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KREIN'S METHOD FOR SOLVING THE INTEGRAL EQUATION OF THE FIRST KIND
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ABSTRACT

Consider the Fredholm's integral equation of the first kind with logarithmic kernel K(IXI) = ( - In Ixl. The aim of this
paper is to establish the equivalence of Krein's method of solving the equation with the following methods of solution:
method of potential theory, method of singular integral equations, method of orthogonal polynomials and method of

Fourier transformation.

INTRODUCTION

In [1] different methods for solving the Fredholm's integral
equation of the first kind which may be written in the form‘.

| By —— - P(s) = {(x),
-a I x-s |

are considered, where the known function f(x) belongs to cl
[-a,a] (the class of continuous functions with continuous first
derivatives in [-a,a]). Equation (1.1) is solved [2] by using the
method of potential theory, and in [7,8] the same equation is
considered; using the method of singular integral equations
and the theory of boundary value problems for analytic
function, the solution is obtained. paPov in his work [6],
solved equation (1.1) by using the method of orthogonal
Tchebyshev polynomials. The equivalence of these methods is
obtained in [1].

In [1], Mkhitarian and Abdou applied M.G. Krein's method
for obtaining the basic formulae for the potential functions of
(1.1) in the form:

J(a) 1 2 [ _ du d d | £(s)ds
P = -2 .- B PP
L (x) In(z/a) /372 n [ Jui-x2 qu |" du{ Juz-s?
and (1.2)
. _ 2 4  udu df(s)
Sl = = P
where

b f.(s)ds % £, (s)ds
g = 2 f - in2 if 1 (1.4)
|4 e u du < /uZ ez

In this paper, we prove equivalence of the previous
methods with Krein's method.

SOLUTIONS OF THE PROBLEM
We start by proving the following lemmas.

Lemma 1: For all positive integers n, the value of the
following integral ‘

- | Tutslds o)
L

is given in the form
I () = féP,ﬁ“‘-"’auhl), ............ (2.2)

where Top, (s) are Tchebyshev Polynomials and Pp(® B) (x)
are Jacobe polynomials.

Proof: Using the substitution s = ut, and the two relations [5]
1l

Ja-y A T,a-ry). di = g[P"(/ WP U=,

-1

2P0 (x) = Py(x) = Py (),




M. A. ABDOU and R. O. ABD EL RAHMAN

where Py (X), n=0, 1, 2,
together with Top(t) =

..., are Legender polynomials,
Tp (2t2-1) the lemma can be proved.

Corollary 1: The first two derivatives of I, (u) are given by

I (u) = ‘]11" = pru POV QU =0, (n=12,3,.. ) (2.3)
aid
d dI (1

Jicl 4 o

o= Iu du [u (“)}

which can be written in the form
I (u)=2nmu P57, 26 = )+ 2nm (n+ P (207 -1,
(n=123,.., ) (2,4)
Note that Pp(® B) (x) = 0, for negative integers.

To find the value of J;; (u) when u = 1, we substitute (2.3) in
(1.4), and put u = 1, to obtain

1. .
J )= 2{;13;;‘*”‘(1)+n In 2. P,’,i',-“(l)J.

Since it is known [9] that

F(n+a+Q

PUB (1) = )
! ) ! T(a + 1)

then we have the following corollary.
Corollary 2: The value of J, (1) is given by
Jn(1)=2n In2(n=1,2,..) 2.5

Lemma 2: The value of the integral.
H,(¥) —j(/ Oy AP =y,

can be written in the form
‘\”E()I

Huln= r(z+1 )

Gy (n= 1.2 . J (2.6}

Proof: To prove this lemma, we use the relation between the
hypergeometric function and the Jacobe polynomial [5].

[1

[+]

- 3
A_l(l-t) u' P(« y 7 ) (l—‘dt) dt =

e Tn Tty
- nl]"(lf-n()/"() +[

52 (-n,n+a + P+l; A, K+1, A +}7;

(Re A >0, Rell> o), (2.7)

where  (x0 is the gamma function and 3Fp (%1, @2, 93, B1,
B2, Z) is the generalized hypergeometric series;

a0

(Dgl)m(d2)m(0(3)m
=0 ( Pl)m ( /32)'m mi 7,

- [«
(") = e -

In this case, we can write Hy (y) in the form

0\1,0(2,0(3; ﬁlnﬂz;z) =

3ol

Ho(y) = 2 jFp(-asl , mel, 15 1, l%i)
= 2F (~n+l, n+l ; -«;—,; -1—51 ), (2.8)

2,
2

11

'where F(a, B, v; =) is the hypergeometric Gauss function.
It is known [9] that

Pl(l"( B (y) = (n:() F(;-n, o+d + Pal; A +1; %‘Y Y, (2.9)
introducing (2.9) into (2.8) the result follows.
Lemma 3: The value of the integral
l 1/

5,0 = -7 21 - a-nelas,

is given by
-3,
ot = B 5 02 P e iy
(2.10)

Proof: Independent of the relation (2.7), we can write Gy (y)
in the form

Gn(y) = 2(n=1) 3F2(—n+2, n+2, 1; 2, %; 1_.;!)(11:1,2,.,.)
»(2.11)

To write the hypergeometric series in the form of Jacobe
polynomials, assume that

h(z) =z 3F2(-n+2, n+2, 1; 2, g— i z)(z = 1—?-). (2.12)

Differentiating (2.12) with respect to z and using (2.9), we get
d.hn(z) i \/‘T_T__[—l(n_l)

dz N ECER)

Integrating the last equation under the condition hy (0) = o,

one easily obtains.

i F n-1 -

T 2 (%) (arl) Fn-1

:Px(ll/zé 5/2) (1-22) (3:2,3,-.-).

o=

v 3

h (2) (1-2z)+

Lo—. (213
2{n“-1)
Comparing (2.12) with (2.13) lemma 3 follows.

Along the same lines, one may prove the following lemma.

Lemma 4: The value of the integral
1
Ko = f (-6 22 [1-(i-y)e ] at
Q
is given by

_ = y7 (n-1)1t
"[’m"/z.m-

Now, to connect the previous results in one we need the
following lemma.

Ko () pB%) () Ry - (214)

Lemma 5: The value of the integral equation

1 Ilgz)(u) du

An ) X u2 o %2

is given by
1 -7 )y

ap(x) = n;( —-zzn(X) (n=1,2,.4.) (2.15)
1 -x

where Ih(z) (u) is given in (2.4).

Proof: Substituting for In(2) (u) from (2.4) the above integral
becomes




Krein's method for solving an integral equation

(O l) 3p(1,2) 2
LI (2 -l)d 1 up 2 2u°-1)a
ha . " +2n 7T (n+l) & M

\ﬂ(x)=2n"n"\ \/___ P T

2x2 -1 and v = 2u2-1 the last

Using the parameters y =
equation becomes

1
T2 {n(e,1)
Jm {nol (V)+-—w—
¥

v B2 () 2L (552)(‘/)} .

-
Alx) =
n v

Also, using the parameter v = 1-(I-y) t (o< t >1) the previous
equation takes the form

Ay (x) = % 1-y [{ (0 + 3L ey s (7)) + %’l (1-y)X (y)J

(y=2::“—-l, n=1,2,...) (2.16)

where
H(y) = © % p(0,1)
27 = A=) r [1-@wyntia .

o]

1 -
v = DA™ 21211 - eyt at
and

1 1, -
K (y) =" f (1-t)% Pr(lj_*f) [1-Q-nt]at.

o
Using jthe values of these integrals,obtained in lemmas (2)-(4)
we obtain

3/2
A (x) = —E—‘ L
V2 [(a-%) 1~y
‘/ﬁf_—l.— (y = 2x%-1 ; n=1,2,...)

-y

Now it is our aim to find a relation between Jacobe
polynomials and Tchebyshev polynomials. For this end we
must use these two famous relations ([9], p. 177).

P(Q"‘/z"%) (2x2-1 r(n+A! Fg A) 07\

(2.17)

(x),
n VT (aen) =)
and
p(2 k) _[eyrftay 2
»0 (2x°-1 c (x) (2.18
=*-1) vt [ (n+ D+1)x 2041 * )

* Jwhere Cn()‘(‘) is Heigenber polynomials. When A — o ([5] p.
1044 equation (8) and p. 934 equation (4)),

um () ¢ xy = 2
A-—Elo a(®) =5 ’L‘u(x) ;n:l,z,...) (2.19)

The results of equation (2.18) and equation (2.19), can be
written in the form

(=%,-1%) 2 _ f( J
P 2 (2x°-1) = -W%—if% T, (%)

I’l
_ 2 (n+ 3/2) T

(2.20)
/T (2n+1) n! x

("/v%) 2
Py 2 (2x°-1)

2n+l(x)'

Equation (2.20) gives the relation between the Jacobe
polynomials, and Tchebyshev polynomials of the first type, if
we want to connect equation (2.20) with (2.17), firstly assume

(=%, 3/2) .

ORI S T, ),

2n- &

~which may be written in the form

12

- % Y, ("‘Ao )
[%{T Px()fl'/‘)(y) - (4y) Py 2 (y)]

3 . @ T.(=3/2,%) }
L (y) %E%;H) & [r( s = /)(y)} 2040 & [P (y)

it

- 2(1-x°) ﬁn + %) (x) - M_)__
* "/ (2p~1). nl SonaX) - v [Ma)x
a1 o] 1z, (2.21)
.

where Up.1 (x) is Tchebyshev polynomials of the second
kind. According to equation (2.19), and using [9, p. 185
equation (4)], we get

(x) T (x)
. 2n+1 2n-1 _
Lin [Tea) C2n+l(x) = Ln“: — -2l ](n-l,z,...).
(2.22)
Secondary, rewrite (2.21) using (2.20), to get
L(y)=1L (2x2-1) = Mﬂiﬂl—— Ty () (%=1,2,0..).(2.23)
= e Vit (20-1) [(a)  °

Introducing (2.23) in (2.17) we obtain (2.15) and the lemma is
proved.

Finally to obtain out main result we put a = 1 in (1.2) and let
f1(x) = Top(x) (n=1,2,...); this gives

? sn(8) ds ]
P (x) = 10 L2 .
rin et T e ! y/uz_)c OI /
(2.24)

and hence we have:-

Theorem 1: The complete solution of equation (2.24), can be
adapted in the form.

2n T
2, (o) - 28 (@)

l-x

(o< x<1, n=),2,...) (2.25)

THE RESULTS OF THE PROBLEM
The above results lead to the following two theorems.

Theorem 2: For the Fredholm's integral equation of the first
kind when the kernel is in the form of a logarithmic function
(K(Ix-yl) = - in (Ix-yl) which has a singularity at x=y, and the
known function is even and in the form of Tchebyshev
function Tzn(x), the special relation has the form

> onle) ds T
[ = 725 Toa

4 lx 8| F"

Equation (3.1) is in agreement with (1.14) in [1] when n is
replaced by 2n and a = 1.

(x) (1xi<l; n=1,2,...),
(3.1)

Also when the known function of Fredholm's integral equation
is odd, and has the form f.(x) = Top-1(X)s we have the
spectral relation in the form

1
(8) as
J 1 .ch‘—ul Zzn1 =zx;rr—1 Top-a(2)s (3.2)
-1 /1-32

which is in agreement with (1.14) in [1} when a=1 and n is
replaced by 2n-1.

Theorem 3: For solving equation (1.1) when f(x)eC' [-a, a],
f''(x) satisfies the Dirichler condition in (-a,a), and
@

f0x) = D &y T(x,a) (5l <a),

nwo
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where ap is a linear parameter and ap is determined as in [1]
then we have the potential function in the form

. [+ .
P(x) = —1 [r * na, 7 (!/a)J ( lxl<a),
ERL & :
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