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ABSTRACT 

The problem of a thermoelastic layer of finite thickness and infinite extent is considered within the context of the 
theory of thermoelasticity with two relaxation times. The upper surface of the layer is taken as stress free and is suddenly 
subjected to a thermal shock. The lower surface of the layer rests on a rigid base that is thermally insulating. Laplace 
transform techniques are used. The problem is solved by using a direct approach. The inverse Laplace transforms are 
obtained analytically by using asymptotic expansions valid for small values of time. Numerical computations for the 
temperature, the displacement and stress distributions are carried out and represented graphically. 

NOMENCLATURE 

A, J.l Lame's constants 

coefficient of linear thermal expansion 

p = density 

V 1 = speed of propagation of isothermal longitudinal 
waves= [(A+ 2 J.L)/p ]112 

a = axx component of the stress tensor in x-direction 
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u component of displacement in x-direction 

cE specific heat at constant strain 

k thermal conductivity 

time 

T absolute temperature 

T
0 

reference temperature chosen so that [(T-T
0
){f

0
]<<1 

b = yTjJ.L 
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't,V relaxation times 

q the heat flux normal to the surface of the layer 

INTRODUCTION 

Biot [1] formulated the theory of coupled 
thcrmoclasticity to eliminate the paradox inherent in the 
classical uncoupled theory that clastic changes have no 

effect on the temperature. The heat equations for both 
theories arc of the diffusion type predicting infinite 
speeds of propagation for heat waves contrary to 
physical observations. 

Lord and Shulman [2] introduced the theory of gener­

alized thcrmoelasticity with one relaxation time for the 

special case of an isotropic body. This theory was ex­
tended [3] by Dhaliwal and Shcricf to include the an­

isotropic case. In this theory a modified law of heat con­
duction including both the heat flux and its time 
derivative replaces the conventional Fourier's law. The 

heat equation associated with this theory is hyperbolic 
and hence eliminates the paradox of infinite speeds of 
propagation inherent in both the uncoupled and the cou­

pled theories of thcrmoclasticity. Uniqueness of solution 
of this theory was proved under different conditions by 
J. Ignaczak in [4], [5], by Shcricf and Dhaliwal in [6], 

[3] and by Shcricf in [7]. The state space approach to 
this theory was developed by Anwar and Shericf in [8] 

and by Sherief in [9]. The boundary integral equation 

formulation was conducted by Anwar and Shcricf in 
[10]. The fundamental solution for this theory was ob­
tained by Shcricf in [11]. 

Green and Lindsay [ 12] developed the theory of gen­
eralized thcrmoelasticity with two relaxation times 

which is based on a generalized inequality of thermo­
dynamics. This theory docs not violate Fourier's law of 
heat conduction when the body under consideration has 

a centre of symmetry. In this theory both the equations 
of motion and of heat conduction arc hyperbolic but the 
equation of motion is modified and differs from that of 
the coupled thermoelasticity theory. This theory was in­
itiated by MUller [13]. It was further extended by Green 

and Laws [14]. The final form used in the present work 
is that of Green and Lindsay [12]. This theory was also 

obtained independently by ~uhubi [15]. Longitudinal 
wave propagation for this theory was studied by Erbay 
And ~uhubi in [16]. Ignaczak investigated a strong dis-
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continuity wave and proved a decomposition theorem for 

this theory in [17] and [18], respectively. Sherief has ob­
tained the fundamental solution for this theory in [19] 

Shcricf has also formulated the state space approach in 

[20] and solved a thermo-mechanical shock problem in 

[21 ]. The boundary integral equation formulation was 
done by Anwar and Shericf in [22]. 

FORMULATION OF THE PROBLEM 

In this work we shall consider a homogeneous, iso­

tropic, thermoelastic solid occuping the region of a layer 
0 ~ x ~h. The lower surface of the layer (x=h) is taken 

to be thermally insulated and has a rigid foundation. The 
upper surface of the layer (x=O) is suddenly heated and 
kept at a constant temperature and is stress free. 

We assume that there are no external forces or heat 

sources acting inside the region. Since the layer is ex­
tending to infinity in both y and z directions, the problem 

is essentially one-dimensional. The displacement com­
ponents thus have the form 

Ux = u (x,t) , Uy = uz = 0. 

The strain tensor components arc given by 

The cubical dilatation e is equal to 

au 
e =ax. (1) 

The solid is assumed to obey the equations of thermo­
elasticity with two relaxation times. These equations are 
[12] 

( 1) The equation of motion 

a2u a
2
u [ aT a~ J 

p at2 = ( A. + 2 J.L ) ax2 - "{ ax + v ax at . (2) 

(2) The energy equation 

a~ [aT a~ l a2u 
k ax2 = p CE at + 't at2 j + "{ To axat . (3) 

(3) The constitutive equations 

au [ aT J cr = crxx = (A.+ 2J.L) ~ - "{ T - T 0 + v at ' (4) 
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cryy = cru = A ~~ - Y [T - T0 + v ~~ J, (5) 

These equations can be put into a more convenient 
fonn by using the following non-dimensional variables : 

x* = v , X t* = v 2 , t e = ( T- T ) IT 
1 ' l ' o o' 

u* = v 11 u t* = v 2 11 t v* = v 2 11 v cr * = cr.. 1 11 
I ' I ' 1 ' ij IJ /"' • 

Using the above variables equations (2) - (5), take 
the following form where we have dropped the asterisks 
for convenience . 

b i. [e + v ae] = a2u 
~2 ax at at2 ' (6) 

(7) 

(8) 

2 au I. ae J 
cryy = cru = ( ~ - 2) ax- - b Le + v at . (9) 

Since the upper surface is stress free and is kept at a 
constant temperature eo, the boundary conditions there 
take the fonn 

cr (x,t) lx=O = 0, (10) 

e (x,t) lx=O =eo H(t), (11) 

where H(t) is the Hcavysidc unit step function. 
The lower surface has a rigid base and is thennally in­
sulated so the boundary conditions there take the fonn 

u(x,t) I x=h = 0, 

q I = o. 
X = h 

Using Fourier's law of heat conduction, namely 
q = - k aelax, the last condition reduces to 

ae I = o. 
ax x=h 

(12) 

(13) 

293 

The initial conditions are taken to be homogeneous, i.e. 

u(x,t) 
t = 0 

= 
au (x 't) 

at 

cr ( X ' t ) It = 0 = acr (x ' t) I 
at t = o 

e (X ' t) It = 0 = ae (x ' t) I 
at t = o 

= 0, (14) 

= 0' (15) 

= 0, (16) 

SOLUTION IN THE LAPLACE TRANSFORM 

DOMAIN 
Differentiating equation (2) with respect to x and 

using equation (1), equations (2)-(3) can be written as 

c:Pe a2e b a2 
[ e+ v ~~] (17) = ----

at2 ax2 ~2 ax2 

a2e ae + a
2
e + g ae 

(18) = 't Tt ax2 at at2 

Introducing the Laplace transform defined by the 
formula 

00 -
f(p) = J e·Ptf(t)dt, 

0 

into equations (17), (18), (8) and (9), we get upon using 
the initial conditions (14)-(16) 

(19) 

2 2 - -
(D - p - t p ) e = g p e , (20) 

(21) 

- - 2 - -
cr = cr = ( A - 2) e - b ( 1 + vp ) e , yy z:z p (22) 

where D stands for a I ax . 

Eliminating 9 between equations (19) and (20), we 
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get the following fourth-order differential equation for 

the function e 

The general solution of equation (23) can be written as 

2 

e = LA cosh k. (h-x) +B. sinh k.(h- x) (24) 
i =1 1 1 1 1 

where A1 , A2 , B1 and B2 arc parameters depending on 

p only to be determined from the boundary conditions 
and k1, ~ arc the roots with positive real parts of the 

characteristic equation 

Similarly, eliminating c be.!:_ween equations (19) and 

(20), we see that the function 8 satisfies the differential 

equation (23), we thus have . 

2 
- ~ I I 8 = A cosh k. (h-x) +B. sinh k. (h- x) 

1= 1 1 1 I 
(26) 

where A;, A;, B; and B; arc parameters depending on 
p only. 

From equation (19), it follows that the parameters 
must satisfy the compatibility conditions 

(27) 

Substituting from equations (27) into equation (26), 
we obtain 

e - 132 I [ 
b ( l+v p) i=I 

A.(k.2-rf) 
1 1 cosh k. (h-x) 

2 I 

k; 

+ B; (k;
2

- i") sinh I) (h-x) ]· 
k.2 

I 

(28) 

Integrating both sides of equation (1) with respect to 
x and using equation (24), we obtain 

2 

~
A B. 

u = -
1 

sinh ki (h-x) + -
1 

cosh k. (h-x) . (29) 
k. k. I 

1 I 

Using the Laplace transform of the boundary condi­
tions (10)-(13) together with equations (21), (24) (28) 

and (29), we arrive at the following set of linear equa­
tions 
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2 B-I-' =0. 
i=l ki 

2 

I = 0. 
i=l 

Solving the above system of linear equations, we obtain 

~2 p ( k1
2 - k/) cosh k1h 

- 80 b ( 1 + v p ) k/ 

(30) 

Substituting from equations (30) into equations 
(24), (28) and (29), we get 

c= e0 b(l+vp) [k1 2 cosh~(h-x) 
132 p ( k

1 
2 _ k

2 
2 ) cosh k1 h 

k2
2 cosh~ (h-x)J 

cosh kzh 
' (31) 

S = 90 [ (Js 2 - tf) cosh k1 (h-x) _ (~2 - ~)cosh ts_ (h-x)J , 

p ( k
1
2_'s.2) cosh Jsh cosh ts_h 

(32) 

_ -90 b (1 + v p) [ k1 sinh I) (h-x) kz sinh~ (h-x) J 
U = !32p(k

1
2_k/) cosh~h - coshkzh ·(33) 

From equations (31), (32) and (21), we obtain 

cosh k2 (h-x) J . (34 coshk
2
h ) 
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Equations (31) - (33) complete the solution of the 

problem in the Laplace transform domain. To obtain the 

solution in the physical domain, we shall obtain the in­

verse Laplace transforms using asymptotic expansions 

valid for small values of time. This method was used by 
Shcricfin [19] and [21]. 

INVERSION OF THE LAPLACE TRANSFORMS 
Let us now determine the inverse transforms for the 

case of small values of time. By the initial value theorem 

of the Laplace transforms [23] this corresponds to large 

values of p. We note first that the roots k1
2 and k/ of 

equation (25) have the form. 

2 p [ k 1,2 = 2 1 + e + p ( I + 't + e v ) 

±-/ { 1 + e + p (1 + 't + e v)} 2- 4p(l + 't p) ]. (35) 

Taking y = p -l (y is small) then equations (35) can 

be written as 

i = 1, 2. (36) 

where 

f
1

(y) =lf2 [(l+e) y+l+'t+ev + f (y)], (37a) 

f2 (y) = lf2 [ (1 +e) y + 1 + 't + ev - f (y) ] . (37b) 

In the above equations, the function f (y) is given by 

f(y) = [ (1 + e )2y2 + 2 [ (1 +e) ( ev + 't ) + e- 1] y 

+ 1 + ( e v + 't )2 + 2 ( ev - 't ) ] 112 . (38) 

Expanding the function f (y) into a Maclaurin series 
of which the first five terms arc retained, we obtain after 

some manipulations. 

f()- 2 3 4 0 12 ; Y - a;o + ail Y + ai2 Y + ai3 Y + ai4 Y • 1 = • 

where 

1+'t+ev+A 
ato = 2 

(1 + e)A+B 
all = 2 A 

(39) 

1+'t+EV-A 
2 

(l+e)A-B 
2A 
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EC eC 
a12 = -3-

A 
a22 = -7 

-EB C eB C 
at3 = As a23 = IF 

-EC D eCD 
at4 = 

4A7 ~4= 
4A7 

, 

and 

A = --.1 1 + ( ev + 't )2 + 2 ( ev - 't ) , 

B = ( E + 1 ) (E V + 't) + E - 1 , 

C =1+(E+l)(V-'t), 

D = ( e + 1 )2 A2 - 5 B2 • 

From equations (36) and (37a,b), we get 

(40) 

This can be written as 

J 
-1/2 

2By + (1 +e)2y2 

A2 
(41) 

We shall usc the binomial expansion 

We note that since y and E arc very small and A,B are 

close to unity then it follows that lzl < 1 and the above bi­
nomial expansion is valid. Thus, equations (41) and (42) 
yield after some algebraic manipulations (neglecting 

terms of higher order than y4) 

where 

1 4 
= 2 I bjyj. 

p j=O 

(43) 
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1 
bo= A , 

From equations (36) and (39) , we obtain 

-r- [ ai 1 Y + ~2 Y2 
+ ai3 Y

3 
+ '\4 Y

4
] 

p'Jaio 1 +----------- , 
aio 

i = 1,2. (44) 

We shall usc the binomial expansion 

As before, from the values of the parameters ~j , i = 
1,2 , j = 1 ,2,3,4, we conclude that lzl < 1 and the expan­

sion (45) is valid for this choice of z. 
performing the necessary calculations and neglecting 

terms of order higher than y4, we obtain. 

4 

Is = p L bij yj ' i = I ,2 , 
j=O 

where 

4 am ai2 - ail2 

8 am bm 

8~o2 ~3 - 4am ail ai2 +ail3 

16 am2 bio 

(46) 
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641\0
3 a;4 - 32 a;0

2 a; 1 ai3- 16 a.i a;} +24 a;0 ai1 2 a ;2 - 51\1
4 

b;4 = 3 
16 ~0 biO 

Since the parameter p is large, it follows from equa­

tion (46) that the roots k; , i = 1,2 also take large values. 

Thus, the expression. 

cosh k. (h - x) 
---:-

1
-:--:-- i = 1, 2 

cosh kih 

can be approximated as follows 

cosh ki (h - x) = cosh k.x - tanh k.h sinh k.x 
I 1 1 (47) 

-k·x 
"' cosh k.x - sinh k.x = e 1 ,i = 1, 2 

I 1 

since for large k;, tanh k;x "' 1. Substituting for k1 and k2 

from cquaions (46) and retaining only the first three 

terms, we obtain 

cosh ki (h- x) -x(b.
0

p + b.
1 

+ b.21 p) . 
= C I I I ' l = 1 ,2 (48a) 

In a similar manner, it can be shown that for large p, 
we have 

sinh k. (h - x) 
I 

(48b) 

STRESS DISTRIBUTION 

Substituting from equations (43) and (48a) into equa­
tion (34 ), we obtain 

(49) 

where 

c0 = v b0 , ci = v bi + bi. 1 , j = 1 ,2,3,4. 

Taking the inverse Laplace transform of both sides of 
equation (49), we arrive at 

e- b!Oxp e- b12x/p 

pj+l J) 
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3 

- ~ Cj+1 L - 1 
{ 

J=O 

c- b2oxp c- b22x/p 

pi+l 

(50) 

We shall make usc of the convolution theorem of the 
Laplace transform [23], namely 

t 

D 1 
[ g1 (p) g2 (p) ] = J g1 (z) g2 (t - z) dz , 

0 

and the following relations from [24] 

D 1 [ e -ap] = () (t- a) , 

D1 [ e -a/p] = () (t)- -{;; J1 ( 2 ~) , a> 0, 

£"1 
[; ~ J = ( ~ r I\ (2 ...J-;t ) , Rc (j) > - I , a > 0 , 

i;l [;i:~ J = ( ~ r I\ (2 -v-;t) , Rc (j) >- 1 , a> 0 , 

where Ji and Ii arc the Bessel and the modi ficd Bessel 
functions of the first kind of order j, respectively. 

It can be easily shown that the Dirac delta function 
satisfies the following relation. 

t 

J o ( z- a) f (z) dz = f (a) H ( t- a) H (a) 
0 

Using the above formulae and inverting each term in 
equation (50) separately, we obtain. 

J 
.,2 

= ~ ( t. z . '1 x ) [-z-J J ~ (2 ~) dz 
0 0 b12 X 

In the above expression, we have used the easily 
checked fact that b12 > 0 . 
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Using the abbreviations 

t- bJO X ./ 

x1 = , z1 = 2 'I b12 X (t - b10x) , 
b12 X 

and the fact that b10 > 0, the last result reduces to 

Similary, noting that b22 < 0 and b20 > 0, we obtain 

t-b20 x _/ 
where x2 = , z2 = 2 'I -b22 x ( t -b20 x) 

-b22 X 

Using similar techniques, we obtain 

Substituting from equations (51)- (54) into equation 
(50), we obtain the final form of the stress distribution cr 
valid for short times in the form. 

(55) 

TEMPERATURE DISTRIBUTION 
Substituting from equations (36), (39), (43) and (48a) 

into equation (32), we obtain. 

2 3 c·· 
8 = So I, ( - I) i+ 1 c -bit x I, _IJ_ e -bwxp e -bi2x/p 

i=l j=O pj+l 

(56) 

where 
j-1 

cw = b0 (ai0 -1) , c ii = bi (aw -1) + {;
0 

bk ai(i-k) 

' i = 1 ,2 ' j = 1 ,2,3 . 
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Taking the inverse Laplace transform of both sides of 

equation (56), and using equations (51) and (52), we ob­
tain the temperature distribution in the form . 

3 

e = e 0 { c -bux H (t-q0 x) .2: c1G+I) x1Y
2 Jj (z1) 

J=O 
3 

- e -b21x H (t-b20x) :2, c. xif2 J. (z~} . 0 j+l J 
J= 

DISPLACEMENT DISTRIBUTION 

(57) 

Substituting from equations (43), (46) and (48b) into 
equation (33), we obtain . 

(58) 

where 

. I 

f bk bi (j-k -1) ' 
k=O 
i = 1' 2, j = 1 ,2,3 . 

Taking the inverse Laplace transform of both sides of 
equation (58), and using equations (51) and (52), we ob­

tain the displacement distribution in the form 

-eob { ~ 
u = --

2
- e -bllx H (t- b10 x) ~ d1j x1il2 Jj (z1) 

~ J=O 

3 

- e -b21x H (t- b20 x) :2, dzi x-}'2 Ij (z2) } . 
J=O 

(59) 

NUMERICAL RESULTS 

The copper material was chosen for purposes of nu­
merical evaluations. The constants of the problem were 
taken as. 

E = 0.0168 , ~2 = 3.5 and 1: = v = 0.02. 

The computations were carried out for three values of 
time, namely fort = 0.05 , 0.1 and 0.15. The results 
are illustrated graphically in figures (1), (2) and (3) for 
the temperature, stress and displacement distribution, re­
spectively. We should note here that as x ~ 0, x1 ~ oo. 

Numerical evaluations of the functions at x = 0 were 
done using the relation 
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and a similar one for x2 . These relations follow easily 

from the fact that . 

All the functions considered have two discontinuities 

at x=t/b10 and x=t/b20 and vanish identically for x > t/b20. 

The stress has infinite discontinuities at these points. The 

temperature has jumps equal to 

- e c c -bu 1/b!O e c e -b2, t/b20 
0 10 ' 0 20 

at the two points of discontinuity. The corresponding 

values for the displacement are 

eO b d!O e -bu 1/b!O' eO b d20 e -b21 t/b20 . 

~2 ~2 

The numerical values of these of these jumps and their 
locations arc shown in table 1 . 

jump 1 jump 2 jump 1 jump 2 jump 1 jump 2 

t = 0.05 t = 0.05 t = 0.1 t = 0.1 t = 0.15 t= 0.15 

X 0.049991 0.353614 0.099983 0.707228 0.149974 1.060842 

e -0.000349 -0.286530 -0.000349 -0.082128 -0.000349 -0.023540 

u -0.005609 0.000227 -0.005606 0.000065 -0.005604 0.000019 

cr - 00 00 - 00 00 - 00 - 00 

Table 1 
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