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ABSTRACT

In this paper we classify all G-actions on the solid Klein bottle when G= Z, and
when G= Z, @ Z,.

Let G be a group and M a topological space. An action of G on M is a map Q: GxM
--> M such that (i) © (g, © ((h,x)) = © ((gh,x)) for all g.h €G and x € M. and
(i)©((e,x)) = xforallx € M, where e is the identity of G. © (g.x)) is denoted by
g(x). The action © is called effective if it is injective. Two G-actions © on M and

@ on N are weakly conjugate if there exists a group automorphism A:G-->G
and a homeomorphism t:M-->N (called the connected homeomorphism) such that
t@((g,x))———(D(Axt)((g,x)), Le. tg(x)=A(g) (t(x)). If A(g)= g, then © and  are

conjugate.

In this paper we consider the classification of the G-actions on the solid Klein bottle
SK. We give complete classifications when G= Z,, the finite cyclic group, and
when G= Z, ® Z,. We extend the results of Natsheh (4).

Throughout the paper we work in the PL category (our results are valid for
Diff-category without any changes). We divide the paper into three sections. In
section 1 we prove theorem 1, the product theorem and state theorem 2, the
involutions on SK. In section 2, we classify all Z,-actions on SK, up to weak
conjugation. In section 3, we classify the Z, @ Z,-actions on SK.

Let G be an Abelian group acting effectively on a connected space M. Let g.h€eG
and q:M --> M/g be the orbit map induced by g. Then there exists a
homeomorphism h on M/g uniquely determined by h such that T1=qq. T is called
the action on M/g induced by h. '




Finite group actions on SK bottle

Throughout the paper S°, D°, and P denote the n-sphere, the n-cell and the
n-dimensional projective plane, respectively. Mb denotes a Mobius band. C(X)
denotes the cone over the space X. S is viewed as the set of complex numbers x
with norm 1. The closed unit interval is denoted by I. T= §'xS'.

D={x:0sr=<1 x €5}
SK= RxD¥~ , (s,rx) ~ (s+1, C(rx)), where C(rx) = X,

Section 1.

In this section we make use of recent results of Dunwoody (1) and Meeks and Scott
(3); Moreover we write down theorem 2 which was proved in (4).

Theorem 1. -Let G be a finite group acting effectively on the solid Klein bottle SK.
Then the action is conjugate to an action which preserves the product structure, i.e.
for every g€G g( [s,ox]) = [a(s), B(rx) ], up to conjugation.

Proof. Let g € G, M= SK and M’ be a disjoint copy of M with a corresponding g’
action, g': M’, g'(x') = (g(x))’. Consider the double of M, 2M= S'x'S%, the
non-orientable two-sphere bundle over S’ obtained from M and M’ by identitying
them along their boundary by the identity map. Then g and g’ define an action g on
2M and hence G-acts on 2M. By Dunwoody (1), there exists a two sphere S
properly embedded in 2M which does not bound a 3-cell such that for every gé G
g(S)=S or g(S) aS= (. Now since each of M and M’ are invariant under the
G-action and S @ M= D? it follows that for every g € G, g(D*)= D?or g(D?) aD’=
(D. Now by Meeks and Scott (3) the result follows.

The fdllowing theorem may be found in (4). It is an easy consequence of theorem 1
and Kims result (2).

Theorem 2. Let h be an involution on SK, then h is conjugate to exactly one of the
following involutions with fixed point sets Fix(h;) and orbit spaces M*;

1. h([sxx])= [srx] 4. hy([srx])= [1-s,rx ]
Fix(h,)= s'xI Fix(hy)= DU 1
M*,= SixD? M*,= D* .y

2. hy([s,x])= [s,1x] W [s.x])= [l
Fix(h,)= Mb 5. hs([sxx])= [1ls,1x]
M*,= SK Fix(hs)= 1 U {*}

3. h([sx])= [sorx] e

. s,rx })= [s,rx ' = [1-s.-1%

F?x(h3)= 51 W([srx])= [1s,1X]

M*3= SK
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Remark. It is easy to see that hy, h's, are conjugate to h'y, h's, respectively by
taking the connecting homeomorphism t: SK-->SK t( [ s,rx )= [s+¥rx].

Section 2.

In this section we classify all Z -actions on SK.
Theorem 3. Let h be a generator of a Z,-action on SK. Then h is weakly
conjugate to one of the following maps, with quotient spaces M*.

1.

Proof.

hi([sax1)= [s++ x], nis odd
Fix(h))= ¢ 0 <i<n
M*= SK

ho( Isx 1)= [s+¢ ax]. n= 2k,
h([sax])= [s+10x] = [s,rx]
Fix(h')= S'x 1

M*=S' x D*

hy( [sax ])= [s+lk -rx] . n= 2k, k is even,
hy( [ sx )= [s+1.rx 1= [sax]

Fix(h*;)= S'x 1

M*= SK

hy( [sox])= [s+1 .rx]. n= 2k, k is odd
([ sx )= [s+l-rx 1= [s.1x]
Fix(h',)= Mb

M*= SK

hs( [ s.rx 1)= [s++ .rx], n= 2k, k is odd
hs( [sox])= [s+1,-x] = [s.rx]
Fix(h)= S'

M*= SK

he( [srx ])= [1s,x], n=2
Fix(hg)= DU 1
M*= D

ho( [sax ])= [1-s-rx ], n=2
Fix(h,)= 1 U {*}
M*= C(PY)

Let h be a generator of a Z -action on SK. It follows from theorem 1 that,

up to conjugation h is given by either

h([sx1)= [s+z .g(x)]

where m divides n, g is a homeomorpism on D? such that Cg= gC and g'=C'". or

h([sx )= [1s, g(rx) ]
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Finite group actions on SK bottle

where n is even n= 2k, g is a periodic map on D* with period n or k, and CgC= g.

First let n be odd, then m is also odd and g" (rX)= X or rx, hence g(rx)= rx, from
which we have h( [s.ax])= [s+= .ix ] and ho([s.x])= [s+1rk]=
[ srx ], and hence n=m. Therefore h is given by h,, up to weak conjugation.

Second let n be even, n= 2k and h is given by
h( [sox])= [s+z .2(x)]

we have the following cases:

Case 1. h( [s,x D= [ s,;;x'], up to conjugation. Then SK/h*= S'xD? and
Fix(h")= S'x I € S' x 9 D* h induces a periodic map h:(S'xD%,S' xI) --> (s
xD?,S'xI) which preserves the product structure. Hence up to weak conjugation
h((s,1x))= (s+4 ,&(rx)) where g(rx)= rx, -rx, rx or -rx. Therefore, up to weak
conjugation, h is given by h( [ s,rx )= [s++ ,g(rx)] , where g(rx)= rx, -1x, rx
or -rx.

If g(rx)= rx, then up to weak conjugation h is given by hy. If g(rx)= rx, then k is
even and h= h}~} therefore h is weakly conjugate to h,. If g(rx)= -rx, then k is
even and k= h;, up to weak conjugation. Finally if g(rx)= -rx, then k is even and
h= hi*' , hence h is weakly conjugate to hs.

Case 2. h*([ s,rx 1)= [s,-rx ], up to conjugation. SK/h*= SK and Fix(h*)= Mb.
h(MB)= Mb and Mb is two-sided in SK, hence h interchanges the two sides of Mb
and k is odd. We finish this case as we did in Case 1 to conclude that h is weakly
conjugate to hy.

Case 3. h*([s,rx])= [s,-=x], up to conjugation. SK/h* = SK and Fix(h*)= §'
is a fiber contained in  (SK/h%). h induces h:(SK/h*, §') --> (SK/h*,S'), where h
has period k. We finish this case as in Case 1 to conclude that h is weakly conjugate
to h5.

Third let n be even, n= 2k and h is given by
h([s,x})= [1-=s.g0x) ]

If g(rx)= rx @, where @ is a primitive root of unity, then g(rx)=g(rx), hence rx& =
rx  and @ = ® from which we have w =1 or -1. Therefore g(rx)= rx, -rx, X or
-rx and n= 2. If g(rx)=rx, h is given by he, up to conjugation. If g(rx)= rx, then it
is easy to check that h is conjugate to he. Similarly if g(rx)= -rx or g(rx)= -rx’, then
h is conjugate to hs.

Section 3.

In this section we classify the Z, @ Z,-actions on SK. ‘
Theorem 4. Let Z, @ Z, -act effectively on SK, then the action is weakly
conjugate to one of the following actions.
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1) G]= {e’h]’hZ’hB}’ 2) G2: {e’h],h4ahl4}’ 3) G3= {e’hhhS’h'S}a 4) G4=
{e,h,,hy,hs} or 5) Gs= {e,h3,hs,hs}. Where the h;,s are the involutions on SK
given in theorem 2.

Proof. Let h be a generator of a Z, ® Z,-action on SK, then h is an involution.
First let h be given by h;, up to conjugation. Let g be the second generator, then g is
also an involution. If g=h, (or h3) then Z, ® Z,= G, up to weak conjugation. If
g=hj, then Z, ®Z,= G, up to weak conjugation. If g=hs, then Z, ®Z,= G, up to
weak conjugation. Second if h=h,, up to conjugation, then if g=h, or h, we get G,.
If g=h, then Z, ® Z,= G,, up to weak conjugation. If g=hs, then Z, ® Z, = G,,
up to weak conjugation where the connected homeomorphism t: SK --> SK,
t( [s,rx ] )= [s+%2,rx] makes this action and the preceeding one weakly
conjugate. Third if h=h;, then for g=h, we have Z, @ Z,= Gs, up to weak
conjugation.
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