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ABSTRACT 

Consider the Fredholm's integral equation of the first kind with logarithmic kernel K(IXI) = ( - In lxl. The aim of this 
paper is to establish the equivalence of Krein's method of solving the equation with the following methods of solution: 
method of potential theory, method of singular integral equations, method of orthogonal polynomials and method of 
Fourier transformation. 

INTRODUCTION 

In [l] different methods for solving the Fredholm's integral 
equation of the first kind which may be written in the form. 

a 1 

J 1 n ----------- P(s) = f(x), .................... (1.1) 
-a I x-s I 

are considered, where the known function f(x) belongs to cl 
[ -a,a] (the class of continuous functions with continuous first 
derivatives in [-a,a]). Equation (1.1) is solved [2] by using the 
method of potential theory, and in [7,8] the same equation is 
considered; using the method of singular integral equations 
and the theory of boundary value problems for analytic 
function, the solution is obtained. paPov in his work [6], 
solved equation (1.1) by using the method of orthogonal 
Tchebyshev polynomials. The equivalence of these methods is 
obtained in [1]. 

In [1], Mkhitarian and Abdou applied M.G. Krein's method 
for obtaining the basic formulae for the potential functions of 
(1.1) in the form: 

p (x) = J(a) _1 __ 2 fa ___!!!!__ d [ d fu f, (s) ds] 
• ln (2/ a) /a '-x' 7t x /u'-x' . du u du o [UZ-s' 

and (1.2) 

p_ (x) = - ~ _!!__fa ~ fu -df(s) 

rc- dx x /u 2 -x2 o /u 2 -s 2 ( 1. 3 l 

where 

10 

T( . _ 2 [f" f,(s)ds l 2 d fu f,(s)dsj 
u u) ~ - --- + u n-- -

rc 0 .[Uz_ 5 2 u du 
0 

/uz_ 5 z 
( 1. 4) 

f(x) = f, (x) + f_\x) P(x) = P, (x) + P (x) 

f, (-x) = ± f, (x) 

In this paper, we prove equivalence of the previous 
methods with Krein's method. 

SOLUTIONS OF THE PROBLEM 

We start by proving the following lemmas. 

Lemma 1: For all positive integers n, the value of the 
following integral 

I = I" !_,r"(_s_)~~ 
n J .. ' 2 ' 

o vu-- s 
..... (2!) 

is given in the form 

I, (u) = i P,;- 1
"

1(2u 2 -1), .......... (2. 2) 

where T2n (s) are Tchebyshev Polynomials and Pn(a., ~) (x) 
are Jacobe polynomials. 

Proof: Usin~ the substitutions= ut, and the two relations [5] 
I 

f (l- t
2 f)< T,(l- t\). dt = ~[P,(/- y) + P,_ 1(!- y) ), 

·I 
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where Pn (x), n=o, 1, 2, .... , are Legender polynomials, 

together with T2n(t) = Tn (2t2-1) the lemma can be proved. 

Corollary 1: The first two derivatives of In (u) are given by 

/ <'l ( ) _ d/" _ . p 1"· 11 (7 2 -/) ( -I 2 3 ) n u - - 11 Trlf n·l .....,u ' n - ' ' '............... , 
du 

(2.3) 

which can be written in the form 

r,;'l ( u) = 2n Tru P~"/' ,(2u2 -/) + 2nTr (n +I jr/ P:,';'' ( 2u2- 1), 

(n=l,2,3, ••• (2,4) 

Note that Pn(a, ~) (x) = 0, for negative integers. 

To find the value of Jn (u) when u = 1, we substitute (2.3) in 
(1.4), and put u = 1, to obtain 

1 (I)= l _J_ pH-"'(!)+ 11 In 2 P 1"1 '(1)lj 
II L2 11 • 11·[ • 

Since it is known [9] that 

P~"m (I)= f(n+a+l)_ 
n!f(u +I) 

then we have the following corollary. 

Corollary 2: The value of Jn (1) is given by 

Jn0)=2n ln2(n=l,2, ... ) 

Lemma 2: The value of the integral. 

lf,(y) = J (/-- r(1 P;;·; [1- (1- yll] dt, 

can be written in the form 

--Jncn-1!' 
ff, <Y J = ~rc 11> 

n+ /2 
(n = 1.2.3 .••. 

(2.5) 

!2.6) 

Proof: To prove this lemma, we use the relation between the 
hypergeometric function and the Jacobe polynomial [5]. 
l r t ;\ -l ( l-t, !J. _, p ~ C>( • ~ ' ( l- i t, d t = 

0 

where (xO is the gamma function and 3F2 (a 1, a2, a3, ~1, 

~2, Z) is the generalized hypergeometric series; 

JF2(cX.l'<><:2,«J; ~l'~2;Z) = L .(CX.l)rn(0\2)m('\lm 
mAo ( fl1)m ( f2)m ml 

("' rc "'-+ m) 
)m = r· ( " ) . 

In this case, we can write Hn (y) in the form 

= 2F (-n+1, n+l ; ~-; ~ ), (2.8) 

11 

'where F(a, ~' y, z,) is the hypergeometric Gauss function. 

It is known [9] that 

( ct: ~ ) n+>{ 1=.! 
p • (y) = ( ) F(-n, n+"- + )l+1; ol+l; 2 ) , 

n n 
(2.9) 

introducing (2.9) into (2.8) the result follows. 

Lemma 3: The value of the integral 

G (yJ = } (1-t)-12 r< 1 •2 l [ 1 - (l-y)t] dt , 
n 

0 
n-2 

is given by 

c < J _ -drr tn-1~1 n Y - (n-%) n+l (l-y) 
(- l 1) 

Pn-1 
2 

• 
2 

(y)+ cn!I)(l-y) ' 

(2.10) 

Proof: Independent of the relation (2.7), we can write Gn (y) 
in the form 

Gn(y) ~ 2(n-1) 
3

F
2

(-n+2, n+2, 1; 2, ~; ~)(n=1,2, ••• ) 

.(2.11) 

To write the hypergeometric series in the form of Jacobe 
polynomials, assume that 

(2.12) 

Differentiating (2.12) with respect to z and using (2.9), we get 

dhn(z) - liT nn-1~ o~. 5/2) > 

dz - 2 r<n -) pn-2 (1-2z) (u=2,J, ••• ). 

Integrating the last equation under the condition hn (o) = o, 
one easily obtains. 

r c-l 1, 
h ( Z) = 

- fTF ( n-1) 2' 2 1 
p (l-2z)+ --2 - • 

n 2r(n-Y,).(n+l) n-1 2(n-1) 
(2.1)) 

Comparing (2.12) with (2.13) lemma 3 follows. 

Along the same lines, one may prove the following lemma. 

Lemma 4: The value of the integral 
1 

Kn(y) = j (1-t)y, r~:22 ) [ 1-(l-y)t J dt 

0 

is given by 

K ( ) _- v'[~n-1)! (Y.z,Y.z) ( ) 2 ( 2 ) 
n y - rtn+/2 .(n+lJCl-y) pn-1 y + (n+l){l-y) • .14 

Now, to connect the previous results in one we need the 
following lemma. 

Lemma 5: The value of the integral equation 

f I~ 2 )(u) du 

/ u
2 

- x
2 X 

is given by 
n71'(1- T2n(x)) 

,'r,(x) = (n=l,2, ... ) 

/1 - x
2 

(2.15) 

where In(2) (u) is given in (2.4). 

Proof: Substituting for In(2) (u) from (2.4) the above integral 
becomes 
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u r~~il) (2u2-l).du 

Ju2 - x2 

Using the parameters y = 2x2 -1 and v = 2u2_1 the last 
equation becomes 

An(x) "~ ~ _1_ [r(o,l)(v)+ !1.;\:l v rl,2l (v)+ ~ p(l,2)(v)-~ d_.; 
(2 /~ n-l < n-2 < n-2 J • 

Also, using the parameter v = 1-(1-y) t (o::::: t :::::1) the previous 
equation takes the form 

,\,(x) ~ n
11
-;-v'l-Y ~ln(y) + ~ (l+y) Gn(y) + ~ (l-y)Kn(y~ 

(y=2z2-l, n=l,z,: •• ) (2.16) 

where 

1 
(1-t)-}; p(o,1) [1 -Hn(y) \ (1-y)t} dt 

.\ n-1 
0 

Gn(y) 
c1 

c1-t)-;; "< 1 • 2 ' I 1 - (1-y)t} dt 
' n-2 ~-. 

0 

and 
1 

Kn(y) = r (1-t )'h r' 1 •2 ) [ 1 - (l.:y)t J dt. n-2 
0 

Using !the values of these integrals,1obtained in lemmas (2)-( 4) 
we obtain · 

Ln(y) = 2(1~1 £_ [r<-'h,-'hlc )l _ .~~ d [r(-J/2,'h) (y)J 012ll=T) dy n Y J n ay n 

l 
= 2(l-x2) • an+ 'h) u (x) - ~ d [ (n+ 2 ) 

x fiT (2n-1). nl 2n-1 n iii tiT /(n)x 

• ( lim rc /.) c;_+1(x))J (n=1,2, ... ), 
J\->-1 

(2.21) 

where Un-1 (x) is Tchebyshev polynomials of the second 
kind. According to equation (2.19), and using [9, p. 185 
equation (4)], we get 

. r /1 1 [T2n+1 (x) 
ll.m (A ) c2n+1 (x) = n 2n + i 
:\ -'Jo-1 

T2n-1 (x) J 
- 2n- I (n=1,2, ••• ). 

(2.22) 

Secondary, rewrite (2.21) using (2.20), to get 

- ( ) ( 2 ) -4 nn+}\) ( ) ( -1 2 ) .(2 ~J) "' y = L 2x -1 = • T2 X X- , , • • • • • ~ 
n n {if (zn-1) (en) n 

Introducing (2.23) in (2.17) we obtain (2.15) and the lemma is 
proved. 

Finally to obtain out main result we put a = I in (1.2) and let 
f+(x) = T2n(x) (n=1,2, ... ); this gives. 

PC) ¥Ahll) l 2 
X = .,.,-1 • .~"- --o-; + ,, ll vl -x" "L 

1 du d [ d Ju T2n (a) do l 
f I 2 z au u au ~2 J 

X yu -X 0 vu- - n· 

~(x) = rr312 
n! • _l_[l=L pOi.,Y,)(y) _ c1+y) P <--:);, ~) (y) J and hence we have:· 

{2 {Cn-'h) 1-y 2n-1 n-1 n-1 

Theorem 1: The complete solution of equation (2.24), can be 
adapted in the form. 

(2.24) 

{?" n1T 2 
+ ~ (y = 2~ -1 ; 11=1,2, ... ) 

v1 - Y 
(2.17) 

Now it is our aim to find a relation between Jacobe 
polynomials and Tchebyshev polynomials. For this end we 
must use these two famous relations ([9], p. 177). 

(:), -'h,-'h) r-:( .... ' ?. 
P ( 2x 2_1 ) = I I n+Y,) I ( /0) C ( ) 
n 2n x • {1f (n+ 71 ) 

and 

P ( :>. -Y,,Y,) (2x2-1) nn+)/2)[(?.) ?. ( ) ( c2n+1 x 2.16) 
n Vrf r(n+ A+1)x 

/where Cn(~) is Heigenber polynomials. When 'A -7 o ([5] p. 
1044 equation (8) and p. 934 equation (4)), 

~ 
lim rc /1) Cn{x) = -n2 T (x) (n=1,2, ••• ) 
A-a n 

(2.19) 

The results of equation (2.18) and equation (2.19), can be 
written in the form 

P(-'h,-'h) (2x2-1) = {(n+»l T (x) , 
n {ff n! 2n 

(2x2-1) - 2 nn+ )/2) ( ) 
- X T2n+1 X • {Tf (2n+l) nl 

(2.20) 

Equation (2.20) gives the relation between the Jacobe 
polynomials, and Tchebyshev polynomials of the first type, if 
we want to connect equation (2.20) with (2.17), firstly assume 

(
tl , (-Y,, J/2) 

L()=1-v PI2,Y,){)-(1+)P () 
n Y 2'Ii::-r n-1 y. Y n-1 Y ' 

which may be written in the form 

12 

2n T
2 

(:x:) 
p (a) = n 
+ ~2 

(o<x<l, n=1,2, ... ) (2.25) 

THE RESULTS OF THE PROBLEM 

The above results lead to the following two theorems. 

Theorem 2: For the Fredholm's integral equation of the first 
kind when the kernel is in the form of a logarithmic function 
(K(Ix-yl) = - in (lx-yl) which has a singularity at x=y, and the 
known function is even and in the form of Tchebyshev 
function T2n(x), the special relation has the form 

!1 1n _1_ T2n (a) da Tr ( ) ( 1 ) ...!;..!.!"=:---- T x !xl<l; n= ,2, ... , 
JX-Bj ~z - 2n 2n 

-1 yJ.- B (J,1) 

Equation (3.1) is in agreement with (1.14) in [1] when n is 
replaced by 2n and a = 1. 

Also when the known function of Fredholm's integral equation 
is odd, and has the form L(x) = T2n-1 (X), we have the 
spectral relation in the form 

1 1 T2n-1(a) ds 1T J ln ~~· ~2 .= 2n- 1 T2n-1(x), (J, 2 ) 
-1 1 - a 

which is in agreement with (1.14) in [I] when a=l and n is 
replaced by 2n-1. 

Theorem 3: For solving equation (1.1) when f(x)EC' [-a, a], 
f"(x) satisfies the Dirichler condition in ( -a,a), and 

"' t(x) c L "n 'r
11

(x,a) (Jxl <a), 
n•o 
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where an is a linear parameter and an is determined as in [ 1] 
then we have the potential function in the form 

P(:.:) • h [P + En lin 'rn(~a)J ( l:.:l<a), 
·1T i·::-~ n•l 
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