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Abstract

Fractional initial-value problems (fIVPs) arise from many fields of physics and play a very important role in various branches of
science and engineering. Finding accurate and efficient methods for solving fIVPs has become an active research undertaking. In
this paper, both linear and nonlinear fIVPs are considered. Exact and/or approximate analytical solutions of the fIVPs are obtained
by the analytic homotopy-perturbation method (HPM). The results of applying this procedure to the studied cases show the high
accuracy, simplicity and efficiency of the approach.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Fractional IVPs; Homotopy-perturbation method; Caputo’s fractional derivative

1. Introduction

In recent years, fractional differential equations (fDEs) have successfully modelled many physical and engineering
phenomena such as seismic analysis, viscous damping, viscoelastic materials and polymer physics [25,22,13]. One
very important class of fDEs is the fractional initial-value problems (fIVPs) written in the form:

D�y(t) = f (t, y(t)), y(k)(0) = y
(k)
0 , k = 0, 1, . . . , n − 1, (1)

where f is an arbitrary function, D� denotes the fractional differential derivative in the sense of Caputo, y(k)(t) is the
kth derivative of y and y

(k)
0 are the specified initial conditions.

Finding accurate and efficient methods for solving (1) has become an active research undertaking. Several numerical
methods for solving (1) have been presented in [2–5,15,22]. Analytical methods for (1) include the Adomian decompo-
sition method (ADM) [23,24,18,17,1,14] and the variational iteration method (VIM) [18,17,20,7]. One disadvantage
of these analytical methods is the analytical/symbolic evaluation of the integrations which can be complex even for a
computer algebra package.

Another approach that can be applied for solving (1) is to employ the homotopy-perturbation method (HPM), cf.
[8,9]. The HPM, in contrast to the traditional perturbation methods, does not require a small parameter in the system
and the approximations obtained by the proposed method are uniformly valid not only for small parameters, but also
for very large parameters. Odibat and Momani [19] applied HPM to solve quadratic Riccati differential equation of
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fractional order. In [16], Momani and Odibat solved nonlinear fractional partial differential equations by HPM. Wang
in [27,26] employed the HPM for solving the classical fractional KdV and KdV-Burgers equations, respectively. Zhang
and He [28] obtained approximate solution to the nonlinear Poisson–Boltzmann equation by HPM incorporating the
Taylor series expansion.

In this paper, we will apply the homotopy-perturbation method (HPM) to solve the linear and nonlinear fIVPs of the
form (1). The modified HPM (mHPM) [21] and the Taylor series-HPM approach [28] shall be adopted.

2. Basic definitions

In this section, we give some definitions and properties of the fractional calculus [22].

Definition 1. A real function h(t), t > 0, is said to be in the space C�, � ∈ R, if there exists a real number p > �, such
that h(t) = tph1(t), where h1(t) ∈ C(0, ∞), and it is said to be in the space Cn

� if and only if h(n) ∈ C�, n ∈ N .

Definition 2. The Riemann–Liouville fractional integral operator (J �) of order ��0, of a function h ∈ C�, �� − 1,
is defined as

J �h(t) = 1

�(�)

∫ t

0
(t − �)�−1h(�) d� (� > 0),

J 0h(t) = h(t), (2)

where �(z) is the well-known Gamma function.

Some of the properties of the operator J �, which we will need here, are as follows:
For h ∈ C�, �� − 1, �, ��0 and �� − 1:

(1) J �J �h(t) = J �+�h(t),
(2) J �J �h(t) = J �J �h(t),
(3) J �t� = (�(� + 1)/�(� + � + 1))t�+�.

Definition 3. The fractional derivative (D�) of h(t) in the Caputo’s sense is defined as

D�h(t) = 1

�(n − �)

∫ t

0
(t − �)n−�−1h(n)(�) d�, (3)

for n − 1 < ��n, n ∈ N, t > 0, h ∈ Cn−1.

The following are two basic properties of the Caputo’s fractional derivative [6]:

(1) Let h ∈ Cn−1, n ∈ N . Then D�h, 0���n is well defined and D�h ∈ C−1.
(2) Let n − 1 < ��n, n ∈ N and h ∈ Cn

�, �� − 1. Then

(J �D�)h(t) = h(t) −
n−1∑
k=0

h(k)(0+)
tk

k! . (4)

3. The homotopy-perturbation method (HPM)

The HPM was first proposed by Chinese mathematician He [8,9]. The essential idea of this method is to introduce a
homotopy parameter, say p, which takes the values from 0 to 1. When p = 0, the system of equations usually reduces
to a sufficiently simplified form, which normally admits a rather simple solution. As p gradually increases to 1, the
system goes through a sequence of ‘deformation’, the solution of each of which is ‘close’ to that at the previous stage of
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‘deformation’. Eventually at p=1, the system takes the original form of the equation and the final stage of ‘deformation’
gives the desired solution.

The fIVPs (1) is first written in the operator form:

D�y(t) + Ly(t) + Ny(t) = g(t), (5)

y(k)(0) = ck, k = 0, 1, . . . , n − 1, (6)

where ck is the initial conditions, L is the linear operator which might include other fractional derivative operators
D�(� < �), and N is the nonlinear operator in the space Cn−1, while the function g, the source function, is assumed to
be in C−1 if � is an integer, and in C1−1 if � is not an integer. The solution y(t) is to be determined in Cn−1.

We shall next present the solution approaches based on the standard HPM [8,9] and the modified HPM (mHPM) of
[21] separately.

3.1. Standard HPM

In view of HPM, we construct the following homotopy:

(1 − p)D�y + p[D�y + Ly(t) + Ny(t) − g(t)] = 0, (7)

or

D�y + p[Ly(t) + Ny(t) − g(t)] = 0, (8)

where p ∈ [0, 1] is an embedding parameter. If p = 0, Eqs. (7) and (8) become

D�y = 0, (9)

and when p = 1, both (7) and (8) turn out to be the original fDE (5).
Using the parameter p, we expand the solution in the following form:

y(t) = y0(t) + py1(t) + p2y2(t) + p3y3(t) + · · · . (10)

The convergence of the above series is discussed in [10] and the asymptotic behavior of the series is illustrated in
[11,12].

Setting p = 1 results in the solution of Eq. (5)

y(t) = y0(t) + y1(t) + y2(t) + y3(t) + · · · . (11)

For the nonlinear term Ny(t) in (5), let us set Ny(t) = h(y).
Substituting (10) in (8) and collecting the terms with the same powers of p, we obtain

p0 : D�y0 = 0, (12)

p1 : D�y1 = −Ly0(t) − h1(y0) + g(t), (13)

p2 : D�y2 = −Ly1(t) − h2(y0, y1), (14)

p3 : D�y3 = −Ly2(t) − h3(y0, y1, y2), (15)

and so on, where the functions h1, h2, h3, . . . , satisfy the following equation:

h(y0 + py1 + p2y2 + · · ·) = h1(y0) + ph2(y0, y1) + p2h3(y0, y1, y2) + · · · . (16)

Applying the operator J �, the inverse operator of D�, which is defined by (2) on both sides of the above linear equations,
with considering the initial conditions by using (4), the first few terms of the HPM solution can be given by

y0 =
n−1∑
k=0

y(k)(0)
tk

k! =
n−1∑
k=0

ck

tk

k! ,
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y1 = −J �[Ly0(t)] − J �[h1(y0)] + J �[g(t)],
y2 = −J �[Ly1(t)] − J �[h2(y0, y1)],
y3 = −J �[Ly2(t)] − J �[h3(y0, y1, y2)].

3.2. Modified HPM

In the standard HPM as described above, finding the fractional integrations can be complex. One way to avoid this
difficulty is to employ the mHPM of Odibat [21] by taking the Taylor series of the source term g(t), i.e.

g(t) =
∞∑

n=0

gn(t). (17)

Following Odibat [21], we construct the following homotopy:

(1 − p)D�y + p[D�y + Ly(t) + Ny(t)] =
∞∑

n=0

pngn(t), (18)

or

D�y + p [Ly(t) + Ny(t)] =
∞∑

n=0

pngn(t). (19)

If we set g1(t) = g(t), gn(t) = 0 for n = 0 or n�2, then the homotopy (18) or (19) reduces to the homotopy (7) or (8),
respectively.

The form of homotopy (19) allows us to obtain the individual terms y0, y1, . . . in (10). Substituting (10) in (19) and
collecting the terms with the same powers of p, we obtain

p0 : D�y0 = g0(t), (20)

p1 : D�y1 = g1(t) − Ly0(t) − h1(y0), (21)

p2 : D�y2 = g2(t) − Ly1(t) − h2(y0, y1), (22)

p3 : D�y3 = g3(t) − Ly2(t) − h3(y0, y1, y2), (23)

and so on, where the functions h1, h2, h3, . . . , satisfy (16). Again, by applying the operator J � on both sides of the
above linear equations, the first few terms of the HPM solution can be given by

y0 =
n−1∑
k=0

y(k)(0)
tk

k! + J �[g0(t)] =
n−1∑
k=0

ck

tk

k! + J �[g0(t)],

y1 = J �[g1(t)] − J �[Ly0(t)] − J �[h1(y0)],
y2 = J �[g2(t)] − J �[Ly1(t)] − J �[h2(y0, y1)],
y3 = J �[g3(t)] − J �[Ly2(t)] − J �[h3(y0, y1, y2)].

4. Test examples

In this section, we shall illustrate the applicability of HPM to linear and nonlinear fIVPs.
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4.1. Problem 1

First, we consider the following linear fIVP:

D�y = −y, 0 < ��2, (24)

y(0) = 1, y′(0) = 0. (25)

The second initial condition is for � > 1 only.
According to Eq. (7), we can construct the following homotopy:

D�y + p(y) = 0. (26)

Substituting (10) into (26), and collecting terms of the same power of p, yields the following linear equations:

p0 : D�y0 = 0, (27)

p1 : D�y1 = −y0, (28)

p2 : D�y2 = −y1, (29)

p3 : D�y3 = −y2, (30)

...

Applying the operator J �, the inverse operator of D�
t , on both sides of the linear equations (27)–(30) and using the

initial condition (25), we obtain

y0 = y(0) = 1,

y1 = −J �[y0] = − t�

�(� + 1)
,

y2 = −J �[y1] = −J �
[
− t�

�(� + 1)

]
= t2�

�(2� + 1)
,

y3 = −J �[y2] = −J �
[

t2�

�(2� + 1)

]
= − t3�

�(3� + 1)
,

...

Hence the solution is

y = y0 + y1 + y2 + y3 + · · · =
∞∑

k=0

(−t�)k

�(�k + 1)
, (31)

which is the exact solution [4].

4.2. Problem 2

Now consider the following nonlinear fIVP:

D�y = 40320

�(9 − �)
t8−� − 3

�(5 + �/2)

�(5 − �/2)
t4−�/2 + 9

4
� (� + 1) +

(
3

2
t�/2 − t4

)3

− y3/2, 0 < ��2, (32)

y(0) = 0, y′(0) = 0. (33)

The second initial condition is for � > 1 only.
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Following Zhang and He [28], the nonlinear term y3/2 in (32) is expanded using the Taylor series as follows:

y3/2 ≈ 1 + 3

2
(y − 1) + 3

8
(y − 1)2 = −1

8
+ 3

4
y + 3

8
y2. (34)

According to (19), we can construct the following homotopy:

D�y + p

[
−1

8
+ 3

4
y + 3

8
y2

]
=

∞∑
n=0

pngn(t), (35)

where we take gn(t) to be given by

g0(t) = 40320

�(9 − �)
t8−� − 3

�(5 + �/2)

�(5 − �/2)
t4−�/2 + 9

4
�(� + 1), (36)

g1(t) = (
3

2
t�/2 − t4)3, (37)

gn(t) = 0, n�2. (38)

Substituting (10) into (35) and equating the terms with the same power of p, we obtain

p0 : D�y0 = g0(t), (39)

p1 : D�y1 = g1(t) −
[
−1

8
+ 3

4
y0 − 3

8
y2

0

]
, (40)

p2 : D�y2 = −
[

3

4
y1 − 3

8
(2y0y1)

]
, (41)

p3 : D�y3 = −
[

3

4
y2 − 3

8
(y2

1 + 2y0y2)

]
, (42)

...

In (34) we have taken the first three terms of the Taylor expansion series of the nonlinear term y3/2 in order to show
that the computation of yn, n�2, depends heavily on y0 and y1, but if we use the whole terms of the Taylor expansion
series, i.e.

y3/2 = �(y) =
∞∑

k=0

�(k)(y)(y − 1)k , (43)

then the first two linear equations can be given by

p0 : D�y0 = g0(t),

p1 : D�y1 = g1(t) −
∞∑

k=0

�(k)(y0)(y0 − 1)k = g1(t) − y
3/2
0 .
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Applying the operator J �, which is the inverse operator of D�, and using (4), we obtain

y0 = y(0) + y′(0)t + J �[g0]
= J �

[
40320

�(9 − �)
t8−� − 3

�(5 + �/2)

�(5 − �/2)
t4−�/2 + 9

4
�(� + 1)

]

=
(

3

2
t�/2 − t4

)2

,

y1 = J �[g1] − J �[y3/2
0 ]

= J �
[
(
3

2
t�/2 − t4)3

]
− J �

[
(
3

2
t�/2 − t4)3

]
= 0.

According to (39)–(42), it is clear that ym = 0, m�2. Hence, the exact solution [4],

y =
(

3

2
t�/2 − t4

)2

, (44)

is reached.

4.3. Problem 3

Let us consider the following nonlinear fIVP:

D�y = y2 + 1, p − 1 < ��p, p ∈ N, 0 < t < 1, (45)

y(k)(0) = 0, k = 0, . . . , p − 1. (46)

The exact solution of this initial value problem for � = 1, the ODE case, is y = tan t .
Using Eq. (19) and setting g0(t) = 1 and gn(t) = 0, n�1, we obtain the following homotopy:

D�y − p(y2) = 1. (47)

Substituting (10) into (47) and equating the terms with the identical powers of p, we obtain the following linear
equations:

p0 : D�y0 = 1, (48)

p1 : D�y1 = y2
0 , (49)

p2 : D�y2 = 2y0y1, (50)

p3 : D�y3 = y2
1 + 2y0y2, (51)

p4 : D�y4 = 2y0y3 + 2y1y2, (52)

...

Applying the operator J � on both sides of (48)–(52) and using the initial conditions (46) we obtain y0, y1, . . . , y4. The
10-term approximate solution can be given by

	10 =
9∑

k=0

Ckt
(2k+1)�, (53)

where

C0 = 1

�(� + 1)
, C1 = �(2� + 1)

�(3� + 1)
C2

0 , C2 = �(4� + 1)

�(5� + 1)
(2C0C1) ,
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Table 1
Approximate solution of (45)–(46) for some values of � using 	10

t � = 0.5 � = 0.75 � = 1.0 � = 1.5 � = 2.5 � = 3.5

0.0 0.00000 0.00000 0.00000 0.00000 0.0000000 0.000000000
0.1 0.39198 0.19705 0.10033 0.02379 0.0009515 0.000027187
0.2 0.62411 0.34318 0.20271 0.06733 0.0053827 0.000307582
0.3 0.89704 0.48835 0.30934 0.12390 0.0148330 0.001271394
0.4 1.31180 0.64571 0.42279 0.19136 0.0304499 0.003479892
0.5 2.12064 0.82828 0.54630 0.26886 0.0531966 0.007598903
0.6 4.01314 1.05548 0.68414 0.35624 0.0839245 0.014384195
0.7 8.75972 1.36308 0.84229 0.45395 0.1234118 0.024671763
0.8 20.53092 1.82633 1.02964 0.56301 0.1723911 0.039370780
0.9 48.37395 2.61830 1.26014 0.68506 0.2315740 0.059458246
1.0 110.54022 4.15450 1.55724 0.82251 0.3016763 0.085974877

C3 = �(6� + 1)

�(7� + 1)
(2C0C2 + C2

1 ), C4 = �(8� + 1)

�(9� + 1)
(2C0C3 + 2C1C2),

C5 = �(10� + 1)

�(11� + 1)
(2C0C4 + 2C1C3 + C2

2 ),

C6 = �(12� + 1)

�(13� + 1)
(2C0C5 + 2C1C4 + 2C2C3) ,

C7 = �(14� + 1)

�(15� + 1)
(2C0C6 + 2C1C5 + 2C2C4 + C2

3 ),

C8 = �(16� + 1)

�(17� + 1)
(2C0C7 + 2C1C6 + 2C2C5 + 2C3C4) ,

C9 = �(18� + 1)

�(19� + 1)
(2C0C8 + 2C1C7 + 2C2C6 + 2C3C5 + C2

4 ).

Table 1 shows the 10-term approximate solutions for (45)–(46) for different values of �.

4.4. Problem 4

Finally, we consider the nonlinear fIVP:

D�y = 9

4
√

y + y, 1 < ��2, t �0, (54)

y(0) = 1, y′(0) = 2. (55)

The exact solution of the initial value problem (54)–(55) for � = 2, i.e. the ODE case, is

y = 9

4

[
3

2
exp(0.5t) + 1

6
exp(−0.5t) − 1

]2

. (56)

If we expand the nonlinear term
√

y in (54) using the Taylor series, we obtain

√
y ≈ 1 + 1

2
(y − 1) − 1

8
(y − 1)2 + 1

16
(y − 1)3. (57)

Hence, we can approximate (54) as follows:

D�y = 45

64
+ 199

64
y − 45

64
y2 + 9

64
y3. (58)
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In view of (8), we can construct the following homotopy:

D�y − p

(
45

64
+ 199

64
y − 45

64
y2 + 9

64
y3

)
= 0. (59)

Substituting (10) into (59) and equating the terms with the identical powers of p, yields the following linear equations:

p0 : D�y0 = 0, (60)

p1 : D�y1 = 45

64
+ 199

64
y0 − 45

64
y2

0 + 9

64
y3

0 , (61)

p2 : D�y2 = 199

64
y1 − 45

32
y0y1 + 27

64
y2

0y1, (62)

p3 : D�y3 = 199

64
y2 − 45

64
(2y0y2 + y2

1 ) + 27

64
(y0y

2
1 + y2

0y2), (63)

p4 : D�y4 = 199

64
y3 − 45

32
(y0y3 + y1y2) + 9

64
(6y0y1y2 + 3y2

0y3 + y3
1), (64)

...

Here we choose y0 to be the simplest term of the initial conditions (55), i.e. the first condition, and the remaining initial
conditions will be added to y1, [24]. Hence, applying the fractional integration operator J �, and according to (4), the
first four terms of the approximate solution can be given by

y0 = y(0) = 1,

y1 = y′(0)t + J �
[

45

64
+ 199

64
y0 − 45

64
y2

0 + 9

64
y3

0

]
= 2t + C1t

�,

y2 = J �
[

199

64
y1 − 45

32
y0y1 + 27

64
y2

0y1

]
= C2t

�+1 + C3t
2�,

y3 = J �
[

199

64
y2 − 45

64
(2y0y2 + y2

1 ) + 27

64
(y0y

2
1 + y2

0y2)

]

= C4t
�+2 + C5t

2�+1 + C6t
3�,

y4 = J �
[

199

64
y3 − 45

32
(y0y3 + y1y2) + 9

64
(6y0y1y2 + 3y2

0y3 + y3
1)

]

= C7t
�+3 + C8t

2�+2 + C9t
3�+1 + C10t

4�,

where

C1 = 13

4�(� + 1)
, C2 = 17

4�(� + 2)
, C3 = 221

32�(2� + 1)
,

C4 = −9

4�(� + 3)
, C5 = �(� + 2)

8�(2� + 2)
(17C2 − 9C1),

C6 = �(2� + 1)

32�(3� + 1)
(68C3 − 9C2

1 ), C7 = 27

4�(� + 4)
,

C8 = �(� + 3)

16�(2� + 3)
(34C4 − 18C2 + 27C1),

C9 = �(2� + 2)

32�(3� + 2)
(68C5 − 36C3 − 18C1C2 + 27C2

1 ),

C10 = �(3� + 1)

64�(4� + 1)
(136C6 − 36C1C3 + 9C3

1).

In Table 2 we present the 5-term approximate solution of (54)–(55). We note that the approximate solution obtained
by HPM is the same approximate solution obtained by ADM [24]. The accuracy of the HPM approximate solution is
remarkably good in view of the crude approximation taken in (57).
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Table 2
Approximate solution of (54)–(55) for some values of � using 	5

t � = 1.25 � = 1.5 � = 1.75 � = 2.0

0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 1.37720809 1.28245453 1.23780724 1.21697814
0.2 1.86543117 1.65028248 1.53420555 1.47098992
0.3 2.45171393 2.09444288 1.88844768 1.76704394
0.4 3.14134795 2.61939160 2.30514239 2.11071067
0.5 3.94282826 3.23340806 2.79109495 2.50817057
0.6 4.86628633 3.94743003 3.35490799 2.96626225
0.7 5.92309716 4.77490977 4.00703217 3.49253054
0.8 7.12576345 5.73195406 4.75997836 4.09527467
0.9 8.48788677 6.83756778 5.62861104 4.78359634
1.0 10.0241699 8.11394079 6.63049227 5.56744792

5. Conclusions

In this work, the HPM was applied to derive exact and approximate analytical solutions of both linear and nonlinear
fIVPs. The nonlinear terms involving radical powers were expanded by Taylor series. The reliability of HPM and the
reduction in computations give HPM a wider applicability. It was also demonstrated that HPM is more efficient than
the ADM.
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