TWO NOTES ON MODULAR p-ALGEBRAS

By

S. EL-ASSAR and M. ABDEL-HAKIM
Dept. of Mathematics, Faculty of Science,
Tanta University, Egypt

Key words: Modular p-Algebras.

ABSTRACT

According to the definition of congruence pairs which is given by T. Katriňák, every congruence relation of a modular p-algebra can be uniquely determined by a congruence pair.

In the present paper, we characterize strong extensions of modular p-algebras and permutability of congruences using the congruence pair technique.

INTRODUCTION

The representation of the congruence relations of modular p-algebras as congruence pairs which is given by T. Katrinák [5], enables us to solve the problems concerning the congruence lattices by means of congruence pairs technique. The congruence lattice of a modular p-algebra is characterized by Katrinák in [6]. In the present paper we deal with two problems: The characterization of strong extensions of modular p-algebras and the permutability of the congruences.

PRELIMINARIES

A p-algebra is an algebra $\langle L; \gamma, \lambda, *, 0, 1 \rangle$, where $\langle L; \gamma, \lambda, 0, 1 \rangle$ is a bounded lattice and $\times \leq a^*$ iff $\times \wedge a = 0$ for every a $\in L$. The set $B(L) = \{ \times \in L : \times = \times^{**} \}$ of closed elements is a Boolean algebra. $D(L) = \{ \times : \times^* = 0 \}$ is the set of dense elements. A p-algebra is said to be distributive (modular) if the lattice $\langle L; \gamma, \lambda, 0, 1 \rangle$ is distributive (modular).

Let L be a modular p-algebra and let $\theta \in Con(L)$. Let θ_B and θ_D denote the restrictions of θ to B(L) and D(L), respectively. Evidently

 $(\theta_B, \theta_D) \in Con(B(L)) \times Con(D(L)).$

An arbitrary pair $(\theta_1, \theta_2) \in \text{Con } (B(L)) \times \text{Con } (D(L))$ will be called a congruence pair if a $\in B(L)$, $u \to D(L)$, $u \ge a$ and $a = 1(\theta_1)$ imply $u = 1(\theta_2)$.

The standard results on p-algebras can be found in [3], [4]

Theorem A [5] Theorem 11

Let L be a modular p-algebra. Then every congruence θ of L determines a congruence pair (θ_B, θ_D) . Conversely, every congruence pair (θ_1, θ_2) uniquely determines a congruence θ on L with $\theta_B = \theta_1$ and $\theta_D = \theta_2$ by the following rule:

$$\times$$
 = y (0) iff (i) \times * \supseteq y* (θ_1) and (ii) \times v \times * = y \vee y* (θ_2)

STRONG EXTENSIONS

It is known that some classes of algebras satisfy the Congruence Extension Property (CEP in the sequel): an algebra A satisfies the CEP if for every subalgebra B of A and every 0 on B,0 extends to A. The class of distributive lattices enjoys the CEP (see[2], [3]). J. Varlet [8] introduced the notion of a strong extension of algebras. An algebra A is said to be a strong extension of the algebra B, if B is a subalgebra of A and every congruence relation on B has at most one extension to A. This notion is important in studying classes of algebras satisfying the CEP. An algebra A satisfying the CEP is a strong extension of the algebra B if for every congruence on B there exists a unique extension to A.

In the following \triangle and ∇ respectively denote the identity and the universal congruences respectively.

Lemma 1 Katrinák, [7]

Let A and B be Boolean algebras. Then A is a strong extension of B if and only if A = B.

Now, we formulate

Theorem 1

Let L_1 and L be modular p-algebras. Then L_1 is a strong extension of L if and only if:

- (i) $D(L_1)$ is a strong extension of D(L),
- (ii) $B(L_1) = B(L)$.

Proof

Let L_1 be a strong extension of L. Let $\theta_2 \in \text{Con }(D(L))$. We have to show that if θ_2 extends to $D(L_1)$, then the extension is unique (if it exists). Suppose that $\overline{\theta}_2, \theta_2' \in \text{Con }(D(L_1))$ such that

$$\overline{\theta}_2 | D(L) = \theta_2 | D(L) = \theta_2$$

Clearly $(\triangle, \overline{\theta}_2)$ and $(\triangle, \hat{\theta}_2)$ are congruence pairs. By Theorem A, these determine congruence relations $\overline{\theta}$ and $\hat{\theta}$ of Con (\underline{L}_1) . Hence, $\overline{\theta} \mid L = \theta' \mid L = \theta$. By hypothesis

S. EL-ASSAR AND M. ATALLAH.

most one extension. Thus $\overline{\theta} = \theta'$ which gives $\overline{\theta}_2 = \hat{\theta}_2$, proving (i).

Similarly by considering a congruence relation $\theta_1 \in \text{Con } (B(L))$ the CEP can be proved to hold for the class of Boolean algebras. Thus θ_1 has an extension to $B(L_1)$; we will show that this extension is unique. Let $\overline{\theta}_1$, $\dot{\theta}_1 \in \text{Con } (B(L_1))$ satisfy

$$\overline{\theta}_1 | B(L) = \theta_1 | B(L) = \theta_1$$

Clearly $(\tilde{\theta}_1, \nabla)$ and $(\hat{\theta}_1, \nabla)$ are congruence pairs. Then there exist two corresponding congruence relations $\tilde{\theta}$ and $\hat{\theta}$ of Con (L_1) ,

$$\vec{\theta}|L = \theta|L = \theta.$$

But θ has at most one extension to L_1 . So $\overline{\theta} = \theta$. Accordingly, $\overline{\theta}_1 = \theta_1$ and $B(L_1)$ is a strong extension of B(L). Using Lemma 1 we get $B(L_1) = B(L)$.

Conversely, suppose the validity of the conditions (i) and (ii) and let $\theta \in \text{Con }(L)$. If θ extends to L_1 we show that this extension is unique. Assume that $\overline{\theta}, \theta \in \text{Con }(L_1)$ where $\overline{\theta} \mid L$. $\underline{\theta} \mid L = \theta$. By Theorem A, these can be represented by congruence pairs as

$$\overleftarrow{\theta} = (\overleftarrow{\theta}_1, \overleftarrow{\theta}_2)$$
 and $\overleftarrow{\theta} = (\overleftarrow{\theta}_1, \overleftarrow{\theta}_2)$ and $\overleftarrow{\theta} = (\theta_1, \theta_2)$, where $\theta_1 \mid B(L) = \overleftarrow{\theta}_1 \mid B(L) = \theta_1$ and $\overleftarrow{\theta}_2 \mid D(L) = \overleftarrow{\theta}_2 \mid D(L) = \theta_2$. By the conditions (i) and (ii) we get $\overleftarrow{\theta}_1 = \overleftarrow{\theta}_1$ and $\overleftarrow{\theta}_2 = \overleftarrow{\theta}_2$.

Corollary 1

Let L, L_1 be two distributive p-algebras. If L_1 is a strong extension of L, then Con $(L) \simeq \text{Con } (L_1)$.

Proof

Distributive p-algebras satisfy the CEP. Then every congruence of L has an extension on L_1 and this extension is unique.

PERMUTABILITY OF CONGRUENCES

An algebra A is said to have permuting congruences whenever the usual relational product θ o \mathcal{P} of any pair of congruences θ , φ on A commutes; that is a $\equiv t(\theta)$ and t $\equiv b(\mathcal{P})$ implies $a \equiv w(\varphi)$ and $w \equiv b(\theta)$, for some $w \in a$.

It is well known that Boolean algebras have permuting congruences. Hence the permutability of p-algebras depends on the permutability of their lattices of dense elements. This was shown by Berman [1] for distributive p-algebras. In case of modular p-algebras, we have.

Theorem 2

Let L be a modular p-algebra. Then the following conditions are equivalent

- (i) L has permuting congruences,
- (ii) D(L) has permuting congruences.

Proof

For any congruence $\theta \in \text{Con}(L)$ the restriction θ_D on D is a congruence on D. Also for any congruence $\theta_2 \in \text{Con}(D(L))$, (Δ, θ_2) is a congruence pair. This means that there exists a congruence $\theta \in \text{Con}(L)$ with $\theta_D = \theta_2$. To prove the equivalence of the conditions (i) and (ii) we have to show that two congruences $\theta \in \text{Con}(L)$ are permutable if and only if their restrictions θ_D and Ψ_D are permuting congruences on D(L). Let θ , Ψ permute and suppose that θ_D and θ_D are such that θ_D and θ_D and θ_D are such that θ_D and θ_D and θ_D and θ_D are such that θ_D and θ_D and θ_D and θ_D are such that θ_D and θ_D and θ_D and θ_D are such that θ_D are such that θ_D and θ_D are such that θ_D are such that θ_D and θ_D are such that θ_D are such that θ_D and θ_D are such that θ_D are such that

But θ and \mathcal{P} permute. So there exists $\times \in L$ with $a = x(\mathcal{P})$ and $x = c(\theta)$. By Theorem A we have $a \vee a^* = x \vee x^* (\mathcal{P})$ and $\times \vee \times^* = c \vee c^* (\theta)$. Now $a \in D(L)$ implies that $a^* = O$, and so since $x \in L$ we should have $x \vee x^* = d \in D(L)$. Hence $a = d(\mathcal{P})$, $d = c(\theta)$, $a,d,c \in D(L)$ implies $a = d(\mathcal{P}_D)$ and $d = c(\theta_D)$. Thus θ_D, \mathcal{P}_D are permutable congruences.

Conversely. Let $0, \mathcal{P} \in \text{con}(L)$ be such that θ_D, \mathcal{P}_D are permutable. Consider the elements $x,y,z \in L$ with $x = y(\theta)$ and $y = z(\mathcal{P})$. Using Theorem A, we get $x^* = y^* \in (\theta_B)$, $y^* = z^* \in (\mathcal{P}_B)$ and $x \in x^* = y \in (\theta_D)$, $y \in y^* \in z \in (\mathcal{P}_D)$. But any two congruences of a Boolean algebra permute. So there exists $w^* \in L$ with $x^* = w^* \in (\mathcal{P}_B)$ and $x^* = z^* \in (\theta_B)$. Since $x \in (\theta_D)$ are permutable, then there exists $x \in (\theta_D)$ with $x \in (\theta_D)$ are $x \in (\theta_D)$. Then $x^* = x^* \in (\theta_D)$ with $x \in (\theta_D)$ and $x \in (\theta_D)$ are $x \in (\theta_D)$ and $x \in (\theta_D)$ and $x \in (\theta_D)$ are $x \in (\theta_D)$ and $x \in (\theta_D)$ and $x \in (\theta_D)$ are permutable as to be proven.

Corollary 2

A modular p-algebra L has permutable congruences if D(L) is a relatively complemented lattice.

Proof

It is known that relatively complemented lattices have permutable congruence relations (see [4]). Thus 0_D , D permute for every D, D Con D, which means that D, are permutable.

Corollary 3

A distributive p-algebra L has permuting congruences if and only if D(L) is relatively complemented.

S. EL-ASSAR AND M. ATALLAH.

Proof

The proof is clear since a distributive lattice has permuting congruences if and only if it is relatively complemented.

REFERENCES

- [1] J. Berman. 1973. Congruence relations of pseudocomplemented distributive lattices. Algebra Univ. 3, 288-293.
- [2] J. Berman. 1974. Notes on equational classes of algebras, Lecture Notes, Univ. of Chicago.
- [3] G. Gratzer. 1971. Lattice Theory: First concepts and distributive lattices (Freeman, San Fransisco).
- [4] G. Gratzer. 1978. General Lattice Theory (Birkhauser Verlag, Basel.)
- [5] T. Katrinák and P. Mederly. 1974. Construction of modular p-algebras. Algebra Univ. 4, 301-315.
- [6] T. Katrinák. 1976. On a problem of G. Gratzer Proc. Amer. Math. Soc. 57, 19-24.
- [7] T. Katrinák. 1980. Essential and strong extensions of p-algebras. Bull. de la Soc. Roy. des Sci. de Liege, 3-4, 119-124.
- [8] J.C. Varlet. 1979. A strengthening of the notion of essential extension. Bull. de la Soc. Roy. des Sci. de Liege 11-12, 432-437.