ELLiptic Surfaces over a genus 1 curve with exactly the pair (I, IV) of singular fibers

By
Ahmad Al-Rhayyel
Dept. of Mathematics, Qatar University
P.O. Box 2713, Doha - Qatar

ABSTRACT
In this paper we classify all minimal elliptic surfaces \(\pi : E \to C \) over a genus 1 curve \(C \), with a section and exactly the pair (I, IV) of singular fibers.
Elliptic surfaces over a genus 1 curve with exactly the pair (I\textsubscript{n}, IV) of singular fibers

1. INTRODUCTION

The serious study of elliptic surfaces was started by Kodaira (see [6]). He listed all possible types of singular fibers, gave their invariants and analyzed an important invariant called the J-map. Beauville (see [2]) has studied elliptic surfaces over \(P^1 \), in fact he classified the semi-stable cases (i.e., the cases in which all singular fibers are of type I\textsubscript{n}). He proved that there are 6 semi-stable cases with the minimal number (=4) of singular fibers. In 1985 Schmüdgen-Hirzebruch wrote Weierstrass equations for all elliptic fibrations with at most three singular fibers (see [5]). In 1986, R. Miranda and U. Persson have listed all extremal rational elliptic surfaces (see [8]). In 1988, Stiller (see [12]) has classified all elliptic surfaces over a genus 1 curve with exactly one singular fiber necessarily of type \(I_n \). In 1989, R. Miranda and U. Persson has classified all possible configurations of singular fibers on elliptic \(K3 \) surfaces (see [9]). In 1990, U. Persson has classified all possible configurations of singular fibers on rational elliptic surfaces (see [10]). Also, R. Miranda has analyzed the same problem by giving a more combinatorial and less geometric analysis (see [7]).

In this paper we let \(C \) denote a genus one curve and study minimal elliptic surfaces \(\pi : E \to C \) with a section and exactly the pair \((I_n, IV)\) of singular fibers. In this paper the notation \([J'(x)] = (n_1, \ldots, n_t)\) will be used to indicate that \(J(x) \) consists of \(t \) points say \(\{x_1, \ldots, x_t\} \) such that the multiplicity of \(J \) at \(x \) (\(m_x(J) \)) is \(n \) for all \(i \in \{1, \ldots, t\} \).

The plan of the paper goes as follows: First, we review some important ideas which will be used in the text of this paper, then, we give the possible ramification of the J-map and prove its existence, and then we construct the J-map and the required surfaces.

Remark 1.1: To build a minimal elliptic surface with a section and a given number of singular fibers, it is enough to build the J-map associated to this surface (for more details see [7] Section 3).

The following theorem which we call the monodromy theorem is just a restatement of Corollary 3.5 of [7].

Theorem 1.2: Let \(C \) be a curve and let \(\pi \) be a finite subset of \(P^1 \) say \(|\pi| = n \), then there is a one-to-one correspondence between

\[
\begin{align*}
\{ J : C \to P^1 \text{ such that } deg(J) = d \text{ and } J \text{ is branched at most over } \pi \} & \quad \text{and} & \{ \text{permutations } \sigma_1, \ldots, \sigma_t \in S_t \} \\
\{ \text{such that } \sigma_1 \ldots \sigma_t = id, \text{ and the } \sigma_i \text{'s generate a transitive subgroup of } S_t \} & \quad \text{such that } \sigma_1 \ldots \sigma_t = id, \text{ and the } \sigma_i \text{'s generate a transitive subgroup of } S_t
\end{align*}
\]

Where the first set is taken up to isomorphism (fixing \(P^1 \) and the second set is taken up to conjugation).

2. MAIN RESULTS

There are the following types of singular fibers (see [6]):

\(I_6, I_4, I_3, II, III, IV, IV\ast, III\ast, II\ast(\geq 1) \). If \(e(F) \) denotes the Euler number of the fiber \(F \), then the Euler numbers of the above list are: \(6, n, n + 6, 2, 3, 4, 8, 9, 10 \) respectively.

Lemma 2.1: Let \(C \) be a genus 1 curve, suppose \(\pi : E \to C \) is a minimal elliptic surface with a section and exactly two singular fibers. If the degree of the line bundle \(L \) is 1 (i.e., \(L \) is the conormal bundle to the section), then there are exactly five possible pairs \((F_1, F_2)\) of singular fiber types such that the sum of the Euler numbers is 12.

Proof. Immediate from the fact that if \((F_1, F_2)\) is a possible pair of singular fibers, then \(e(F_1) + e(F_2) = 12 \).

Notice that the pair \((I_2, IV)\) is one of these possible pairs, and this case cannot occur if the genus of the base curve is 0 (i.e., \(C \equiv P^1 \)).

Lemma 2.2: Let \(C \) be a genus 1 curve, suppose \(\pi : E \to C \) is a minimal elliptic surface with a section and exactly the pair \((I_n, IV)\) of singular fibers. If \(J : C \to P^1 \) is the J-map associated to this fibrations, then degree \((J) = 12 \) and \(J \) is ramified as follows: \([J'(0)] = (3, 3, 2), [J'(1)] = (2, 2, 2, 2) \) and \([J'((\infty))] = (8)\).

Proof. \(\deg(J) = \sum_{i=1}^{n} m_i(J) - \#(\text{fibers} + \#(\text{fibers}) = 8 \) (see [7], p. 194).

Let \(R = \{ \text{ramification points of } J \} \) and \(m_i(J) \) denote the multiplicity of \(J \) at the point \(x \). By Hurwitz's formula for the genus of a curve we have: \(16 = \sum_{i=1}^{\#J \cap P^1} (m_i(J) - 1) \). Now over \(0 \) we have the \(IV \) fiber, hence the minimum ramification of \(J \) over 0 is obtained if \([J'(0)] = (3, 3, 2) \) (see [7]), over 1 we have smooth fibers, hence the minimum ramification of \(J \) over 1 is obtained if \([J'(1)] = (2, 2, 2) \) and over \(\infty \) we have \(I_2 \)-fiber, hence \([J'((\infty))] = (8)\).

Thus

\[
\sum_{x \in J \cap (0,1,\infty)} (m_i(J) - 1) = 5 + 4 + 7 = 16,
\]

hence \(R = \{0, 1, \infty\} \) and there is not other ramification of \(J \).

Theorem 2.3: Under the hypothesis of Lemma 2.2 above the degree 8 map \(J : C \to P^1 \) (ramified as in Lemma 2.2), exists and is unique. Moreover, the genus 1 curve \(C \) is unique.

Proof. To prove this theorem is enough to find three permutations \(\sigma_0, \sigma_1, \) and \(\sigma_2 \) in \(S_t \) representing the monodromy of
J around 0, 1 and \(\infty \) respectively, such that: \(\sigma \sigma_1 = \sigma_1 \sigma, \sigma_2, \) and \(\sigma_3 \) are unique up to conjugation, the triple \((\sigma_0, \sigma_1, \sigma_2)\) generates a transitive subgroup of \(S_3 \) and such that the cycle structure of \(\sigma_0 \) is \((3^2, 2)\), that of \(\sigma_1 \) is \((2^2)\) and that of \(\sigma_2 \) is \((8)\).

To this end let \(\sigma_0 = (1 2) (3 4 5) (6 7 8) \) and \(\sigma_1 = (a b) (c d) (e f) (g h) \). Since 1 has to appear in one of the 2-cycles of s1 we may assume \(a = 1 \), hence \(b \neq 2 \) (otherwise we would have a fixed element in the product \(\sigma_0 \sigma \) which is not allowed); therefore we assume that \(b = 3 \). Now 2 has to appear in \(\sigma_1 \), so assume \(c = 2 \), and hence \(d \neq 1, 2, 3 \), hence \(d = 4 \) or 5 or we may assume \(d = 6 \), but clearly if \(d = 4 \) or 5, then this forces \((7 8)\) to be in \(\sigma_1 \) which is not valid, hence \(d \neq 1, 2, 3, 4, 5 \), so assume \(d = 6 \). Now it is easy to check that \((e f) = (4 7) \) or \((4 8)\) and if \((e f) = (4 8)\), then we get the cycle \((5, 8)\) in \(\sigma_0 \sigma_1 \) which is not allowed, hence \((e f) \neq (4 8)\); therefore, we get:

\[
\sigma_0 = (1 3) (2 6) (4 7) (5 8) \\
\sigma_0 \sigma_1^{-1} = (1 4 8 3 2 7 5 6)
\]

and clearly the permutations \(\sigma_0, \sigma_1, \) and \(\sigma_2 \) satisfy all the conditions stated in the beginning of the proof; thus \(J : C \rightarrow P \) (ramified as in Lemma 2.2) exists and is unique and the curve \(C \) is unique.

Corollary 2.4: If \(C \) is the unique genus 1 curve of Theorem 2.3 above, then there is a unique (up to analytic isomorphism) minimal elliptic surface \(\pi : E \rightarrow C \) with a section and exactly the pair \((I_4, IV)\) of singular fibers.

Proof. This is clear since the J-map exists and is unique, and this guarantees the existence and uniqueness of the desired surface.

3. THE J-MAP AND THE SURFACE

Next we construct the J-map \(J : C \rightarrow P \) associated to a minimal elliptic surface \(\pi : E \rightarrow C \) with a section and exactly the pair \((I_4, IV)\) of singular fibers, where \(J \) and \(C \) are the unique J-map and the unique curve of Theorem 2.3 above.

The plan here is to realize this J-map as a composition of two maps: a degree 4 map \(f : C \rightarrow P \), and a degree 4 map \(J_1 : P \rightarrow P \) (i.e., \(J = J_1 \circ f \)), now we proceed with this construction.

Remark 3.1: If \(C \) is a genus 1 curve, then clearly a degree 2 map \(f : C \rightarrow P \) exists, and by Hurwitz’s formula for the genus of a curve \(f \) must be branched over exactly 4 points of \(P \), in fact by a suitable change of coordinates in \(P \) we may assume that these four brach points to be any four points of \(P \).

Moreover, we may assume that the curve \(C \) is given by \(y^2 = (x - a_1)(x - a_2)(x - a_3)(x - a_4) \), and the map \(f : C \rightarrow P \) is given by \(f \) (\(y, x \) = \(x \)), hence \(a_1, a_2, a_3 \) and \(\infty \) are the four ramification points of \(f \).

In the next remark we give the degree 4 map \(J_1 : P \rightarrow P \), in fact we have

Remark 3.2: Let \(P : S \rightarrow P \) be the rational elliptic surface which has the following singular fibers: the pair \((III, III)\) over 1, a fiber of type \(II \) over 0, and a fiber of type \(IV \) over \(\infty \). This surface has a geometric realization \(M(1, 1, 1, 0) \) (see [10], page 10), and this surface is constructed on page 36 of [10]. If \(J_1 : P \rightarrow P \) is the J-map associated to this surface, then deg \(J_1 = 4 \) and \(J : P \rightarrow P \) is ramified as follows (see [7], page 207):

\[
\|J_1\|_{x=\infty} = (4), \|J_1\|_{x=1} = (1, 1, 2) \text{and} \|J_1\|_{x=0} = (1, 3).
\]

Moreover we may assume that \(J_1 : P \rightarrow P \) is given by \(J_1(x) = 4x^3 - x^4 \), and to clarify this moreover statement, let \(x = 0 \) be the point multiplicity 3 over 0, and \(x = \infty \) be the point of multiplicity 4 over \(\infty \), hence \(J_1 : P \rightarrow P \) must be of the form \(J_1(x) = c_4x^4 - x^5 \), where \(a_4^3 \) and \(c_4 \) are constants. Now \(J_1(x) \) must have a critical point over 1 (since \([J_1(1)] = 1 \)), and clearly \(J_1(x) = 0 \) if and only if \(x = 3a_4 \), thus \(J_1(3a_4) = 0 \), and hence \(27a_4c_4 + 256 = 0 \). Clearly \(a_4 = \frac{3}{4} \) and \(c_4 = -3 \) is a solution of this equation; therefore, \(J_1(x) = 4x^3 - x^4 \).

Lemma 3.3: The degree 4 map \(J_1 : P \rightarrow P \) ramified as in (3.2.1) above is unique.

Proof: To prove this, it is enough to find a set of three permutations \(\sigma_0, \sigma_1, \) and \(\sigma_2 \) representing the monodromy of \(J \) around 0, 1, and \(\infty \) respectively such that \(\sigma_0 \sigma_1 = \sigma_1 \sigma_2 \), the triple \((\sigma_0, \sigma_1, \sigma_2)\) generates a transitive subgroup of \(S_4 \), \(\sigma_1, \sigma_2 \), and \(\sigma_3 \) are unique up to conjugation, and such that the cycle structure of \(\sigma_0 \) is \((3)\), that of \(\sigma_1 \) is \((2)\) and that of \(\sigma_2 \) is \((4)\).

To this end assume that \(\sigma_0 = (2 3 4) \) and \(\sigma_1 = (a b) \). Notice that if \((a b) \) consists of two elements of \(\sigma_0 \), then the product \(\sigma_0 \sigma_1 \) must have a fixed element which is not allowed; hence we may assume \(a = 1 \) and \(b = 2 \); therefore, we get \(\sigma_0 \sigma_1 = \sigma_2 = (1 3 4 2) \). Moreover, it is clear that these permutations satisfy all the conditions stated in the beginning of the proof, hence \(J_1 : P \rightarrow P \) is unique.

Lemma 3.4: Let \(C \) be a genus 1 curve, let \(f : C \rightarrow P \) be a degree 2 map, let \(J_1 : P \rightarrow P \) be the degree 4 map defined in Remark 3.2 above. If \(J : C \rightarrow P \) is defined by \(J = J_1 \circ f \), then
Elliptic surfaces over a genus 1 curve with exactly the pair (I, IV) of singular fibers
deg(J) = 8, and by a suitable change of coordinates in P^1 (= range of f) J is ramified as in Lemma 2.2, and hence is the unique J-map of Theorem 2.3.

Proof: $\text{Deg}(J) = \text{deg}(J)$, $\text{deg}(f) = 9$. Let S_0 be the point whose J_1-value is ∞, let S_1 and t_1 be the points whose J_1-value is 1, and let S_0 be the point whose J_1-value is 0, where the second subscript is used to indicate the multiplicity of J_1 and these points. Now change coordinates in P^1 so that S_0, S_1, t_1, and S_2 are the four branch points of f, hence it is easy to see that $J = J_1 \circ f$ is ramified as required, and hence it is the unique J-map of Theorem 2.3.

Theorem 3.5: Given the unique genus 1 curve C of Theorem 2.3, and if $J: C \to P^1$ is the unique J-map defined in Lemma 3.4 above, then this data can be used to build the unique minimal elliptic surface (see Corollary 2.4). $\pi: E \to C$ with a section and exactly the pair (I, IV) of singular fibers.

Proof: Let $J = J_1 \circ f$ (see Lemma 3.4), then it is clear that f is just a base change of order 2, let $J: C \to P^1$ be the pull-back of the surface $P: S \to P^1$ (see Remark 3.2.) via f, then $\pi: E \to C$ is a minimal elliptic surface with a section and the following singular fibers: two I_0 fibers over 1, a fiber of type IV over 0, and a fiber of type I_0 over ∞ (see [8], Table 7.1.). Now using the process of deflating two *'s, we deflate the two *'s from the two I_0-fibers (see [7], Section 3), so that they becomes smooth fibers, and notice that the rest of the fibers remains unchanged, and hence the resulting surface $\pi: E \to C$ is minimal elliptic surface with a section and exactly the pair (I_0, IV) of singular fibers; thus $\pi: E \to C$ must be the required (up to analytic isomorphism) surface.

We end this paper with the following remark:

Remark 3.6: another way to get our surface is to consider the rational elliptic surface $\alpha: S \to P^1$, whose Weierstrass equation is given by: $y^2 = x^3 + 3t(t-1)x^2 + 2t(t-1)^3$. This surface has J-map given by $J(t) = t$, and it has exactly three singular fibers (see [7], page 203): a fiber of type II over t = 0, a fiber of type III_0 over t = 1, and a fiber of type I_0 over t = ∞.

Let $\pi: E \to C$ be the pull-back of the rational elliptic surface $a: S \to P^1$ via $J = J_1 \circ f$, then use Table 7.1 of [8] to get the required surface.

REFERENCES

