
On the Propagation of Elastic-plastic Wave in the Half Space 

by 

Fawze Shahan EI-Dewik 
Department of Mathematics, Faculty of Science, Qatar University, Doha, Qatar. 

ABSTRACT 

The problem of the propagation of the elastic-plastic wave in the half-space occupied by 
and elastic-plastic medium has been studied .. Treatments were carried out under the 
Assumption of perpendicular load, on the boundary, which propagates with a constant 
speed D. 

The assumption further involved that displacements were in the direction of the load, 
whereas the lateral displacements were neglected. 

The method of quadratic error was used throughout the solution of the wave equation. 
the theoretical calculations of space-dependent stress were displayed with respect to the 
distance from the half-space boundary. 
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Introduction 

Among various authors, Rakmatulin [I], Shapiro [2] and Sokolovskii [3) have studied 
the problem of elastic-plastic wave propagation in the half-space. 

The three-dimensional problem of ehzstic wave propagation has been solved by Fawze 
El-Dewik [ 4] . The problem has been studied when an instantaneous constant load acts on 
the boundary of the elastic half-space. The load is taken to act perpendicular to the 
boundary and the lateral displacements were neglected. A similar study of this problem 
was carried in the case where the load is time-dependent [5). 

The two-dimensional problem was treated under the assumption that the propagation 
load acts perpendicular to the boundary [6), and the solution was obtained by taking 
into account the verticle displacements, whereas the lateral displacements were neglected. 

Nevertheless, this problem was recently solved [7] taking into consideration the lateral 
displacements as well as the verticle ones. 

In the present work, the two-dimensional problem of elastic-plastic wave propagation 
has been studied, whereas the boundary load moves with a constant velocity. 

1. Basic Equation and its Solution 

Let the semi elastic-plastic material occupy the domain z;;;.o,- oo< x,y<oo in the 
cartesian coordinates. 

Assume that a load exists perpendicular on the boundary of the half-space and we 
assume that this load propagates with a constant speed D. if we neglect the lateral dis­
placement then, the vertical displacement W satisfies the wave equation: 

9_2_Vj = a2(e) [q~J! + q~Y!_J (1.1) 
at2 ax2 ay2 ' 

where a is the velocity of the longitudinal wave which is a function of intensity deforma­
tion e. 
The initial condition is 

a 
W(x, y, o) = at W(x, y, o) 0 

And the boundary conditions are 

(~;) = Hx, t) 
y=O 

(aw) _ 0 
ay y=o -

0~ lxi~Dt I 
lxi>Dt 

(1.2) 

(I .3) 
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The Propagation of Elastic Wave in the Half-space 

The solution of the problem in this case may be written in the form 

w =f[ ~n ,_ r)_d_t <!1:: - - - - - - - - - - -
aVa2(t - r)2 - (x- ~)2 - y2 

where li is the region bounded by 

r = t- ~vex -r)2 +y2 

(2.1) 

(2.2) 

T = ±Dr (2.3) 
Consequently, one can prove that the expression (2.1) satisfies the wave equation (1.1) 
and then we get 

(~w) = - ITC(x, t) (2.4) 
y y=O 

Therefore, the expression (2.1) takes the form 

- 1 If--- J.C~~ ~l ~~ ?:. --.-----
W- -ft a.Ja2(t-r)2 -(x-r)2 -y2 

(2.5) 

Using (2.2) and (2.3), then the bounds of the integration in (2.5) will be the following 

where Tc, r 1 ,Tm,~ 1 , and ~2 are defined from the equations 
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a2(t- Tc)2 - (x- ~)2 = y2' ~ = -Drc, 

a2(t-rd2 - (x-~)2 = y2,~ = -Drl, 

a2(t-rm) = y2, 

~~ = X -va2(t- r)2 - y2 and 

~2 =X+ va2(t -T)2 -y2. 



We shall discuss the problem when 
Hn = ho + b1 t + b2 t2 

Then we have · 

W= 

i.e. 

(2.6) 

7 1 DT - j dr f ... J~_-:n:~L________ (2.7) 
JJ r .ta2(t r)i (x 1-)2 y2 

T x-a2(t-r)2t-y2 " - - -) -

Where To may be obtained by solving (2.2) and the straight line~= 0 
Thus J 2 2 

To = at-- x + y 
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Also r 1 - may be obtained by solving (2.2) and the two straight lines~= ±Dr 

Thus T1 = -- _1_-.., [- (Dx- at) ±j(Dx-at)2 - (1 - D)2 (a2 t2 - x2 - y2 ) J (1-D) 

See figure (1 ). 

Fig. 1. 
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Differentiating (2.7) with respect to x andy respectively we get 

aw = -!.- (bo- blx + b2x2) { [cos4 
- _(!.._ :-.1?:1..~---- aTl - cos-1 ia2(; ~-;~)2" :..·;; ~Txo] 

ax fi ""'2(t _ Tt)2 _ y2 ax Vi u 

Yo;-~-;; [ sm-' ).;'(~~;;:-:-;~;-~;;;} - sm-' Jii~~~;,~~~~-o; ;;' ] -
1 f, I / x2 + y2 I I / x2 + y21] } 1 -a~ an (t -To)+ J(t -To)2 - ---ar-- -log t +Jtl- a2 - ft (72b1- b2x) X 

X 
{ J 2( )2 ( )2 2 aT1 j 2( )2 2 2 aTo 2 a t-Tl - x-DT1 -y. ax--2 a t-T -X -y ·ax 

- (a2-~~2) [ j(a2 -D2)(t-Tt)2 - 2D(x-DtXt-Tt)-(x-Dt)2 - y
2 

- Ja2-D2)t2 -2D(x-Dt)-(x-Dt)2-y2] -
2
: [log I (t-T0) + }t-T0 )

2 - :'\.~ Y? 

-log It +}t2 -x2 ~y21]- 2a;(x; ?d) [ sin-1 ~~2_-:f?~)(t::~T.l)~~(~-:1?9.-
a (a -D ) }a2(x _ Dt)2 + (a2 _ D2)y2 
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[
j 2 2 2 2 2] (a

2
t-3D(x-Dt)) 1 [ 2 3D(x-Dt) - (a-D )t -2D(x-Dt)t-(x-Dt) -y ----~---2··· - ------- Y ---2·-··t· 
2(a -D ) J a2 _ 0 2 (a - D ) 

+ _!_ [sin-1 I~Q:-T! ):-rLlY_(l::I?:~-:-P.<~:-.I?t)L-:- J~-:-J~ ~-(x::I?9J: _ 
2a [a(t-rd-y]j y2(1-D2) + (x-Dt)2 

_sin -1 ~~t::~H~(1.-:1?~):-P..<?'::I?9J _ :-J.I?~ .:. (x_-:1?9.e. ] + 
(at-y)/ y2 (1-D2 ) -(x-Dt)2 

+_!__ [sin-1 J~(t::J).:'".~1.J¥~~:-P..2):':~~:-P._t)]__+.(J?r:-~~=-~t)l: -
2a [a(t-ri)+y] j y2(1-D2 )+(x-Dt)2 

• 

- sin-1 (S:t ."':~~ !~(1_-:1?~ ~ ~-1?~~-:-P!~l- ~- [_~~~:-P..tH:] + [sin -1 ~~~-:~1)}'::~2.-:-~:--- -
(at +y) J y2(1-D2 ) +(x-Dt)2 [a(t-rd-y]jx2 +y2 
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X t 2( )2 2 2 dTo 7 [ 2( )2 2] -1 X dTo 
+ Va t-To -y -X • ·ay -2 a t-To -y COS "j~2(t~~)2"_~i- · i)y" + 

3 2 2 2 x-Dr0 dTo 
+-(a (t-r0) -y ) cos-1 -------------- .. - + 

2 Ja2(t-ro)2 -y2 . ay 

- ~~-:-~t)::: ¥~ rsin-1 -(3:.2_~1?~Kt:::r_~)-:-~(~~l?!> 
J a2-D2 l Ja2(x-Dt)2 +y2(a2-D2) 

The numerical values for ~f and ~~ were calculated for the different values of x. 

The plots of ~a'!j and aaW are represented in figures (2) & (3). 
y X 
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The Propagation of Elastic-plastic Wave in the Half-space: 

In this case it we take into consideration Prantel's diagram, then the elastic-plastic wave 
propagation may be illustrated as shown in figure ( 4 ). The region W1 is the elastic medium 
and the surface A 8 C 8 A is the discontinuous deformation interface. If the lateral dis­
placements were neglected, then the vertical displacement W in the plastic medium satis­
fies the wave equation ( 1.1 ) with the boundary conditions ( 1.3) where 

w =WI +W2 (3.1) 

and W1 & W2 represent the vertical displacements in the elastic and plastic regions respec­
tively. (see figure ( 4) ). 

Fig. {4} 

Suppose that the boundary condition for plastic region is 

aw2 
ay 

y=O 

Then the boundary condition for the elastic region will be 

aw. 
ay 

y=O 
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(3.2) 

(3.3) 



and the solution of the problem may be written in the form 

W2 = ff---- .\~(~ .. ~~~~-~~-----­
o2 ~a~{t-7)2 

- {x-~/ -y2 

:1 = ff-----~!L·!!~~~~-----­
o 1 .J ai(t-7)2 -{x--~)2 

-/ 

(3.4) 

(3.5) 

where cl 'c2 and ~2 are unknown functions to be determined from the following relations 

(3.6) 

(a-;1) = -IIC1 = e-e2 , 
y y=O 

{3.7) 

{3.8) 

ABCBA 

where ~s is the limit value of the deformation between the elastic and plastic regions and 
~i is the insensitive deformation. 
In the present case ~i is reduced to the following form 

2 2 

e· = ~ j{aW!) + i (~W1) 
I 3 ~\Py 4 ax 

Then the relation ( 3.8) takes the form: 

e/ = ~ [ e~~' -~ (~:·) lBCBA = e~ 
The relations {3.6), (3.7) and (3.10) are sufficient to determine C1, C2 and ~s· 
Using Taylor's expansion, 2 e (~)may take the form 

~2m= bo +b1~+b2~2 

{3.9) 

{3.10} 

{3 .11) 

Where b0 , b1 and b2 are unknown constants to be determined by using the method of 
quadratic error. 

Let ei differ from e
8 

by an infinitesimal quantity. 

i.e. ei = e -e{b0 ,b1 ,b2 ) {3.12} 
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t 
Then e2 = J (ei- e8)

2 dT (3.13) 
0 

Using (3.9) we get: 

t 

•' = ~~ 
0 

2 J 2 
- e8 dT, (3.14) 

aw . aw 
Where ax

1 
and oy 

1 
are obtained in (2.8) and (2.9) by replacing a with a (e). Making 

' this error minimum, its first derivative with respect to b0 , b1 and b 2 must be equal to 
zero. 

Thus: oe ae ae 
abo = o, ob1 = 0~ ob

2 
= 0 (3.15) 

solving the above conditional relations (3.15) with respect to b0 , b1, b2 we get: 
b0 = 1.08 e8 • 

76 

bl = +0.29~ 
at 



REFERENCES 

1. Rakhmatulin Kh. A., Dem'yanov Yu., Strength under intense Short-time loads, Fitzmatgiz, 
Moscow, 1961 (in Russian). 

2. Shapiro G. S., Logitudinal Vibrations of Bars, Prikl. Mat,JO (5-6), 616 (1946) (in Russian). 
3. Soko1ovakii V. V., Propagation of elastic-viscous-plastic waves in Bars Prikl. Math. Mekh., 

12(3), 261-80 (1948) (in Russian). 
4. Fawze Shahan El-Dewik, Approximate Solution for the problem of propagation of elastic 

wave in half-space. Moscow University Journal, no. 5, 1975 (in Russian). 
5. Fawze Shahan El-Dewik, On the propagation of elastic wave in the half space. Ain-Shams 

University, Science Bulletin. 
6. Fawze Shahan El-Dewik, On the propagation of elastic wave in the half-Space. Spornik Asper­

antov. Mekh. Institute no. 2, (1977) (in Russian). 
7. Fawze Shahan El-Dewik, Approximate Solution for the problem of the propagation of the 

elastic wave in a half-plane. Reprinted from the proceeding of the 1976 Conference on Mathe­
matics and Computer Science, Alexandria University. 

77 




