HOMOMORPHISMS AND SUBALGEBRAS OF MS-ALGEBRAS

By

S. El - Assar and A. Badawy
Faculty of Science, Tanta University, Tanta, Egypt

التشابهات والجبريات الجرزئية لجبريات MS

سيناء العصار و عبد المحسن بدوي

نتيجة لتكوين وتمثيل جبريات MS بواسطة الثلاثي المصاحب أمكننا تمثيل تشابهات جبريات MS بواسطة مفهوم الثلاثي وأيضاً أمكن تحديد الثلاثي المصاحب للجبريات الجزئية وكيفية تكوينها بواسطته . ولقد أمكننا حل مشكلة ملىء الفراغ الخاصة بالثلاثي المصاحب .

ABSTRACT

According to the characterization of MS-algebras from the subvariety K_2 by mean of the triple construction, we characterize the homomorphisms and the subalgebras of the MS-algebras. Also, we solve the "Fill-in" problem for the associated triples.

Key Words: MS-algebras, De Morgan algebras, kleene algebras, Varieties, Homomorphisms, Subalgebras.

INTRODUCTION

Blyth and Varlet introduced MS-algebras which are algebras of type (2, 2, 1, 0, 0) abstracting de Morgan and Stone algebras (see [2] and [3]. In [1] and [4] they considered a certain subvariety K_2 of MS-algebras whose members may be thought of as algebras abstracting kleene and Stone algebras. Each member of K_2 contains two simpler substructures, one being a kleene algebra and the other a distributive lattice with unit. They developed the "Chen-Gratzer" style construction theorem for the members of K_2 utilizing methods similar to those employed by Katrinak [6] and [7].

The purpose of this note is to study the properties of the triple dealing with the homomorphisms and the subalgebras of MS-algebras from K_2 . The last part deals with fill-in theorems, giving sufficient conditions in order that (K, D, ?) can be filled in to make a triple.

A De Morgan algebra (L;v, \land , °, o, 1) is an algebra of type (2, 2, 1, 0, 0) such that (L; v, \land , o, 1) is a bounded distributive lattice and ° is a unary operation satisfying the identities:

$$x = x^{\circ \circ}$$
 and $(x \lor y)^{\circ} = x^{\circ} \land y^{\circ}$.

As a direct consequence of the definition, we have, for all x,y ε L, $(x \land y)^\circ = x^\circ \lor y^\circ$, $0^\circ = 1$, $1^\circ = 0$ and the assignment $x \to x^\circ$ satisfies $x \le y$ if and only if $x^\circ \ge y^\circ$.

A Kleene algebra (K;v, \land , °, 0, 1) is a De Morgan algebra on which for every x, y, $x^{\circ} \land x \leq y \lor y^{\circ}$ holds. An MS-algebra is an algebra (L;v, \land , °, 0, 1) of type (2, 2, 1, 0, 0) such that (L;v, \land , 0, 1) is a bounded distributive lattice and $x \rightarrow x^{\circ}$ is a unary operation and the following identities are satisfied:

- $(1) \quad x \leq x^{\circ},$
- (2) $(x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ}$,
- (3) $1^{\circ} = 0$.

The class of all MS-algebras forms a variety. The subvariety K_2 is defined by the additional two identities:

- (4) $x \wedge x^{\circ} = x^{\circ \circ} \wedge x^{\circ}$,
- (5) $(x \wedge x^{\circ}) \vee y \vee y^{\circ} = y \vee y^{\circ}$.

For any $L \varepsilon K_2$, we have

- (6) $x = x^{\circ \circ} \wedge x^{\circ} (x \vee x^{\circ})$, for every $x \in L$,
- (7) $L^{\circ \circ} = \{ x \in L : x = x^{\circ \circ} \} \text{ is a Kleene algebra,}$
- (8) $L^{\wedge} = \{ x \in L : x \le x^{\circ} \} = \{ z \in L : z = x \land x^{\circ} \}$ is an ideal of L and
- (9) $L^{V} = \{ x \in L : x \ge x^{\circ} \} = \{ z \in L : z = x \ V x^{\circ} \}$ is a filter of L.

For a ε L°°, denote $d_a = a \vee a \circ \varepsilon$ L $^{\vee}$.

Let $L \in K_2$. L^v is a filter of L and hence L^v is a distributive lattice with the largest element 1. $F(L^v)$, the lattice of all filters of L^v , is distributive. The map $\phi(L)$: $L^{\circ \circ} \to F(L^v)$ defined in the following way.

$$a \, \varphi \, (L) \, = \, \{ \, x \, \, \varepsilon \, \, L \, : \, x \, \, \geq \, x^{\circ} \} \, = \, [a^{\circ}) \, \, \bigcap \, \, L^{\mathsf{v}} \, , \, a \, \, \varepsilon \, \, L^{\circ \circ}$$

is a polarization, that is ϕ (L) is a (0,1) - homomorphism such that a ϕ (L) = L^v for every a ε L^{oov} and a ϕ (L) is a principal filter of L^v for every a ε L oon. The triple [Loo, L^v, ϕ (L)], which we call briefly the triple associated with L, uniquely determines the algebra L.

A K_2 - triple (triple) is (K, D, ϕ), where

- (i) $K = (K; v, \wedge, ^{\circ}, 0, 1)$ is a Kleene algebra,
- (ii) D is a distributive lattice with 1 and
- (iii) $\phi: K \to F(D)$ is a polarization.

A K_2 - triple constructs an MS - algebra from K_2 (See [1] and [5] such that $L^{\circ\circ}$ is isomorphic with K, L^v is isomorphic with D and the diagram .

is commutative. (ψ , χ are isomorphisms of L°° and K and of L^V and D, respectively and F (χ) stands for the isomorphism of F (L^V) and F (D) induced by χ).

The constructing MS-algebra L is described by

L = {
$$(a, a^{\circ} \phi \cup [x)), a \in K, x \gamma \in a^{\circ} \phi } \subset K \times F_d(D)$$

where γ is a modal operator on D with

$$\text{Im}\,\gamma = \left\{ \; z \; \epsilon \; D : [z) \; = \; a \; \varphi \; \; \text{for some a} \; \epsilon \; \; K^{\wedge} \right\}.$$

Let $(a, a^{\circ} \cup [x])$, $(b, b^{\circ} \phi \cup [y])$ ε L. Then we have

$$(10) (a, a \circ \phi \cup [x)) \wedge (b, b \circ \phi \cup [y))$$

$$= (a \wedge b, (a \wedge b) \circ \phi \cup [x \wedge y)),$$

(11)
$$(a, a^{\circ} \phi \cup [x)) \vee (b, b^{\circ} \phi \cup [y))$$

= $(a \vee b, (a \vee b)^{\circ} \phi \cup [t)), t \in D,$

(12)
$$(a, a^{\circ} \phi \ U \ [x]) \le (b, b^{\circ} \phi \ U \ [y])$$
 if and only if $a \le b$ and $a^{\circ} \phi \ U \ [x] \supseteq b^{\circ} \phi \ U \ [y]$,

(13)
$$(0,D) \le (a, a^{\circ} \phi \ U \ [x]) \le (1,[1])$$
 and

(14)
$$(a, a^{\circ} \phi \cup (x))^{\circ} = (a^{\circ}, a \phi).$$

MAIN RESULTS

I. Homomorphisms Of Ms-algebras From K_2

Let L, L₁ ϵ K₂ and h be a homomorphism of L into L₁, that h is a lattice homomorphism which preserves 0, 1,°.

Definition 1

Let (K, D, ϕ) and (K_1, D_1, ϕ_1) be K_2 - triples (triples). A homomorphism of the triple (K, D, ϕ) into (K_1, D_1, ϕ_1) is a pair (f, g), where f is a homomorphism of K into K_1 , g is a homomorphism of D into D_1 such that for every a ε k:

(15)
$$d_a g = d_{af}$$

(16)
$$a \phi g \subseteq a f \phi_1$$

holds.

Lemma 1

Let a , b ϵ K and x, y, t ϵ D. Let $\gamma,$ γ_1 be modal operators on D and D $_1$, respectively. Then

- (i) $a \phi \bigcap [y] = [t]$ and $y \gamma \epsilon a \phi$ implies $a f \phi_1 \bigcap [yg] = [tg]$ and $yg \gamma_1 \epsilon a f \phi_1$,
- (ii) $(a^{\circ} \phi U[x]) \cap (b^{\circ} \phi U[y]) = (a \lor b)^{\circ} \phi U[t]$ and $t\gamma \varepsilon (a \lor b)^{\circ} \phi$ implies $((af)^{\circ} \phi_1 U[xg]) \cap ((bf)^{\circ} \phi_1 U[yg])$ $= (a \lor b)^{\circ} f \phi_1 U[tg]$ and $tg \gamma_1 \varepsilon (a \lor b)^{\circ} f \phi_1$.

Proof

- (i) Let $a \phi \cap [y] = [t]$, then $t = x_1 \vee y$, $x_1 \in a \phi$ and $x_1 g \in a \phi g \subseteq a f \phi_1$.

 If $t_1 \in a f \phi_1 \cap [yg]$, then $t_1 = x_1 g \vee yg$ $= (x_1 \vee y) g = tg \text{ and } a f \phi_1 \cap [yg) \subseteq [tg].$ Also, $a f \phi_1 \cap [yg] \supseteq a \phi g \cap yg$) $= (a \phi \cap [y)) g = [t] g = [tg] \text{ and } y \gamma \in a \phi$ implies $yg \gamma_1 \in a f \phi_1$,
- (ii) $((af)^{\circ}\phi_{1} \ U \ [xg)) \ \cap \ ((bf)^{\circ}\phi_{1} \ U \ [yg))$ $= ((af)^{\circ}\phi_{1} \ \cap \ ((bf)^{\circ}\phi_{1} \ U \ [yg))) \ U \ ([xg) \ \cap \ ((bf)^{\circ}\phi_{1} \ \cap \ (bf)^{\circ}\phi_{1}) \ U \ ((af)^{\circ}\phi_{1} \ \cap \ [yg)) \ U$ $= ((af)^{\circ}\phi_{1} \ \cap \ (bf)^{\circ}\phi_{1}) \ U \ ([xg) \ \cap \ [yg))$ $= (av b)^{\circ} f \phi_{1} \ U \ [tg).$

and

$$\begin{aligned} & ((af)^{\circ} \phi_{1} \bigcap [yg)) \ U \ (([xg) \bigcap (bf)^{\circ} \phi_{1}) \ U [x \vee y) g) \\ & = [t_{1}g) \ U \ [t_{2}g) \ U \ [(x \vee y) g] \\ & = [(t_{1} \wedge t_{2} \wedge (x \vee y) g) = [tg), \end{aligned}$$

where

$$(af)^{\circ} \phi_{1} \bigcap [yg] = [t_{1}g) \text{ and } (bf)^{\circ} \phi_{1} \bigcap [xg] = [t_{2}g)$$
 by (i) and $t = t_{1} \land t_{2} \land (x \lor y) . \bigcap$ Now, since $t \gamma \varepsilon$ (a $\lor b$) $^{\circ} \phi$, $t \gamma g \varepsilon$ (a $\lor b$) $^{\circ} \phi g$ \subseteq (a $\lor b$) $^{\circ} f \phi_{1}$ and $(tg) Y_{1} = t \gamma g \varepsilon$ (a $\lor b$) $^{\circ} f \phi_{1}$

Theorem 1

Let L and L_1 be MS-algebras from K_2 , (K, D, ϕ) and (K_1, D_1, ϕ_1) be the associated triples, respectively. Let h be a homomorphism of L into L_1 and h_K , h_D the restrictions of h to K and D, respectively. Then (h_K, h_D) is a homomorphism of the triples. Conversely, every homomorphism (f, g) of triples uniquely determines a homomorphism h of L into L_1 with $h_K = f$, $h_D = g$ by the following rule:

 $xh = x^{\circ} f \land (x \lor x^{\circ}) g$ for all $x \in L$. (In other words, homomorphisms of MS-algebras from K_2 are the same as homomorphisms of triples).

Proof

To prove the first statement we have to verify (15) and (16) with $g = h_D$ and $f = h_K$. Evidently, $d_{ah} = ah \ v (ah)^\circ = (a \ v \ a^\circ) \ h = d_a \ h$, $a \phi h = \{ xh : x \ \epsilon \ a \phi \} = \{ xh : x \ \epsilon \ [a^\circ) \ \bigcap \ D \}$ $\subseteq \{ y : y \ \epsilon \ [(ah)^\circ) \ \bigcap \ D_1 \} = ah \ \phi_1.$

Conversely, let (15) and (16) hold. We represent the elements of L and L₁ as in Construction Theorem that is L = { (a, a° ϕ U [x)): a ϵ K, x ϵ D, x γ e a° ϕ }, where γ is a modal operator on D with Im γ = {z ϵ D: [z) = a ϕ for some a ϵ K^} and L₁ = { (b, b° ϕ ₁ U [y)): b ϵ K₁, y ϵ D₁, y γ ₁ ϵ b° ϕ ₁}, where γ ₁ is a modal operator on D₁ with Im γ ₁ = {z ϵ D₁ : [z) = a ϕ ₁ for some a ϵ K^\cap }. Then the definition of h reads:

(a, $a \circ \phi \cup [x)$)h = (af, (af)° $\phi_1 \cup [xg)$), $xg \gamma_1 \varepsilon$ (af)° ϕ_1 . We show that h is well defined. Let $(a, a \circ \phi \cup [x)) = (b, b \circ \phi \cup [y)).$ Then a = b and $a \circ \phi \cup [x) = b \circ \phi \cup [y)$. Hence, $x \ge x_1 \wedge y$ and $y \ge y_1 \wedge x$ for some $x_1, y_1 \in a^{\circ} \phi$. Since g is a homomorphism and (16) holds, then we have $xg \ge x_1 g \wedge yg$ and $yg \ge y_1 g \wedge xg$ with $x_1 g$, $y_1 g \in (af)^{\circ} \phi_1$. So we obtain $(af)^{\circ} \phi_1 \cup [xg) = (af)^{\circ} \phi_1 \cup [yg)$.

Thus, (a, $a^{\circ} \phi \cup [x]$) $h = (b, b^{\circ} \phi \cup [y]) h$. Therefore, h is a map of L into L_1 . Obviously, $h_K = f$ and $h_D = g$. To prove that h is a homomrphism, we have to verify the following three formulae:

(17)
$$((a,a^{\circ} \phi \ U \ [x)) \land (b,b^{\circ} \phi \ U \ [y)))h$$

= $(a,a^{\circ} \phi \ U \ [x)) h \land (b,b^{\circ} \phi \ U \ [y))h$;
(18) $((a,a^{\circ} \phi \ U \ [x)) \lor (b,b^{\circ} \phi \ U \ [y)))h$
= $(a,a^{\circ} \phi \ U \ [x)) h \lor (b,b^{\circ} \phi \ U \ [y)) h$;
(19) $(a,a^{\circ} \phi \ U \ [x))^{\circ}h = ((a,a^{\circ} \phi \ U \ [x))h^{\circ}.$
(17) $((a,a^{\circ} \phi \ U \ [x)) \land (b,b^{\circ} \phi \ U \ [y)))h$
= $(a \land b, (a \land b)^{\circ} \phi \ U \ [x \land y)) h$
= $((a \land b) f, ((a \land b) f)^{\circ} \phi_1 \ U \ [(x \land y)g)))$
= $(af, (af)^{\circ} \phi_1 \ U \ [xg)) \land (bf, (bf)^{\circ} \phi_1 \ U \ [yg))$

(18)
$$((a, a^{\circ} \phi \ U \ [x)) \ v \ (b, b^{\circ} \phi \ U \ [y)))h$$

= $(a \ v \ b, (a \ v \ b)^{\circ} \phi \ U \ [t \])h$

= $((a \ v \ b) f, ((a \ v \ b) f)^{\circ} \phi_1 \ U \ [tg])$

= $((a \ v \ b) f, ((a f)^{\circ} \phi_1 \ U \ [xg])$
 $\bigcap ((b f)^{\circ} \phi_1 \ U \ [yg])$

by lemma 1 (ii)

= $(af, (af)^{\circ} \phi_1 \ U \ [xg]) \ v \ (bf, (bf)^{\circ} \phi_1 \ U \ [yg])$

= $(a, a^{\circ} \phi \ U \ [x])h \ v \ (b, b^{\circ} \phi \ U \ [y])h$.

= $(a,a^{\circ} \phi \ U \ [x))h \wedge (b,b^{\circ} \phi \ U \ [y))h$

(19)
$$(a,a^{\circ} \phi \ U \ [x))^{\circ}h = (a^{\circ},a \phi)h = (a^{\circ}f,af \phi_1)$$

$$= (af,(af)^{\circ} \phi_1 \ U \ [xg))^{\circ}$$

$$= ((a,a^{\circ}\phi \ U \ [x))h)^{\circ}.$$

Thus, h is a homomrphism of L into L_1 . It is easy to see the uniqueness of h with $h_K = f$ and $h_D = g$.

II. Subalgebras of MS - Algebras from K₂

According to the characterization of MS-algebras in K_2 by means of the triple (K, D, ϕ), we characterize the subalgebras and solve the "Fill-in" problem for their associated triples.

Theorem 2

Let L_1 be a subalgebra of an MS-algebra L from K_2 , then $L^{\circ\circ}_1 = L_1 \cap L^{\circ\circ}$ is a subalgebra of $L^{\circ\circ}$ and $L_1^{\vee} = L_1 \cap L^{\vee}$ is a sublattice of L^{\vee} containing 1. The triple associated with L_1 is $(L_1^{\circ\circ}, L_1^{\vee}, \phi_1)$, where ϕ_1 is given by $a\phi_1 = a\phi \cap L_1^{\vee}$, for a $\varepsilon L_1^{\circ\circ}$.

Proof

Let $x,y \in L_1^{\circ\circ}$, clearly $x \vee y$, $x \wedge y$ are elements in $L_1^{\circ\circ}$, $L_1^{\circ\circ}$ is a sublattice of $L^{\circ\circ}$. Since L_1 is bounded and the bounds 0,1 are squelette elements, then

0,1
$$\epsilon$$
 L₁°° and 1° = 0
also (x v y)° = x° \wedge y°
and x \wedge x° \leq y v y° for every x,y ϵ L₁°°.
Thus L₁°° is a subalgebra of L°°.

Since L^{v} is a sublattice of L containing 1, then $L_{1}^{v} = L_{1} \cap L^{v}$ is a sublattice of L^{v} containing 1.

Now, we define $\phi_1: L_1^{\circ \circ} \to F(L_1^{\mathsf{v}})$ by $a\phi_1 = a\phi$ $\bigcap L_1^{\mathsf{v}}$, $a \in L_1^{\circ \circ}$, we show that ϕ_1 is a polarization $0\phi_1 = 0\phi \bigcap L_1^{\mathsf{v}} = [1)$, $1\phi_1 = 1\phi \bigcap L_1^{\mathsf{v}} = L_1^{\mathsf{v}}$ and $(a \vee b) \phi_1 = (a \vee b) \phi \bigcap L_1^{\mathsf{v}} = (a\phi \bigcap L_1^{\mathsf{v}}) \bigcup (b\phi \bigcap L_1^{\mathsf{v}}) = a\phi_1 \bigcup b\phi_1$, $(a \wedge b) \phi_1 = (a \wedge b) \phi \bigcap L_1^{\mathsf{v}} = (a\phi \bigcap L_1^{\mathsf{v}}) \bigcap L_1^{\mathsf{v}} = a\phi_1 \bigcap b\phi_1$, $(a \wedge b) \phi_1 = (a \wedge b) \phi \bigcap L_1^{\mathsf{v}} = (a\phi \bigcap L_1^{\mathsf{v}}) \bigcap (b\phi \bigcap L_1^{\mathsf{v}}) \cap (b\phi \bigcap L_1^{\mathsf{v}}) \cap (b\phi \bigcap L_1^{\mathsf{v}}) \cap (b\phi \bigcap L_1^{\mathsf{v}}) \cap (b\phi \bigcap L_1^{\mathsf{v}})$

which means that ϕ_1 is a $\{0,1\}$ - homomorphism of $L_1^{\circ\circ}$ into $F(L_1^{\circ})$.

For all $a \in L_1^{\circ \circ \vee}$, $a = a_1 \vee a_1^{\circ}$, $a_1 \in L_1^{\circ \circ}$ we have $a\phi_1 = (a_1 \vee a_1^{\circ}) \phi_1 = (a_1 \vee a_1^{\circ}) \phi \cap L_1^{\vee}$ $= [d_{a1}) \cap L_1^{\vee} = L_1^{\vee} \quad (\phi \text{ is a polarization})$ For all $a \in L_1^{\circ \circ \wedge}$, $a \phi_1$ is a principal filter of $F(L_1^{\vee})$.
Then $(L_1^{\circ \circ}, L_1^{\vee}, \phi_1)$ is the K_2 -triple associated with L_1 .

Theorem 3

Let L ε K₂, L₁°° be a subalgebra of L°°, L₁^V a sublattice of L^V containing 1. We can fill - in (L₁°°, L₁^V, ?) such that it will become the triple associated with a subalgebra of L iff

- (1) $a\phi_1 \cup a^{\circ}\phi_1 = L_1^{\vee}$ for $a \in L_1^{\circ}$
- (2) a \vee a° ε L_1 ° for a ε L_1 °°.

Proof

If $(L_1^{\circ\circ}, L_1^{\vee}, \phi_1)$ is the triple associated with a subalgebra L_1 of L, then $a\phi_1 = a\phi_L \cap L_1^{\vee}$. Hence $(a\phi_1 \cup a^{\circ}\phi_1) = (a\phi \cap L_1^{\vee}) \cup (a^{\circ}\phi \cap L_1^{\vee})$ $= (a\phi \cup a^{\circ}\phi) \cap L_1^{\vee}$ $= L^{\vee} \cap L_1^{\vee} = L_1^{\vee}.$

Now, let a ε L₁°°, then a v a° ε L₁ \bigcap L^v = L₁^v. Conversely, assume (1) and (2). Let K = L°°, D = L^v and ϕ = ϕ (L). Represent the elements of L as in the Construction Theorem, that is,

L = { $(a, a^{\circ}\phi \ U \ [x]) : a \ \epsilon \ K, x \ \epsilon \ D, x \gamma \epsilon \ a^{\circ}\phi$ and γ is a modal operator on D }

 $L_1 = \{ (a, a^{\circ} \phi \ U \ [x]) : a \ \epsilon \ K_1, \ x \ \epsilon \ D_1, x \ \gamma_1 \ \epsilon$ $a^{\circ} \phi \ \text{and} \ \gamma_1 \text{ is the restriction of } \gamma \text{ to } D_1 \}.$

We show that L_1 is a subalgebra of L. It is clear that 0_L = (0,D) and 1_L = (1,[1)) belong to L_1 and if $(a, a^{\circ} \phi \ U \ [x]) \ \epsilon \ L_1$, $((a, a^{\circ} \phi \ U \ [x]))^{\circ} = (a^{\circ}, a \phi) \ \epsilon \ L_1$.

Now, let $(a, a^{\circ} \cup [x])$, $(b, b^{\circ} \cup [y])$ be elements of L₁. We have $(a, a^{\circ} \downarrow U [x]) \land (b, b^{\circ} \downarrow U [y])$ = $a \wedge b$, $(a \wedge b)^{\circ} \phi \cup (x \wedge y) \in L_1$ and $(x \wedge y) \gamma_1 = (x \wedge y) \gamma \epsilon (a \wedge b)^{\circ} \phi$ $(a, a^{\circ} \phi \cup [x)) \lor (b, b^{\circ} \phi \cup [y)) = (a \lor b, (a^{\circ} \phi))$ U(x) $\cap (b^{\circ}\phi U(y))$ = $(a \lor b, (a \lor b)^{\circ} \phi U [t]) \varepsilon L_1$ where $(a^{\circ} \downarrow U[x]) \cap (b^{\circ} \downarrow U[y]) = ((a^{\circ} \downarrow U[x])$ $\bigcap b^{\circ}\phi \cup \bigcup ((a^{\circ}\phi \cup [x)) \cap [y))$ = $(a^{\circ}\phi \cap b^{\circ}\phi) \cup ([x) \cap b^{\circ}\phi) \cup (a^{\circ}\phi \cap [y)) \cup$ [xvy)= $(a \lor b)^{\circ} \phi U [\iota_1) U [\iota_2) U [x \lor y]$ = $(a \lor b)^{\circ} \phi \cup [t_1 \land t_2 \land (x \lor y))$ = $(a \lor b)^{\circ} \phi U [t], t \varepsilon D_1, t \gamma_1 \varepsilon (a \lor b)^{\circ} \phi$. Since $b^{\circ} \phi \cap [x] = [t_1] = [x \lor x_1], x_1 \in b^{\circ} \phi$ and $a^{\circ} \phi \cap [y] = [t_2] = [y \vee y_1], y_1 \in a^{\circ} \phi \text{ (by Lemma)}$ 1,[1]), then t_1 , $t_2 \in D_1$ and so $t = t_1 \wedge t_2 \wedge (x \vee y) \in D_1$. Also, we have. $(a, a^{\circ} \phi \cup [x)) \leq (a, a^{\circ} \phi \cup [x))^{\circ \circ} = (a, a^{\circ} \phi),$ $((a, a^{\circ} \downarrow U [x)) \land (b, b^{\circ} \downarrow U [y)))^{\circ}$ = $(a \wedge b, (a \wedge b)^{\circ} \cup (x \wedge y)^{\circ}$ $= ((a \wedge b)^{\circ}, (a \wedge b)\phi)$ $= (a^{\circ} \lor b^{\circ}, a \phi \land b \phi)$ $= (a^{\circ}, a \phi) \vee (b^{\circ}, b\phi)$

and

$$(a, a^{\circ} \phi \ U \ [x)) \land (a, a^{\circ} \phi \ U \ [x))^{\circ}$$

$$= (a, a^{\circ} \phi \ U \ [x)) \land (a^{\circ}, a \phi)$$

$$= (a \land a^{\circ}, (a^{\circ} \lor a) \phi \ U \ [x))$$

$$= (a, a^{\circ} \phi) \land (a^{\circ}, a \phi) (Since (a^{\circ} \lor a) \phi = D)$$

$$= (a, a^{\circ} \phi \ U \ [x))^{\circ \circ} \land (a, a^{\circ} \phi \ U \ [x))^{\circ}.$$

= $(a, a^{\circ}\phi \cup [x))^{\circ} \vee (b, b^{\circ}\phi \cup [y))^{\circ}$.

Similarly,

 $(x \wedge x^{\circ}) \vee (y \vee y^{\circ}) = y \vee y^{\circ} \forall x, y \in L_1$. Thus L_1 is a subalgebra of L. We show that $L_1^{\circ \circ} \simeq K_1$ and $L_1^{\vee} \simeq D_1$.

$$L_1^{\circ \circ} = \{ a, a^{\circ} \phi \} : a \in K_1 \}$$

 $L_1^{\vee} = \{ (a, a^{\circ} \phi \cup [x]) : a \in K_1^{\vee} \}$

Define $\psi: K_1 \to L_1^{\circ \circ}$ by a $\psi = (a, a^{\circ} \varphi)$, a ϵ K and $\chi: D_1 \to L_1^{\vee}$ by $x \chi = (d, d^{\circ} \varphi)$ [x), d ϵK_1^{\vee} .

By easy computations, we can prove that ψ and χ are isomorphisms. Hence we can fill-in $(K_1, D_1, ?)$ by $\phi_1 = \phi_{L_1} = \phi_{L} \cap D_1$ such that it will become the triple associated with a subalgebra of L.

III. Fill-in Theorems (Fill-in problems)

Fill - in problems are statements containing the answer to the question : for a given kleene algebra K, a distributive lattice D with 1, when does there exist a ϕ such that (K, D, ϕ) is a K_2 - triple ?

Theorem 4

(K, D, ?) can always be filled in to make it a K_2 -triple if K is a Kleene algebra and D a distributive lattice with 1, provided |K| > 1. If |K| = 1 then |D| = 1.

Proof

Take an arbitrary prime ideal P of K. Define

$$\phi : K \to F(D)$$

$$x\phi = D \quad \text{for} \quad x \notin P$$

$$x\phi = [1) \quad \text{for} \quad x \in P.$$

It is easy to check that ϕ is a polarization.

Consider the fill-in problem given by the following diagram

$$(K, D, \phi)$$

$$f \downarrow g \downarrow$$

$$(K_1, D_1,?)$$

where f and g are onto homomorphisms. We can formulate

Theorem 5

Let (K, D, f) be a given K_2 -triple, $(K_1, D_1, ?)$ a defective triple and a pair of onto homomorphisms $f: K \to K_1$ and $g: D \to D_1$. There exists a ϕ_1 making (K_1, D_1, ϕ_1) a K_2 -triple, and (f, g) a homomorphism of (K, D, ϕ) and (K_1, D_1, ϕ_1) iff $(a\phi)$ g = [1) for all a ε of f.

Proof

Assume that (K, D, ϕ) and (K₁, D₁, ϕ ₁) be K₂ -triples with a pair of onto homomorphisms f: K \rightarrow K₁ and g: D \rightarrow D₁, (f, g) is a homomorphism of the two triples.

Then $a \phi g \subseteq a f \phi_1$. Let $a \in Of^{-1}$ then af = 0 and $(a\phi) g \subseteq (af) \phi_1 = 0 \phi_1 = [1)$, but [1) is the smallest element of $F(D_1)$, then $(a\phi) g = [1) \ \forall \ a \in Of^{-1}$. Conversely, let $(a\phi) g = [1) \ \forall \ a \in Of^{-1}$. Define $\phi_1 : K_1 \to F(D_1)$ as $b \phi_1 = a\phi g$, where b = af, $a \in K$, that is $(af) \phi_1 = (a\phi)g$. We have to show that ϕ_1 is a well defined map. Let af = bf, a, $b \in k$, then $(af)^\circ = (bf)^\circ$,

$$a\phi g = \{xg : x \in a\phi\} = \{xg : x \in [a^\circ) \cap D\}$$

$$= \{y : y = xg \in [(af)^\circ) \cap D_1\}$$

$$= \{y : y \in [(bf)^\circ) \cap D_1\}$$

$$= \{xg : x \in [b^\circ) \cap D\} = b\phi g.$$

and ϕ_1 is a well defined map.

Since f is a Kleene homomorphism of K onto K_1 , then $0 \phi_1 = (0f) \phi_1 = 0 \phi g = \{1\}$ which is the zero of $F(D_1)$. Also, $1 \phi_1 = (1f) \phi_1$ is a $\{0,1\}$ - map. Now, let $x, y \in K_1$, then af = x, bf = y for some a, b $\in K$.

$$(x \lor y) \phi_1 = (a f \lor b f) \phi_1 = (a \lor b) f \phi_1$$

= $(a \lor b) \phi g$
= $(a \phi U b \phi) g$

=
$$a \phi g U b \phi g$$

= $(af) \phi_1 U (bf) \phi_1$
= $x \phi_1 U y \phi_1$

and

$$(x \wedge y) \phi_1 = (a f \wedge b f) \phi_1 = (a f \wedge b f) \phi_1$$

$$= (a \wedge b) \phi g$$

$$= a \phi g \bigcap b \phi g$$

$$= (a f) \phi_1 \bigcap (b f) \phi_1$$

$$= x \phi_1 \bigcap y \phi_1,$$

then ϕ_1 is a lattice homomorphism.

Also, for all
$$x \in K_1^{\ v}$$
, $x = a f$, then $x = x_1^{\ v} \times x_1^{\circ}$, $x_1 = a_1 f$

$$x\phi_1 = (x_1 \lor x_1^\circ) \phi_1 = (a_1 f \lor (a_1 f)^\circ) \phi_1$$

= $(a_1 \lor a_1^\circ) f \phi_1$
= $(a_1 \lor a_1^\circ) \phi g$
= $Dg = D_1$

and for all
$$x \in K_1^{\wedge}$$
, $x = x_1^{\wedge} x_1^{\circ}$, $x_1 = a_1 f$
 $x \phi_1 = (x_1 \wedge x_1^{\circ}) \phi_1 = (a_1 f \wedge (a_1 f)^{\circ}) \phi_1$
 $= (a_1 \wedge a_1^{\circ}) f \phi_1$
 $= (a_1 \wedge a_1^{\circ}) \phi g \text{ (since } a_1 \wedge a_1^{\circ} \in K^{\wedge})$
 $= [d) g = [dg), d \in D$

and $x\phi_1$ is a principal filter in F (D₁), for all $x \in K_1^{\wedge}$. Hence ϕ_1 is a polarization and (K₁, D₁, ϕ_1) is a K₂-triple, we have to show that (f, g) is a triple homomorphism. By definition

$$a \phi g = a f \phi_1$$
 and

$$[d_a g) = [d_a)g = [a \lor a^\circ)g = ([a \lor a^\circ) \cap D)g$$

$$= [(a \lor a^\circ)f) \cap Dg$$

$$= [af \lor (af)^\circ) \cap D_1$$

$$= [af \lor (af)^\circ)$$

$$= [d_a f)$$

completing the required proof.

REFERENCES

- [1] Blyth, T. and Varlet, J. 1980. Sur la construction de certaines MS-algebres, Portugaliae Math. 39, 489-496.
- [2] Blyth, T. and Varlet, J. 1983. On a common abstraction of de Morgan algebras and stone algebras, Proc. Roy. Soc. Edinburgh, 94 A, 301 308.
- [3] Blyth, T. and Varlet, J. 1983. Subvarieties of the class of MS-algebras, Proc. Roy. Sci. Edinburgh, 95 A, 157 - 169.
- [4] Blyth, T. and Varlet, J. 1983. Corrigendum Sur la construction de certaines MS-algebres, Portugaliae Math. 42, 469 - 471.
- [5] Katrinak, T. and Mikula, K. 1988. On a construction of MS-algebras, Portugaliae Math, 45, 2, 157-163.
- [6] Katrinak, T. and Mederly, P. 1974. Construction of modular p-algebras, Algebra Univ. 4, 3, 301 -315.
- [7] Katrinak, T. 1973. A new proof of the construction theorem for Stone algebras, Proc. Amer. Math. Soc., 40, 75-78.