of the data, the two baselines, we believe,
are appropriate options as a comparison benchmark instead of
the state of the art methods for COVID-19 diagnosis. We note
that due to the limitations of the dataset, we only consider the
divergence in distribution of the data in terms of the nature of
the data (i.e., the distribution of ultrasound and X-ray images
is different). The first baseline shows the best-case scenario,
where separated models for each type of imagery, which we
termed as specialized models, are trained in a FL environment.
The individual models are trained on X-ray and Ultrasound
images with a learning rate of 0.0001 and a batch size of 32
resulting into two separate models one for each modality (i.e.,
X-ray and Ultrasound). The second baseline represents the
experimental setup of a conventional FL environment, where
the data is distributed among different clients, and a shared
ML model is built in a federated environment. The parameters
used in different experiments can be found in Table 2.

Table 3 and Fig. 4 provides the experimental results per
class and overall (per dataset) results, respectively, in terms of
precision, recall, and F1-Score. Since the data set is not bal-
anced, so we believe, alone accuracy is not enough to evaluate

2By the term multi-modal we mean images acquired using different imag-
ining techniques, i.e., modalities (e.g., X-ray and Ultrasound).

the proposed method. For performance evaluation of the three
experimental setups (i.e., the two baselines and CFL), we kept
the similar experimental setup where we first train the baseline
models with a batch size of 16 (for each modality) and then we
train the same model in CFL fashion (i.e., using multi-modal
settings) with 5 epochs of local training with a batch size
of 16. Then we evaluated the collaboratively trained model
with the test data from each cluster (modality), i.e., X-ray and
Ultrasound. As can be seen in the Fig. 4, overall compara-
ble results are observed for multi-modal model trained using
CFL compared with the specialized two models trained in
a conventional FL environment using X-ray and Ultrasound
imagery separately. On the other hand, we can see that CFL
performance is considerably better than the performance of
multi-modal model trained in a conventional federated learn-
ing environment. Moreover, it is evident from the figure that
a collaboratively trained model is capable of recognizing the
test of images from different modalities without having ex-
plicit knowledge about these modalities. Moreover, overall
better results are obtained on ultrasound images (Fig. 4(a))
compared to X-ray imagery (Fig. 4(b)) for all models.

In Fig. 5, we provide the comparison of the three experi-
mental setups (i.e., specialized models trained in conventional
FL settings, multi-modal models trained in a conventional
FL and CFL environments) in terms of accuracy and loss
at different communication rounds. The figure depicts that
the proposed CFL model (which is trained using multi-
modal data) provides comparable performance with that of
specialized FL models (that are separately trained for each
modality). Moreover, it is also evident from the figure that
the model trained using multi-modal data in conventional
FL settings gets over-fitted after 50 communication rounds.
On the counter side, the model keeps on learning in CFL
setting, though it also tends to show over-fitting behavior at
later stage communication round as evident in the Fig. 5. The
vertical red line shown on Fig. 5(a) and (b) shows the in-
flection point beyond which the parameters of the specialized
machine learning models of the two clusters (i.e., X-ray and
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TABLE 3. COMPARISON AGAINST THE TWO BASELINES IN TERMS OF PRECISION, RECALL, AND F1-SCORE

FIG. 5. Comparison of clustered federated learning (CFL) with the specialized models (trained with conventional FL independently for each modality, i.e.,
X-ray and Ultrasound) and conventional federated learning (when the model is trained using multi-modal data) over increasing number of
communication rounds.

ultrasound) start to diverge from each other. This diversion
limits the extent to which the multimodal model can be gen-
eralized to fit the underlying multimodal data (i.e., X-ray and
ultrasound). Therefore, Fig. 5(b) provides the insight that the
federated learning rounds should be stopped as soon as the in-
flection point in the value of the loss function is reached. This
inflection point identified the number of rounds beyond which
the multimodal machine learning model cannot be enhanced.
Such an overfitting behavior can be mitigated by developing
application-specific model architectures and by using appro-
priate regularization techniques such as using a learning rate
scheduler.

Here we evaluate the performance of the proposed CFL-
based framework while considering different computational
capabilities of edge devices. Specifically, to evaluate data
heterogeneity, we used different batch sizes, and to evaluate
computational heterogeneity, we used a different number of
epochs for local model training. The effect of increasing the
number of epochs for local model training (at client-side)
with different batch sizes (i.e., 16 and 32) is shown in Fig. 6.
The following conclusions can be drawn from the figure that
reflects the resource heterogeneity of the edge devices. From
Fig. 6, we can see that when we start increasing the number of
epochs for local model training (i.e., depicting edge devices
enough computations resources to process more epochs), it
does not perform well for a batch size of 16 (this indicates that
the edge device needs to acquire more data for training). This
trend is opposite to the learning trend when the model was
trained using 1 epoch (this suggests that the edge devices with
limited computational resources should train the local model
with small batches of data). Moreover, Fig. 6 highlights that

increasing the number of epochs for training local models pro-
vides time efficiency and saves communication cost, i.e., the
shared models achieve good accuracy at fewer communication
rounds (as shown in Fig. 6). Similarly, model performance
on test data while using 10 epochs of local training is also
depicted in Fig. 6. A similar trend about the batch size can be
observed from the figure as we encountered for 5 epochs of
training thus suggesting that it’s not a good idea to increase
the number of epochs for local training of the models at
the client-side when the edge devices have a small amount
of data. Moreover, it can be observed from Fig. 6 that with
increasing the number of epochs for local model training the
batch size of 32 performs better as compared to a batch size
of 16. This suggests that when the client has enough amount
of data for local model training and computational resources
to train the model for a higher number of epochs, we will get
the increased performance of the overall CFL framework in
return.

V. DISCUSSIONS
In this section, we discuss the advantages and limitations of
our proposed CFL framework for multi-modal COVID-19
diagnosis.

A. ADVANTAGES
Some key lessons learned from the experiments conducted
in this work highlighting the potential of the proposed CFL
framework are: (1) CFL ensures the privacy of the user’s local
data, as it does not need to be shared with the server for
central training; (2) The communication payload of model
weights is far less than the payload of sharing actual data,
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FIG. 6. The depiction of model performance, Fig. 6(a), and loss, Fig. 6(b),
on multi-modal test data over increasing number of communication
rounds using 1, 5, and 10 epochs of training with different batch sizes (i.e.,
16 and 32).

therefore, it saves bandwidth and as well as time; (3) It enables
the collaborative learning of multi-modal features by shared
model Ms without sharing any explicit information about the
modality of the local data and the data itself; (4) More impor-
tantly, compared to the conventional FL, CFL ensures better
performance in presence of divergence in the data distribution.
The divergence in the distribution could be in terms of the
distribution of negative and positive samples per class as well
as in terms of the nature of data samples as detailed earlier;
and (5) This particular use-case demonstrates the potential
of the method in medical applications where remote smaller
healthcare units can benefit from this collaborative learning
method.

B. CHALLENGES AND LIMITATIONS
Despite above-mentioned benefits, there are some challenges
and limitations as well, e.g., efficiency, security issues, and the
optimization of CFL parameters is difficult. Moreover, there is
a trade-off in the model performance when we compare model
trained using central data and model trained with distributed
data using federate learning. While the literature argues that in

critical human-centric applications, such as healthcare, both
privacy and performance of AI models are crucial [3]. FL
ensures the privacy of ML models at the cost of a reduction
in the performance [28], [29], [55]. One of the key challenges
for FL algorithms in healthcare applications is maintaining
the balance between privacy and performance of the FL
model.

In addition, for multi-modal distributively dispersed data,
the development of personalized models that are tailored to
these modalities is required for local training, which will en-
hance the efficiency of the shared model and as well as of
the models on the client side. For instance, from our exper-
iments, we have learned that the performance of the model
being trained in CFL settings starts degrading after a particular
point (i.e., communication round). Thus highlighting the need
for early stopping and the development of optimal stopping
criteria except the maximum allowed communication rounds.

VI. OPEN RESEARCH ISSUES
A. DEVELOPING PERSONALIZED APPROACHES
The edge computing network is potentially more heteroge-
neous as compared to any other central network and clients
in an edge computing network vary due to data acquisition
resources [56], such as communication, computational, and
storage resources, etc. Moreover, as discussed above in the
paper, clients can significantly vary due to statistical het-
erogeneity, which is usually a great challenge in realistic
settings. For example, as we discussed in the above section,
developing a multi-modal collaborative learning framework
for COVID-19 diagnosis has efficiency challenges due to
the aforementioned heterogeneity issues. Therefore, to handle
such heterogeneities, the development of personalized and
client-specific ML/DL approaches is required. On the other
hand, if such challenges are not addressed, they will ultimately
result in the development of a biased and inefficient global
model that will favor a particular FL client over another (i.e.,
the model will provide higher performance on some clients
and lower performance on others), thus limiting the applica-
tion of FL in critical applications like healthcare.

B. ADVERSARIALY ROBUST ML
The edge computing network is more prone to security threats,
as the edge computing network is an ideal environment for
adversaries that aim to get desired outcomes or incentives for
breaching the network security and privacy of participating
agents. This phenomenon becomes, even more, worse with
the integration of ML/DL models that are vulnerable to ad-
versarial attacks, which have been already shown effective
for different healthcare applications [57]. For instance, an
adversarial attack on CT scanners in an actual hospital envi-
ronment by manipulating the hospital’s network has already
been realized in the literature [58] and threats of adversar-
ial ML for ML and IoT empowered COVID-19 detection
systems are highlighted in [59]. To restrain the adversarial
attacks, different defensive techniques have been proposed
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in the literature. However, the adversarially robust methods
developed so far are attack specific, i.e., they only work for
particular attacks for which they were developed and fail to
withstand unforeseen attacks. Therefore, the development of
adversarially robust ML/DL models is still an open research
problem that demands a proportionate amount of interest from
the community with the advancement of ML/DL techniques.
The literature highlights that the neural network parameters
shared between the client and server in FL can be used to
reconstruct the input data [60]. Moreover, different attacks
can be realized on models being trained in FL settings, e.g.,
property inference attack [61], data poisoning attack [62], and
model poisoning attack [63], etc. A taxonomy of different
attacks that can be realized on FL can be found in [64].
Therefore, for the successful deployment of ML/DL models
on the edge, in particular, for developing robust healthcare
applications, the development of adversarially robust models
is of utmost importance.

C. ASYNCHRONOUS DISTRIBUTED ML
In distributed computing, two approaches are widely used for
communication, i.e., synchronous and asynchronous. These
approaches are ideal for scenarios where data is instantly
available for instance in the central picture archiving and
communication system (PACS) of a hospital. However, in
realistic settings, the data collection or acquisition might get
delayed due to any reason, such as due to some network
issue or unavailability of I/O device, etc. Moreover, it is
possible that the client (i.e., a small healthcare entity) in
an ML-based collaborative computing network is not active
at the current iteration/communication round due to some
inherent issue, this will result in a delay in the federated
parameters update process and will eventually affect the sys-
tem’s overall performance. Therefore, it is worth studying and
developing asynchronous approaches for facilitating shared
model training for healthcare applications using distributed
data. Moreover, it has been envisioned that ML methods will
play a very crucial role in 6 G architectures [65]. In critical
human-centric applications, such as healthcare, both privacy
and performance of AI models are crucial [3]. FL ensures
the privacy of ML models at the cost of a reduction in the
performance [28], [29], [55]. One of the key challenges for
FL algorithms in healthcare applications is maintaining the
balance between privacy and performance of the FL model.

D. TRACEABILITY AND ACCOUNTABILITY
Reproducibility of the systems and results is very critical
in healthcare applications. However, compared to centralized
training, several factors need to be considered and traced for
the reproducibility of FL-based solutions for healthcare [29].
For instance, FL generally involves several clients having
different environments, computational resources, software,
and networks, which make it difficult to keep track of the
FL system assets, such as training data and configurations,
etc. Especially in non-trusted environments traceability and

accountability require particular attention. One potential so-
lution is to record all the hyper-parameters, the data, and
parameters related to the experimental environment for all the
clients. Moreover, the use of explainable AI (XAI) solutions in
FL could also help researchers in identifying the components
of the models (including both global and local) responsible for
the performance degradation [66].

E. DATA AUDITING
Data auditing is one of the key phases of developing AI
solutions for human-centric applications especially in health-
care [3]. In the FL environment, the data is distributed over
several clients and the analysts generally don’t have an access
to all the data used for training the global model. In such
a configuration, it is very challenging to analyze the risks
associated with the data and their potential impact on the
performance of the FL global model. One potential solution is
the use of the standard auditing procedure/techniques across
all the clients [67].

F. AI-INTEGRATED NEXT GENERATION COMPUTING FOR
HEALTHCARE
Integration of AI with next-generation computing technolo-
gies like cloud computing, fog serverless technologies, or
quantum computing has several challenges that need to be
resolved [68]. The major issue is the availability of limited
labeled data, and even if data is available, moving that data
into the cloud is a major challenge for organizations that pro-
duce that data through their applications. Also, organizations
need to shift their applications to the cloud so that the new
data can be available on the cloud. Once data is available on
the cloud, the challenges of data privacy and security arise.
Moreover, the literature highlights that different attacks can
be realized on cloud-hosted AI models [37]. Therefore, it
requires specialized techniques like anonymization of data or
the use of differential privacy to prevent security breaches
of confidential information to adversaries attacking the sys-
tem. Apart from these challenges, a lot of effort in terms
of resources, investment, and training is required for orga-
nizations who wish to leverage AI to enhance their business
processes.

Fog computing is used in a scenario where IoT devices
require quick inference and fast response. Substantial work
has been done that is focused on integrating AI with fog
computing. However, there are a few challenges that remain
unresolved and require special attention. Embedded AI in
fog computing can speed up the user reaction time because
when the demand for using a particular application increases,
the quality of service (QoS) suffers. A combination of novel
and efficient ML/DL algorithms can help optimize the perfor-
mance of those time-intensive applications. Moreover, while
deploying AI on the edge, the following research issues need
to be considered. There is a need to develop the rules and regu-
lations to use AI in edge computing as it has no ethical, social,
or legal status yet. Small and inexpensive edge devices may be
exploited by adversaries as they usually use third-party APIs.
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New frameworks for software and toolkits must be prepared.
There should be rules and regulations according to the local
consequences of the geographical location when it comes to
installing IoT devices that are manufactured by a different
country.

Serverless is a cloud computing paradigm that uses native
cloud services for its applications, and the integration of AI
with serverless computing has some open challenges that need
to be addressed. For example, switching to a cloud services
provider is difficult because there is a lack of industry-wide
standards. Also, the cloud service provider is responsible for
events happening in the system. On the other hand, most of
these systems lack transparency and it is difficult to under-
stand the underlying infrastructure that the service provider is
using. Therefore, considerable research attention is required
to address the aforementioned challenges. Also, research at-
tention is required to ensure that serverless computing is
sustainable with a focus on smart workload consolidation and
transmission of data like neural network learned weights with
an acceptable trade-off in accuracy. Quantum computing, due
to its unique computing technique, could replace AI in the
future. Different applications of quantum computing can be
applied in healthcare [69]. For example, in the pharmaceutical
industry, personalized medicines can be suggested by quickly
analyzing the genome structure. Another useful application
of quantum computing is protein folding, which can help in
the faster identification of drugs. Faster genome sequencing is
still an issue to be resolved. Quantum computing machines
can be used to make genome sequences quickly instead of
using standard compute machines, which takes a lot of time
and computation power.

VII. CONCLUSION
This article provides insights on how edge computing and
machine learning advances can be used to provide a solution
for COVID-19 diagnosis in an efficient privacy-aware man-
ner thereby allowing remote healthcare units to benefit from
collaborative learning paradigm without sharing local data.
In particular, we propose using a clustered federated learning
(CFL)-based collaborative learning framework to intelligently
process visual data at the edge by training a multi-modal ML
model capable of diagnosing COVID-19 in both X-ray and
ultrasound imagery. Compared to the conventional FL, CFL is
found to better cope with the divergence in distribution of data
from different sources (i.e., X-ray and ultrasound imagery).
In the current implementation, we consider the divergence in
distribution due to the sources and nature of the data due to the
limitations of the datasets. In the future, we will explore how
CFL performs in the presence of variances in the distribution
of the data in terms of the number of samples per client and
incorporating resource heterogeneity at the client level such
as computational and communication resources.
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