ON FINITE GROUP ACTIONS ON THE SOLID KLEIN BOTTLE

Bv

M. A. NATSHEH Dept. of Mathematics, University of Jordan Amman, Jordan

Key words and phrases: G-action, cyclic action, orbit space, fixed point set.

ABSTRACT

In this paper we classify all G-actions on the solid Klein bottle when $G = Z_n$ and when $G = Z_2 \oplus Z_2$.

Let G be a group and M a topological space. An action of G on M is a map \ominus : GxM --> M such that (i) \ominus (g, \ominus ((h,x)) = \ominus ((gh,x)) for all g,h \in G and x \in M, and (ii) \ominus ((e,x)) = x for all x \in M, where e is the identity of G. \ominus (g,x)) is denoted by g(x). The action \ominus is called effective if it is injective. Two G-actions \ominus on M and \ominus on N are weakly conjugate if there exists a group automorphism A:G-->G and a homeomorphism t:M-->N (called the connected homeomorphism) such that t \ominus ((g,x))= \bigoplus (Axt)((g,x)), i.e. tg(x)=A(g) (t(x)). If A(g)= g, then \ominus and \ominus are conjugate.

In this paper we consider the classification of the G-actions on the solid Klein bottle SK. We give complete classifications when $G = Z_n$, the finite cyclic group, and when $G = Z_2 \oplus Z_2$. We extend the results of Natsheh (4).

Throughout the paper we work in the PL category (our results are valid for Diff-category without any changes). We divide the paper into three sections. In section 1 we prove theorem 1, the product theorem and state theorem 2, the involutions on SK. In section 2, we classify all Z_n -actions on SK, up to weak conjugation. In section 3, we classify the $Z_2 \oplus Z_2$ -actions on SK.

Let G be an Abelian group acting effectively on a connected space M. Let $g,h \in G$ and $q:M \dashrightarrow M/g$ be the orbit map induced by g. Then there exists a homeomorphism \overline{h} on M/g uniquely determined by h such that $\overline{h}=qq$. \overline{h} is called the action on M/g induced by h.

Throughout the paper S^n , D^n , and P^n denote the n-sphere, the n-cell and the n-dimensional projective plane, respectively. Mb denotes a Mobius band. C(X) denotes the cone over the space X. S^1 is viewed as the set of complex numbers X with norm 1. The closed unit interval is denoted by X.

$$D^2 = \{rx: 0 \le r \le 1, x \in S^1\}$$

 $SK = RxD^2/\sim$, $(s,rx) \sim (s+1, C(rx))$, where $C(rx) = r\overline{x}$.

Section 1.

In this section we make use of recent results of Dunwoody (1) and Meeks and Scott (3); Moreover we write down theorem 2 which was proved in (4).

Theorem 1. Let G be a finite group acting effectively on the solid Klein bottle SK. Then the action is conjugate to an action which preserves the product structure, i.e. for every $g \in G$ $g([s,rx]) = [\alpha(s), \beta(rx)]$, up to conjugation.

Proof. Let $g \in G$, M = SK and M' be a disjoint copy of M with a corresponding g' action, $g' \colon M'$, g'(x') = (g(x))'. Consider the double of M, $2M = S^{\mathsf{T}}\overline{x}S^{\mathsf{T}}$, the non-orientable two-sphere bundle over S^{T} obtained from M and M' by identifying them along their boundary by the identity map. Then g and g' define an action g on 2M and hence G-acts on 2M. By Dunwoody (1), there exists a two sphere S properly embedded in 2M which does not bound a 3-cell such that for every $g \in G$ g(S) = S or g(S) $\mathfrak{A} S = \emptyset$. Now since each of M and M' are invariant under the G-action and S $\mathfrak{A} M = D^2$ it follows that for every $g \in G$, $g(D^2) = D^2$ or $g(D^2)$ $\mathfrak{A} D^2 = \emptyset$. Now by Meeks and Scott (3) the result follows.

The following theorem may be found in (4). It is an easy consequence of theorem 1 and Kims result (2).

Theorem 2. Let h be an involution on SK, then h is conjugate to exactly one of the following involutions with fixed point sets $Fix(h_i)$ and orbit spaces M^*_i

1.
$$h_1([s,rx]) = [s,rx]$$

 $Fix(h_1) = s^1xI$
 $M^*_1 = S^1xD^2$

2.
$$h_2([s,rx]) = [s,-rx]$$

 $Fix(h_2) = Mb$
 $M^*_2 = SK$

3.
$$h_3([s,rx]) = [s,-rx]$$

 $Fix(h_3) = S^1$
 $M^*_3 = SK$

4.
$$h_4([s,rx]) = [1-s,r\bar{x}]$$

 $Fix(h_4) = D^2U I$
 $M^*_4 = D^3$
 $h'_4([s,rx]) = [1-s,r\bar{x}]$

5.
$$h_5([s,rx]) = [1-s,-rx]$$

 $Fix(h_5) = I U \{*\}$
 $M^*_5 = C(P^2)$
 $h'([s,rx]) = [1-s,-r\bar{x}]$

M. A. NATSHEH

Remark. It is easy to see that h_4 , h'_5 , are conjugate to h'_4 , h'_5 , respectively by taking the connecting homeomorphism t: SK-->SK t([s,rx]) = $[s+\frac{1}{2},rx]$.

Section 2.

In this section we classify all Z_n-actions on SK.

Theorem 3. Let h be a generator of a Z_n -action on SK. Then h is weakly conjugate to one of the following maps, with quotient spaces M^* .

1.
$$h_1([s,rx]) = [s + \frac{i}{n}, rx], n \text{ is odd}$$

 $Fix(h_1) = \phi, 0 < i < n$
 $M^* = SK$

2.
$$h_2([s,rx]) = [s+\frac{1}{k},rx], n=2k,$$

 $h_2^k([s,rx]) = [s+1,rx] = [s,rx]$
 $Fix(h_2^k) = S^kx I$
 $M^* = S^kx D^k$

3.
$$h_3([s,rx]) = [s + \frac{1}{k}, -rx], n = 2k, k \text{ is even},$$
 $h_3^k([s,rx]) = [s + 1, rx] = [s,rx]$
 $Fix(h_3^k) = S^lx I$
 $M^* = SK$

4.
$$h_4([s,rx]) = [s + \frac{1}{k} .-rx], n = 2k, k \text{ is odd}$$

 $h^k_4([s,rx]) = [s + 1,-rx] = [s,-rx]$
 $Fix(h^k_4) = Mb$
 $M^* = SK$

5.
$$h_5([s,rx]) = [s + \frac{1}{k}, -rx], n = 2k, k \text{ is odd}$$

 $h^k_5([s,rx]) = [s + 1, -rx] = [s, -rx]$
 $Fix(h^k_5) = S^1$
 $M^* = SK$

6.
$$h_6([s,rx]) = [1-s,rx], n= 2$$

 $Fix(h_6) = D^2U I$
 $M^* = D^3$

7.
$$h_7([s,rx]) = [1-s,-rx], n= 2$$

 $Fix(h_7) = I U \{*\}$
 $M^* = C(P^2)$

Proof. Let h be a generator of a Z_n -action on SK. It follows from theorem 1 that, up to conjugation h is given by either

$$h([s,rx]) = [s + \frac{1}{m},g(rx)]$$

where m divides n, g is a homeomorpism on D^2 such that Cg = gC and $g^n = C^{n,m}$, or h([s,rx]) = [1-s, g(rx)]

where n is even n = 2k, g is a periodic map on D^2 with period n or k, and CgC = g.

First let n be odd, then m is also odd and $g^n(r\bar{x}) = r\bar{x}$ or rx, hence $g(rx) = r\bar{x}$, from which we have $h([s,rx]) = [s+\frac{1}{m},rx]$ and $h^m([s,rx]) = [s+1,r\bar{x}] = [s,rx]$, and hence n=m. Therefore \bar{h} is given by h_1 , up to weak conjugation.

Second let n be even,
$$n = 2k$$
 and h is given by $h([s,rx]) = [s + \frac{1}{m}, g(rx)]$

we have the following cases:

Case 1. $h^k([s,rx]) = [s,r\bar{x}]$, up to conjugation. Then $SK/h^k = S^txD^2$ and $Fix(h^k) = S^tx I \subset S^1 \times \partial D^2$. h induces a periodic map $h:(S^txD^2,S^1 \times I) \longrightarrow (S^t \times D^2,S^t \times I)$ which preserves the product structure. Hence up to weak conjugation $\bar{h}((s,rx)) = (s + \frac{1}{k}, \bar{g}(rx))$ where g(rx) = rx, -rx, $r\bar{x}$ or $-r\bar{x}$. Therefore, up to weak conjugation, h is given by $h([s,rx]) = [s + \frac{1}{k}, g(rx)]$, where g(rx) = rx, -rx, $r\bar{x}$ or $-r\bar{x}$.

If g(rx) = rx, then up to weak conjugation h is given by h_2 . If g(rx) = rx, then k is even and $h = h_2^{k-1}$, therefore h is weakly conjugate to h_2 . If g(rx) = -rx, then k is even and $h = h_3$, up to weak conjugation. Finally if g(rx) = -rx, then k is even and $h = h_3^{k+1}$, hence h is weakly conjugate to h_3 .

Case 2. $h^k([s,rx]) = [s,-rx]$, up to conjugation. $SK/h^k = SK$ and $Fix(h^k) = Mb$. h(MB) = Mb and Mb is two-sided in SK, hence h interchanges the two sides of Mb and k is odd. We finish this case as we did in Case 1 to conclude that h is weakly conjugate to h_4 .

Case 3. $h^k([s,rx]) = [s,-rx]$, up to conjugation. $SK/h^k = SK$ and $Fix(h^k) = S^1$ is a fiber contained in (SK/h^k) . h induces $h:(SK/h^k, S^1) --> (SK/h^k, S^1)$, where h has period k. We finish this case as in Case 1 to conclude that h is weakly conjugate to h_5 .

Third let n be even,
$$n=2k$$
 and h is given by $h(\lceil s,rx \rceil) = \lceil 1-s,g(rx) \rceil$.

If $g(rx) = rx \omega$, where ω is a primitive root of unity, then $\overline{g(rx)} = g(r\overline{x})$, hence $rx\overline{\omega} = rx \omega$ and $\overline{\omega} = \omega$ from which we have $\omega = 1$ or -1. Therefore g(rx) = rx, -rx, $r\overline{x}$ or -r \overline{x} and n = 2. If g(rx) = rx, h is given by h_6 , up to conjugation. If $g(rx) = r\overline{x}$, then it is easy to check that h is conjugate to h_6 . Similarly if g(rx) = -rx or g(rx) = -rx, then h is conjugate to h_7 .

Section 3.

In this section we classify the $Z_2 \oplus Z_2$ -actions on SK.

Theorem 4. Let $Z_2 \oplus Z_2$ -act effectively on SK, then the action is weakly conjugate to one of the following actions.

M. A. NATSHEH

1) $G_1 = \{e, h_1, h_2, h_3\}$, 2) $G_2 = \{e, h_1, h_4, h'_4\}$, 3) $G_3 = \{e, h_1, h_5, h'_5\}$, 4) $G_4 = \{e, h_2, h_4, h_5\}$ or 5) $G_5 = \{e, h_3, h_4, h_5\}$. Where the h_i ,s are the involutions on SK given in theorem 2.

Proof. Let h be a generator of a $Z_2 \oplus Z_2$ -action on SK, then h is an involution. First let h be given by h_1 , up to conjugation. Let g be the second generator, then g is also an involution. If $g=h_2$ (or h_3) then $Z_2 \oplus Z_2 = G_1$ up to weak conjugation. If $g=h'_4$, then $Z_2 \oplus Z_2 = G_2$ up to weak conjugation. If $g=h_5$, then $Z_2 \oplus Z_2 = G_3$ up to weak conjugation. Second if $h=h_2$, up to conjugation, then if $g=h_1$ or h_2 we get G_1 . If $g=h_4$ then $Z_2 \oplus Z_2 = G_4$, up to weak conjugation. If $g=h_5$, then $Z_2 \oplus Z_2 = G_4$, up to weak conjugation where the connected homeomorphism t: SK --> SK, t([s,rx]) = [s+1/2,rx] makes this action and the preceeding one weakly conjugate. Third if $h=h_3$, then for $g=h_4$ we have $Z_2 \oplus Z_2 = G_5$, up to weak conjugation.

REFERENCES

- M.J. Dunwoody, 1985. An equivariant sphere theorem, Bull London Math. Soc., 17: 437-448.
- 2. **P.K. Kim, 1976.** PL involutions on the nonorientable 2-sphere bundle over S¹, Proc. Amer. Math. Soc., 55: 449-452.
- 3. W.H. Meeks and Peter Scott, 1986. Finite group actions on 3-manifolds, Invent. Math., 86: 287-346.
- 4. **M.A. Natsheh, PL** involutions on some nonorientable 3-manifolds, to appear in Dirasat, the science section, the University of Jordan research journal.

عن المجموعة المحدودة للأفعال في قنينة كليْن

محمد عرفات النتشسة

في هذا البحث تصنيف لجميع G — actions عندما يكون G = Z_n وعندما يكون G = Z_2 \oplus Z_2 .