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ABSTRACT

The problem of a thermoclastic layer of finite thickness and infinite cxtent is considercd within the context of the
theory of thermoclasticity with two relaxation times. The upper surface of the laycer is taken as stress frec and is suddenly
subjected to a thermal shock. The lower surface of the layer rests on a rigid base that is thermally insulating. Laplace
transform techniques are used. The problem is solved by using a dircct approach. The inverse Laplace transforms are
obtaincd analytically by using asymptotic expansions valid for small valucs of time. Numerical computations for the
temperature, the displacement and siress distributions are carricd out and represented graphically.

NOMENCLATURE u  component of displacement in x-direction

A,u  Lamé’s constants cE specific heat at constant strain

oy coefficient of lincar thermal cxpansion k  thermal conductivity
B = [(As2m)/u1'? n=pegk
Lt time

Y = GA2pn) o4
T  absolute tcmperature

p = density T, reference temperature chosen so that [(T-T /T ]<<1
V, = speed of propagation of isothermal longitudinal b = vT

waves = [(A + 2 p)/p]? = YT/n
o = 0,, component of the stress tensor in x-direction g = Y/PCE
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ATHERMOELASTIC PROBLEM FOR A THICK LAYER

1,v relaxation times

q the heat flux normal to the surface of the layer

INTRODUCTION

Biot [1] formulated the theory of coupled
thermoclasticity o climinate the paradox inherent in the
classical uncoupled theory that clastic changes have no
effect on the temperature. The heat equations for both
theories are of the diffusion type predicting infinite
specds of propagation for hcat waves contrary (o
physical observations.

Lord and Shulman [2] introduced the theory of gener-

alized thermoclasticity with one relaxation time for the

special casc of an isotropic body. This thcory was cx-
tended [3] by Dhaliwal and Sherief 10 include the an-
isotropic case. In this theory a modificd law of heat con-
duction including both the heat flux and its time
derivative replaces the conventional Fourier’s law. The
heat equation associated with this theory is hyperbolic
and hence eliminates the paradox of infinitc speeds of
propagation inherent in both the uncoupled and the cou-
pled theories of thermoclasticity. Uniqueness of solution
of this theory was proved under different conditions by
J. Ignaczak in [4], [5], by Shericf and Dhaliwal in [6],
[3] and by Shericf in [7]. The state space approach to
this theory was developed by Anwar and Shericf in [8]
and by Sherief in [9]. The boundary integral cquation
formulation was conducted by Anwar and Sherief in
[10]. The fundamental solution for this thcory was ob-
tained by Sherief in [11].

Green and Lindsay [12] developed the theory of gen-
eralized thermoelasticity with two rclaxation times
which is based on a generalized incquality of thermo-
dynamics. This thcory docs not violate Fouricr’s law of
heat conduction when the body under consideration has
a centre of symmetry. In this thcory both the equations
of motion and of heat conduction are hyperbolic but the
equation of motion is modified and differs from that of
the coupled thermoclasticity theory. This theory was in-
itiated by Miiller [13]. It was further extended by Green
and Laws [14]. The final form uscd in the present work
is that of Green and Lindsay [12]. This thcory was also
obtained independently by Suhubi [15]. Longitudinal
wave propagation for this thcory was studied by Erbay
And Suhubi in [16]. Ignaczak investigated a strong dis-
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continuity wave and proved a decomposition theorem for
this theory in [17] and [18], respectively. Sherief has ob-
tained the fundamental solution for this theory in [19]
Sherief has also formulated the state space approach in
[20] and solved a thermo-mechanical shock problem in
[21]. Thc boundary integral equation formulation was
done by Anwar and Sherief in [22)].

FORMULATION OF THE PROBLEM

In this work we shall consider a homogeneous, iso-
tropic, thermoclastic solid occuping the region of a layer
0 £ x £ h. The lower surface of the layer (x=h) is taken
to be thermally insulated and has a rigid foundation. The
uppcer surface of the layer (x=0) is suddenly heated and
kept at a constant temperature and is stress free.

We assume that there are no external forces or heat
sources acting inside the region. Since the layer is ex-
tending to infinity in both y and z directions, the problem
is cssentially one-dimensional. The displacement com-
ponents thus have the form

uy = uxt) , Uy = uy = 0.

The strain tensor components arc given by

_du _
Cxx =/ exy -

X

Cyp = Cpx = Cyy = €, = 0.

The cubical dilatation e is equal to

du

C ==
ox

0]

The solid is assumed to obey the equations of thermo-
elasticity with two rclaxation times. These equations are
[12]

(1) The equation of motion

% u oT 1
Pz =(A+2m) -7 | S+t vy |- @
(2) The encrgy equation

i W 9T &1 %
k - Bl 5 +1 32 + v T, 30 3)

(3) The constitutive equations

du oT
0= Oy = (A+2)) 3% - Y| T-T, tVar [ @
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ny=cu=)\$-y[T-To+V%:{— ,(5)

These equations can bc put into a more convenicnt
form by using the following non-dimensional variables :

X* = vnx,tr= v21m ,0=(T-T)/T,
u* =v1nu,*c*=v12n1,v*=v12nv ,0* =0, /1.
ij
Using the above variables equations (2) - (5), take

the following form where we have dropped the asterisks
for convenience .

9% b 0 90 | _ d%

Dogwlod-R o

% _ 99 e P,

ox2 a T o2 T8 3 7
Jdu J0

o= 325‘;‘ [e+va—[ , (8)

2
Opy = 0 = (P*=2) 3=~ b l:e rv aa—?] ©)

Since the upper surface is stress free and is kept at a
constant temperature 6, the boundary conditions there
take the form

o (x,0)l _ =0, (10)

o(x,t)|l _ =0 HQ, (11)

0

where H(t) is the Heavyside unit step function.
The lower surface has a rigid basc and is thermally in-
sulated so the boundary conditions there take the form

wx,n) | _ =0, (12)

q| = (0.

x =h

Using Fourier’s law of hecat conduction, namely
q = -k d0/0x, the last condition reduces to

= = 0. (13)

The initial conditions are taken to bec homogeneous, ie.

ou(x,t)

u(x,0) | _ = o |, =0 (14)
o(x,1)1 _,= 99&x,1 =0, (15)
ot t=20
0(x,t) 1 _,= 00 (x, 1) =0, (16)
ot t=0

SOLUTION IN THE LAPLACE TRANSFORM
DOMAIN

Diffcrentiating cquation (2) with respect to x and
using cquation (1), equations (2)~(3) can be written as

2 2 2
Pe _ e b P [9+v§ﬁ] , a7

oz oxr p? ox? ot
0 _ 00 , . 9%0 ,, %
2 a + 7T 2 + g o (18)

Introducing the Laplace transform dcfined by the
formula

f(p) = T e P f)dt
0

into equations (17), (18), (8) and (9), we get upon using
the initial conditions (14)-(16)

B2 (D-pHT = b (1+vp) D 8, (19)
(D*-p-t1pH)B=gpe, (20)
o= BC-b(1+vp) 0, Q1)
G,=0,=(B- 2)e-b(1+vp)0, 2)

where D stands for d/0x.

Eliminating 0 between cquations (19) and (20), we
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get the following fourth-order differential equation for
the function &

{{D*-D?[ (14€) p+(1+1+ev) p+p® (141p))e = 0. (23)
The gencral solution of cquation (23) can be wrillen as

2
e = Z A, cosh k; (h-x) + B, sinh k.(h - x)

i=1

(24)

where A, , A, , B, and B, arc paramcters dcpénding on
p only to be determined from the boundary conditions
and k, k, are the roots with positive real parts of the
characteristic equation

K -KP[(Q+e) p+(I+T+ev)pPl+p (A +1p) =0 (25)
Similarly, eliminating c bc_lwccn cquations (19) and

(20), we sce that the function 0 satisfics the differential
equation (23), we thus have .

2
0= Z A; cosh k, (h-x) + B, sinh k. (- x) (26)
1=

where A1, , Az' , B; and B; are paramclters depending on
p only.

From equation (19), it f{ollows that the paramclers
must satisfy the compatibility conditions

B2(k? - p) A; =b (1 +vp) k? A,

b (1 +vp) k2 B, i

p’) B;

P2 (k - 12 (27)
Substituting from cquations (27) into equation (26),

we obtain

2
8 =B il: AK B o K, (h-x)
b(l+Vp) i=1 kiz
B. (k2-
SRS B B (];'(2 2 sinh K (h-x) :I (28)

Integrating both sides of cquation (1) with respect to
x and using equation (24), we oblain
2 A B,
- sinh k; (h-x) +T coshk, (h-x).  (29)
; .

1

u
1=

Using the Laplace transform of the boundary condi-
tions (10)-(13) together with equations (21), (24) (28)

and (29), we arrive at the following sct of lincar cqua-
tions
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1

0,

[ A, coshk; h +B; sinh k; h:l
K

-
1]

2 2

k" —P" | (A coshk; h+B; sinh k; h)
2

— K

-
It
—

M-

_ Opb(1+vp)

2
B°p
S B,
i=1 ki ,
2 2 2
B. (k-
Y Bk -p)
i=1 kiz

Solving the above system of lincar cquations, we obtain

w

B, =0

6, b(1+vp)k?
B?p (k% —k,?) coshkjh

(30)

-8, b(1+vp)k,’
B%p (k% -k,?) cosh k,h

Substituting from equations (30) into equations
(24), (28) and (29), we get

- 6, b(l+vp) [ k12 cosh k (h-x) k22 cosh k) (h—x):| .
T Bp(ki-ig) L coskp  coshkh (31)
5 _ 8, [ (2= coshk, (-x) (- P coshk, (h—-x):' .
p( k12_' |&2 ) cosh klh cosh kzh
(32)
— -8, b(1+vp) l:kI sinhk (h-x) Kk, sinh k, (h—x) :I
u = B%p (klz_ kzz) cosh kh - cosh k,h ’ (33)

From cquations (31), (32) and (21), we obtain

_ 8 bp(wp)
B?p (k,2-k,2)

coshk , (h—x)
coshk h

cosh k, (h-x)
" T eoshk,h

:] - (34)
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Equations (31) - (33) complete the solution of the
problem in the Laplace transform domain. To obtain the
solution in the physical domain, we shall obtain the in-
verse Laplace transforms using asymptotic cxpansions
valid for small valucs of time. This method was used by
Shericf in [19] and [21].

INVERSION OF THE LAPLACE TRANSFORMS

Let us now determine the inverse transforms for the
case of small valucs of time. By the initial value thcorem
of the Laplace transforms [23] this corresponds to large
values of p. We note first that the roots k;2 and k,? of
equation (25) have the form.

k21’2=—122-[1+8+p(1+’t+€v)

tV {1+e+p(+t+e v)2-4p +1p) ]. 35)

Takingy = p -1 (y is small) then equations (35) can
be writlen as

k2=p2 fi(y) , i=1,2 (36)
where

fy) = [U+e) y+i+t+ev + ()],  (37a)
) = [Q+e) y+1+1+ev - [ (y)].  (37b)

In the above equations, the function f (y) is given by

fy) ={(1+e)y?+2[(1+e)(ev+T)+e—1]y
+1+(ev+1) +2(ev-1)1". (38)

Expanding the function f (y) into a Maclaurin scrics
of which the first five tcrms are retained, we obtain after
some manipulations.

LD =2y + 3,y +a, Y+a; v +a,y,i=12

(39)

where
141 +ev +A 1+1 +¢ev -A
4 = ) » 80 = D) ’
_ (1 +e)A+B _ (l+eg)A-B
T oA ™t TR

_ &C _  ¢&C
A = 2 Ap = - A3

_—¢BC _ &BC
f3 T T3 ’ 3T T3

_—-¢CD _ ¢£CD
14 AT ’ a4 4 Al
and
A=+V1+(v+1)2+2(ev-1),
B =(e+1)(v+1)+e-1,
C=1+(e+1)(v-1),
D =(g +1) A? - 5B2,

From equations (36) and (37a,b), we get

1 _ 1
k>-k?  pr) (40)

This can be written as

-172
2By + (1 +&)
- ;l:n———————y - y2:| . @
k2-k*  plA A

We shall usc the binomial cxpansion

322 572 3574

-V _y_z, 3z Doz 3
(T+2) 2 =1-5+ = - J¢ + 133

szl <1, (42)

2By + (1 + £)%y?
AZ

with z =

We note that since y and € are very small and A,B are
close to unity then it {ollows that Izl < 1 and the above bi-
nomial ¢xpansion is valid. Thus, equations (41) and (42)
yield after some algebraic manipulations (necglecting
terms of higher order than y*)

byy’ (43)
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1
b0= 'K 2
B

b= - —,

1 A3
b 3B2. (1 +¢)° A2

2 2 AS
b o B [3(1 +£)*A% - 5B?)

3 2 A7
b o 3 (1 +¢)*A%-30A%B2 (1+ €)% + 35B*

4 = ’

8 A®

From cquations (36) and (39), we obtain

2 3 4
Gy + &y + 3y + 3143':1

i0
i=12. (44)
We shall use the binomial expansion
h _1.2_2 .72 52
(1+2z) -1+2—8 +16_128 Izl <1, (45)

4
a,y + 2,y + a,y +a,y

2

with z =

As before, from the values of the parameters a; , i =
1,2,j=1.234, we conclude that Izl < 1 and the expan-
sion (45) is valid for this choicc of z .

performing the nccessary calculations and neglecting
terms of order higher than y*, we obtain.

4
k=pY byy,i=12, (46)
=0
where
by = v ag »
&
b = 2by
by = 4ap 2y ‘ailz’
8 a by
8a,,2 a5 — 42y Ay +a;,
b. 40" 43 io 4i1 32 T4
i3 )

2
16 ;9 bi()

_ 64 a5 a

2 2,2 2 4
b s~ 328573, 8,,- 16 35" a;,°+24 358, °a p - S g ,
i =

16 345 byy
Since the paramcter p is large, it follows from equa-
tion (46) that the roots k; , i = 1,2 also take large values.
Thus, the expression.

i

cosh ki (th-x)

coshkn T h?

can be approximated as follows

cosh ki (th-x)

= cosh kix —tanh kih sinh kix
cosh kih

47)

-k
~coshkx—sinhkx=¢ = i =1,2

since for large k;, tanh k;x = 1. Substituting for k, and k,
from cquaions (46) and retaining only the first three
tcrms, we obtain

cosh k;h =12

(48a)

In a similar manner, it can be shown that for large p,
we have

sinh k, (h - x)
cosh kih

_ xbgp+ by + by /)

,i=1,2 (48b)

STRESS DISTRIBUTION

Substituting from cquations (43) and (48a) into equa-
tion (34), wc obtain

[¢ *®1oP+by+ by /p) (49)

—e “X(bygP + byy +byy /P) ]

where
Co =V by, c; =V bj + bj_l,j = 1,2,34.

Taking the inverse Laplace vtransform of both sides of
cquation (49), we arrive at

G = Ogb [c_b”x (coL" [ 107 ¢ P12

)

—~ bloxp

e —byox/p

c
j+1
p

3
-1
+ ch+lL {
=0
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_ c—b21x (Co[fl [c—b20xp c-bnx/p ]
X 1 [ P b
- z Cij+1 L™ { - r - }
j=0 p j+ 1
(50)
We shall make use of the convolution thcorem of the
Laplace transform [23], namcly
_ _ t
L0 &®] = OI 8@ g0 -2 dz ,
and the following rclations from [24]
Llle *P] = d(-0),

L'le P =8 a)- Vo 1, (2Vat), a> 0,

flee®) =5+ Vor 1, (2V o), as 0,

il _
=<L> Jj(z\/(xt),Rc(j)>—l,(l>0,
o

. i
£ |::j+/i:| = ({;) Ij(z\/m), Re ()>-1,0>0),

where Jj and Ij ar¢ the Bessel and the modified Besscl
functions of the first kind of order j, respectively.

It can be casily shown that the Dirac dclia function
satisfics the following relation.

lﬁ(z-a)f(z)dz = (o) H(t- a) H() .

Using the above formulae and inverting each term in
equation (50) separatcly, we obtain .

~b, xp_-b xfp —b A
e 1077e 12" f e 12
L I:———:|= . {ct et )}, L-l[ - dz

pi+l pi+l

j’2
=,r8([-Z-bmx)[ z i|l Jj(qulle)dz
0

X
b12

- [t-wo‘]jlz%lzmnmbmx) HO-bi)

b, x

In the above expression, we have used the easily
checked fact that b, > 0.

Using the abbreviations
t- blo X
b

X, = 2 =2V by x(t-bygo)

12X

and the fact that b, > 0, the last result reduces to

~bigxp a —byg X/ i
L [c 102 p:|=xf/2Jj(Zl)H(l-b10x)- (51)
pj+l

Similary, noting that b,, < 0 and b,, > 0, we obtain

L-l [c _bzoxpc_b22X/p]=ij/ZIJ(ZQH([-me). (52)
pj+l

t- b20X

thrc X2 = ,Z2 = 2‘\/ —bzzx([ _bzox) .

22 X

Using similar tcchniques, we obtain

L4[e Pi0®Pe ™ |= [5 @ .qox)-‘jL_ ] (zl):| H(t-byx). (53)
. xl

L"[c”"zo"pc’zz"’l’]=§_5(l-l}_x)+—-l~{(7] H(1-b,x). (54
l- o \IZ 53 (54)

Substituting from equations (51) - (54) into equation
(50), we obtain the final form of the stress distribution ¢
valid for short times in the form.

3
6=0,b { e H (1-byx) [co( 5 (1-bygx) —\I%J] (z) ) +§_‘,0c_i+,x,.i’2 ip (z,)]
1 J=

3
—e % H (t-byy x) “ % ( & (t-byx) +\/% I 1(12)) +i=zocj+lx2iﬂlj (z,z)—| ]
(55)
TEMPERATURE DISTRIBUTION

Substituting from cquations (36), (39), (43) and (48a)
into equation (32), wc obtain.

2 3
0=0, > (=1)i*l g bix Sy, — ¢-borp e bioxp
i=1 =0 p*

(56)
where ;
31
Co =By (1) 0= by@o-D+ X bagy

d=12,j= 123.
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Taking the inverse Laplace transform of both sides of
equation (56), and using cquations (51) and (52), we ob-
tain the temperature distribution in the form .

3
8=20, { ¢ P1* H (-4 x) Z Cigeny X2 55 ()
=0 (57)
3
—e P H (Lbygx) D¢ X2 () )
j=0

DISPLACEMENT DISTRIBUTION

Substituting from cquations (43), (46) and (48b) into
equation (33), we obtain .

_ _8,b % ; S
o= 0 z (- 1)|+l e “bix z c"hiO"Pe"bi2"/p,
i=1

B2 =0 pi*
(58)

where

. .
dip =V bybyg , dj=Vv 2 D b; iy + Jz b bk -1) -
k=0 k=0
i=1,2,j=123.
Taking the inversc Laplace transform of both sidcs of

equation (58), and using cquations (51) and (52), we ob-
tain the displacement distribution in the form

-Gb

BZ

3
u = { e u* H(t-bygx) 2 dy; x 2 J; (zy)
=0

3
-¢ _b21x H ([ 'b20 X) z d2j X2-V2 I_] (7,2) } .
i

(59)

NUMERICAL RESULTS

The copper material was chosen for purposcs of nu-
merical evaluations. The constants of the problem wcere
taken as.

€= 00168 , B> =35 and 1t =v = 0.02

The computations were carricd out for three values of
time, namely fort = 0.05 , 0.1 and 0.15. The results
are illustrated graphically in figurcs (1), (2) and (3) for
the tempcerature, stress and displacement distribution, re-
spectively. We should notc here that as x — 0, x; — oo,
Numerical evaluations of the functions at x : = 0 were
done using the relation

o o t/

lim x? Jj(z)) = lim x," [(z) =—
x—0 x->0 Ji

and a similar one for x, . These relations follow easily
from the fact that .

Ji(x), 1;(x) = ’.‘_J [1+0(x?) ]

2!

All the functions considercd have two discontinuitics
at x=t/b,, and x=t/b,, and vanish identically for x > t/b,,.
The stress has infinite discontinuitics at these points. The

tempcrature has jumps equal to
-by; t/b ~by; by
-8,c,¢ TR0, 0, ¢ €

at the two points of discontinuity. The comesponding
values {or the displaccment are

e0 b d10 e'bu‘/b]o’ e0 b d20 e'b21 l/b20'
B? p?

The numerical valucs of these of these jumps and their
locations arc shown intable 1.

jump 1{jump 2|jump 1{jump 2|jump 1| jump 2
t=0.05|t=0.05[t=0.1} t=01 |t=0.15}t=0.15

X ]10.049991 | 0.353614 | 0.099983 | 0.707228 ] 0.149974 | 1.060842

0  |-0.0003491-0.286530-0.000349]-0.082128 | -0.000349} -0.023540

U [-0.005609] 0.000227 | -0.005606{ 0.000065 | -0.005604} 0.000019

[e) . 00 (o o] . 0O [+ o] .~ 00 - 00

Table 1
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