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ABSTRACT 

In this paper we classify all G-actions on the solid Klein bottle when G= Z, and 
when G= Z" Ei:) Z". 

Let G be a group and M a topological space. An action of G on M is a map 8: GxM 
--> M such that (i) 8 (g, 8 ((h,x)) = 8 ((gh,x)) for all g,h E G and x E M. and 
(ii)8((e,x)) = x for all x E M, where e is the identity of G. 8 (g,x)) is denoted by 
g(x). The action 8 is called effective if it is injective. Two G-actions 8 on M and 

QJ on N are weakly conjugate if there exists a group automorphism A:G-->G 
and a homeomorphism t:M-->N (called the connected homeomorphism) such that 
t8((g,x))=cp(Axt)((g,x)), i.e. tg(x)=A(g) (t(x)). If A(g)= g, then 8 and cp are 
conjugate. 

In this paper we consider the classification of the G-actions on the solid Klein bottle 
SK. We give complete classifications when G= Z 0 , the finite cyclic group, and 
when G= Z2 ED Z2 . We extend the results of Natsheh (4). 

Throughout the paper we work in the PL category (our results are valid for 
Diff-category without any changes). We divide the paper into three sections. In 
section 1 we prove theorem 1, the product theorem and state theorem 2, the 
involutions on SK. In section 2, we classify all Z 0 -actions on SK, up to weak 
conjugation. In section 3, we classify the Z2 ED Zractions on SK. 

Let G be an Abelian group acting effectively on a connected space M. Let g,h E G 
and q:M --> Mig be the orbit map induced by g. Then there exists a 
homeomorphism h: on Mig uniquely determined by h such that h=qq.h· is called 
the action on Mig induced by h. 



Finite group actions on SK bottle 

Throughout the paper S", D", and P" denote the n-sphere, the n-cell and the 
n-dimensional projective plane, respectively. Mb denotes a Mobius band. C(X) 
denotes the cone over the space X. S1 is viewed as the set of complex numbers x 
with norm 1. The closed unit interval is denoted by I. T= S1xS1

• 

D'= {rx: 0 ~ r ~ 1, x E S1
} 

SK= RxD'/- , (s,rx) - (s+ 1, C(rx)), where C(rx) rx, 

Section 1. 

In this section we make use of recent results of Dunwoody (1) and Meeks and Scott 
(3); Moreover we write down theorem 2 which was proved in (4). 

Theorem 1. Let G be a finite group acting effectively on the solid Klein bottle SK. 
Then the action is conjugate to an action which preserves the product structure, i.e. 
for every g E G g( [ s,rx 1 ) = [<X (s), ~ (rx) ] , up to conjugation. 

Proof. Let g E G, M= SK and M' be a disjoint copy of M with a corresponding g' 
action, g': M', g'(x') = (g(x))'. Consider the double of M, 2M= S1x-S', the 
non-orientable two-sphere bundle over S1 obtained from M and M' by identifying 
them along their boundary by the identity map. Then g and g' define an action g- on 
2M and hence G-acts on 2M. By Dunwoody (1), there exists a two sphere S 
properly embedded in 2M which does not bound a 3-cell such that for every g € G 
g(S)=S or g(S) n. S= cp . Now since each of M and M' are invariant under the 
G-action and S n. M= D' it follows that for every g E G, g(D')= D' or g(D') ll.D'= 
¢. Now by Meeks and Scott (3) the result follows. 

The following theorem may be found in (4). It is an easy consequence of theorem 1 
and Kims result (2). 

Theorem 2. Let h be an involution on SK, then his conjugate to exactly one of the 
following involutions with fixed point sets Fix(hi) and orbit spaces M*i 

1. h1( [ s,rx] )= [ s,rx ] 4. h4( [ s,rx ] )= [ 1-s,rx] 

Fix(h1)= s1xi Fix(h4)= D'U I 

M* 1= S1xD' M*4= D3 

[ s,-rx 1 
h'4( [ s,rx] )= [ 1-s,ri] 

2. h2( [ s,rx 1 )= 
Fix(h2)= Mb 5. h5( [ s,rx ] )= [ 1-s,-rx ] 

M* 2 = SK Fix(h5)= I U {*} 

h3( [ s,rx ] )= [ s,-rx] 
M*5 = C(P') 

3. h'( [ s,rx ] )= [ 1-s,-ri ] 
Fix(h3)= S1 

M* 3 = SK 
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Remark. It is easy to see that h4 , h' 5 , are conjugate to h' 4 , h' 5 , respectively by 
taking the connecting homeomorphism t: SK-->SK t( [ s,rx ] )= [ s+ lfz,rx] . 

Section 2. 

In this section we classify all Zn-actions on SK. 

Theorem 3. Let h be a generator of a Zn-action on SK. Then h is weakly 
conjugate to one of the following maps, with quotient spaces M*. 

1. h 1( [ s,rx ~ )= [ s+-!;- ,rx·], n is odd 
Fix(h' 1)= <!> ,0 < i < n 
M*= SK 

2. h2 ( ( s,rx] )= [ s+-lz ,rx], n= 2k, 
h'2 ( [ s,rx] )= [ s+ l,rx] = [ s,rx ] 
Fix(h'2)= S'x I 
M*= S' X D' 

3. h3 ( [ s.rx ] )= l s+ -j;- ,-rx] , n= 2k, k is even, 
h'3 ( [ s,rx J )= [ s+l,rx ] = [ s,rx] 
Fix(h'3)= S'x I 
M*= SK 

4. h4 ( [ s.rx] )= [ s+-iz .-rx], n= 2k, k is odd 
h'4 ( [ s,rx] )= [ s+ 1,-rx ] = [ s,-rx] 
Fix(h'4)= Mb 
M*= SK 

5. h5( [ s,rx ] )= [ s+-jz ,-rx·] , n= 2k, k is odd 
h'5 ( [ s,rx] )= [ s+ 1,-rx ] = [ s,-rx] 
Fix(h'5)= S' 
M*= SK 

6. h6 ( [ s,rx ] )= [ 1-s,rx] , n= 2 
Fix(h6 ) = D'U I 
M*= D-' 

7. h7 ( [ s,rx ] )= [ 1-s,-rx ] , n= 2 
Fix(h7)= I U {*} 
M*= C(P') 

Proof. Let h be a generator of a Zn-action on SK. It follows from theorem 1 that, 
up to conjugation h is given by either 

h( [ s,rx 1 )= [ s+~ ,g(rx)] 
where m divides n, g is a homeomorpism on D' such that Cg= gC and g"= C" m. or 

h( [ s,rx ] )= [ 1-s, g(rx) ] 
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where n is even n= 2k, g is a periodic map on D' with period nor k, and C:gC:= g. 

First let n be odd, then m is also odd and g" (rx)= ri or rx, hence g(rx)= rx, from 
which we have h( [ s,rx 1 )= [ s+-k ,rx· ] and h"'( [ s,rx ] )= [ s+ I ,rx 1 = 
[ s,rx J, and hence n=m. Therefore h is given by hh up to weak conjugation. 

Second let n be even, n= 2k and h is given by 
h( [ s,rx] )= [ s+ri, ,g(rx)] 

we have the following cases: 

Case 1. hk( [ s,rx 1 )= [ s,rx·1 , up to conjugation. Then SKJhk= S1xD2 and 
Fix(hk)= S1x I C S1 x o 0 2 • h induces a periodic map h·:(S 1x02$ xi) --> (S 1 

xD2,S1xi) which preserves the product structure. Hence up to weak conjugation 
"h·((s,rx))= (s+i- ,g·(rx)) where g(rx)= rx, -rx, ri· or -rx:. Therefore, up to weak 
conjugation, his given by h( [ s,rx] )= [ s+-jz ,g(rx) 1 , where g(rx)= rx, -rx, rx· 

or -rx·. 

If g(rx)= rx, then up to weak conjugation his given by h2• If g(rx)= rx·, then k is 
even and h= h~-; therefore his weakly conjugate to h2 . If g(rx)= -rx, then k is 
~ven and h= h3 , up to weak conjugation. Finally if g(rx)= -rx·, then k is even and 
h= h~+t , hence h is weakly conjugate to h3 . 

Case 2. hk( [ s,rx 1 )= [ s,-rx 1 , up to conjugation. SKJhk= SK and Fix(hk)= Mb. 
h(MB)= Mb and Mb is two-sided in SK, hence h interchanges the two sides of Mb 
and k is odd. We finish this case as we did in Case 1 to conclude that h is weakly 

conjugate to h4 • 

Case 3. hk ( [ s,rx 1 )= [ s,-rx 1 , up to conjugation. SKJhk = SK and Fix(hk)= S1 

is a fiber contained in (SKJhk). h induces h·:(SK/h', S1
) --> (SK/h',S 1

), where h 
has period k. We finish this case as in Case 1 to conclude that his weakly conjugate 

to h5 . 

Third let n be even, n= 2k and h is given by 
h( [ s,rx 1 )= [ 1-s,g(rx) J. 

If g( rx) = rx w, where w is a primitive root of unity, then g( rx) = g( rx·), hence rx C::U = 
rx wand W = w from which we have w =1 or -1. Therefore g(rx)= rx, -rx, rx· or 
-rx· and n= 2. If g(rx)=rx, his given by h6 , up to conjugation. If g(rx)= rx·, then it 
is easy to check that his conjugate to h6 . Similarly if g(rx)= -rx or g(rx)= -rx·, then 

h is conjugate to h7 . 

Section 3. 

In this section we classify the Z2 EE> Zractions on SK. 
Theorem 4. Let Z 2 EE> Z2 -act effectively on SK, then the action is weakly 
conjugate to one of the following actions. 
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1) G1= {e,h~>hz,hJ}, 2) Gz= {e,h1,h4 ,h'4}, 3) G3 = {e,h~>h5 ,h' 5 }, 4) G4 = 
{e,h2 ,h4 ,h5 } or 5) G 5 = {e,h3 ,h4 ,h 5 }. Where the hi,s are the involutions on SK 
given in theorem 2. 

Proof. Let h be a generator of a Z2 0 Zraction on SK, then his an involution. 
First let h be given by h~> up to conjugation. Let g be the second generator, then g is 
also an involution. If g=h2 (or h3) then Z2 Ef>Z2 = G 1 up to weak conjugation. If 
g=h4, then Z2 Ef)Z2 = G2 up to weak conjugation. If g=h5 , then Z2 EDZ2 = G3 up to 
weak conjugation. Second if h=h2 , up to conjugation, then if g=h1 or h2 we get G 1. 
If g=h4 then Z2 EF> Z2 = G4 , up to weak conjugation. If g=h5 , then Z2 (f) Z2 = G4 , 

up to weak conjugation where the connected homeomorphism t: SK --> SK, 
t( [ s,rx J )= [ s+lJz,rx] makes this action and the preceeding one weakly 
conjugate. Third if h=h3 , then for g=h4 we have Z2 (f) Z2 = G5 , up to weak 
conjugation. 
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