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WEIGHTED ESTIMATES FOR ROUGH PARAMETRIC
MARCINKIEWICZ INTEGRALS

HussAIN MOHAMMED AL-QASSEM

ABSTRACT. We establish a weighted norm inequality for a class of rough
parametric Marcinkiewicz integral operators M. As an application of
this inequality, we obtain weighted LP mequahtles for a class of para-
metric Marcinkiewicz integral operators j\/lQ % and M5, Q.8 related to the
Littlewood-Paley g}-function and the area 1ntegral S, respectlvely

1. Introduction

Let R™ (n > 2) be the n-dimensional Euclidean space and S®~! be the unit
sphere in R" equipped with the normalized Lebesgue measure do = do(-). For
z € R™"\{0}, let 2’ = z/ |z|.

For a suitable C*! function ¥ on R.y, define the parametric Marcinkiewicz
integral operator Mg, y by

&) W%&f@)=<LMLQhJUAﬂ2%>Ua

where ) Q)
u
Foafta) =5 [ fla-u(uhu) 5,
8 i<t Jul
p=o0+ir (0,7 € R with 0 > 0), f € S(R"™), the space of Schwartz functions
and  is defined on 8™, 2 € LY(S"~') and satisfies the vanishing condition

@) /Sﬂ_l Q(a') do (z') = 0.

If W(¢) = ¢, we shall denote Mg, ¢ by Mg,

If p =1, it is known that M%z is the classical Marcinkiewicz integral operator
introduced by E. Stein in [14]. Stein showed that if Q is continuous and Q €
Lip_(S™™1) (0 < a < 1), then M}, is of type (p,p) (1 < p < 2) and of weak
type (1,1). Subsequently, Benedek, Calderén, and Panzone [1] proved that M}
is of type (p,p) for p € (1,00) if @ € C* (S"~1). Recently, Chen, Fan and Pan
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in [2] proved that My, is of type (p,p) for p € (3133,2 +2a)if Qe F_(S" 1)
for some o > 0. Here F_(S™~!) denotes the space of all integrable functions €

on S™~! which satisfy the condition

1 1+«

© op [ 100 (s 7 ) dotw) < oo
gesn-1.Jgn-1 1€ -yl

We point out the space F_(S"~!) was introduced by Grafakos and Stefanov in

8] with respect to their studies of singular integrable operators. Also, it should

be noted that Grafakos and Stefanov in [8] showed that

(4) JLus™) ¢ F_(S™ 1) for any a > 0,
g>1

(5) n Fa (Sn—l) g Hl (Sn—l) g U Fa (Sn—l),
a>0 a>0

where H! (S"~1) denotes the Hardy space on S™~! in the sense of Coifman
and Weiss [3]. In the meantime, the investigation of the L? boundedness of
the parametric Marcinkiewicz integral operator M?%, has also received a large
amount of attention of many authors. In 1960, Hérmander [9] proved that the
parametric Marcinkiewicz operator M5, is of type (p,p) for p € (1,00) if p > 0
and Q2 € Lip, (S"™') (0 < @ < 1). In 1996, Sakamoto and Yabuta [12] studied
the L” boundedness of the parametric Marcinkiewicz integral operator M2, if
p is complex and proved that M5, is of type (p,p) for p € (1,00) if Re(p) > 0
and Q € Lip_(S"!) (0 <7< 1).

On the other hand, the investigation of the weighted L? boundedness of Mg,
has attracted the attention of many authors. In 1990, Torchinsky and Wang
in [18] proved that if @ € Lip, (S"!) (0 < 7 < 1), then M}, is bounded on
LP(w) for p € (1,00) and w € A, (The Muckenhoupt’s weight class, see [7] for
the definition). In 1998, Sato in [13] improved the weighted L? boundedness
of Torchinsky-Wang by proving that M} is bounded on LP(w) for p € (1, 00)
provided that @ € L*(S""!) and w € A, (R"). Subsequently, in 1999, Ding,
Fan and Pan in [4] were able to show that M}, is bounded on LP(w) for p €
(1,00) provided that Q € L4(S"1), ¢ > 1 and w? € Ay, (R™). In a recent
paper, Ming-Yi Lee and Chin-Cheng Lin in [11] showed that M}, is bounded
on LP(w) for p € (1,00) if @ € H'(S™!) and w € A (R"), where AL(R™)
is a special class of radial weights introduced by Duoandikoetxea [6] whose
definition will be recalled in Section 2.

The main purpose of this paper is to show that the weighted L?(w) bounded-
ness of the parametric Marcinkiewicz operator MY, holds under the conditions
wE A{, (R") and Q@ € F_(S"!). In fact, we are able to prove the following
more general result.

Theorem 1.1. Let ¥ be in C*([0,00)), convez, and an increasing function
with ¥(0) = 0. If Q € F_(S™71) for some a > 0, then there exists Cp > 0 such
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that
©) “M?”‘I’(f)“L P(w) ~

forpe (3133,2 +2a) andw € AI(R_|_).

Remark. Obviously, Theorem 1.1 represents an improvement and extension
over the result of Ding, Fan and Pan [4] in the case w € A;(RJF). Also, Theorem
1.1 represents a substantial improvement and extension over the result (in the
unweighted case) of Sakamoto and Yabuta [12] because  is allowed to be in
the space F_(S™™') for some a > 0; and bearing in mind the relations

Lip (S ) (0<7<1)c LYS™ ) CF (S"!) forall d > 1.

Throughout the rest of the paper the letter C' will stand for a positive con-
stant not necessarily the same one at each occurrence.

< Collfllpr )

2. Some definitions

We start this section by recalling the definition of certain classes of weights
and some of their basic properties.

Definition 2.1. Let w(t) > 0 and w € L}, _(R4). For 1 < p < o0, we say
that w € A,(Ry) if there is a posmve constant C such that for any interval
ICR,,

(m—1 /Iw(t)dt) (|I|‘1/Iw(t)_l/(”’l)dt)p_l < C < 0.

A;(Ry) is the class of weights w for which M satisfies a weak-type estimate in
LY(w), where M(f) is the Hardy-Littlewood maximal function of f.

It is known that the class A; (R4 ) is also characterized by all weights w for
which Mw(t) < Cw(t) for a.e. t € Ry and for some posmve constant C.

Definition 2.2. Let 1 < p < c0. We say that w € A s(Ry) if w(z) =
vi(|z|)va(|z|)1=P, where elther vi € A1(Ry) is decreasing or v e A(Ry),
i=1,2. :

Let Al »(R™) be the weight' class defined by exchanglng the cubes in the def-
initions of A, for all n-dimensional intervals with sides parallel to coordinate
axes (see [10]). Let A,{ =A,N Al Tfwe A,, it follows from [6] that the classi-
cal Hardy-Littlewood maximal function M f is bounded on LP(R™, w(|z|)dz).
Therefore, if w(t) € Ap(Ry), then w(|z|) € 4,(R™).

By employing a similar argument as that employed in the proof of the ele-
mentary properties of A, weight class (see for example [7]) we get the following:

Lemma 2.3. If 1 < p < o0, then the weight class Al »(R) has the following
properties:

) AI CAI . 1< pr < p2 < oo

(4) For any w € AI there exists an € > 0 such that w'*® € AI
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(i) For any w € fi{, and p > 1, there exists an € > 0 such that p—e > 1
andw € Al_,

Definition 2.4. For a suitable C! function ¥ on R.,, and a suitable function
Q on S™! we define the family of measures {o; : t € Ry} and the maximal
operator * on R"™ by

Q'
- () D gy,
dt<lyl<t ly]

det

and
o*f (z) = sup |lo¢| x f(z)],
teR

where |o;| is defined in the same way as oy, but with Q replaced by |Q].

3. Main estimates

Lemma 3.1. Assume that ¥ is in C%([0,0)), convez, and an increasing
function with ¥(0) = 0. If Q@ € F_(S™!) for some o > 0, then there exists a
positive constant C such that for all £ € R™ we have

1) llo:sll < C;
2k+1
(2) /2k |&t(€)|2% < C(log|‘11(2’“—1)§|)“"1 if U2k 1)¢] > 2;

ok+1

dt
® [ 1e@rF s cleet.
The constant C is mdependent oft, £ and ¥ (.).

Proof. By the definition of o¢, one can easily see that (3.1) holds with a constant
C independent of ¢. Next we prove (3.2). By definition,

t
6u(6) = = e ¥ E20(2)do (
tp %t Sn—1

By a simple change of variable and Holder’s inequality, we have

(4)
ok+1 gk+1
6P 2 < 192150 / 19@) </ LGRS —) do (a),

/.

where

1.
Li(&z) = / e—i‘l’(ts)g.mé.
1/2
Write I;(¢, z) as
It(g, .'17) = HI( ) :
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where

Hy(s) :/ e~ Wy, 1/2<s< 1.
/2
By the assumptions on ¥ and using the mean value theorem we have

gd,; (T (tw)) = 9 (tw) > @ > ?(';/—2) for 1/2<w<s<1.

Thus by van der Corput’s lemma,

ol < | e

By integration by parts, we get
(¢, 2)| < Cw(t/2)¢ ™" ¢ -2

and hence
2k+1

[2:(¢, )]

By combining the last estimate w1th the trivial estimate

L <ol ne el

2k+1

[ el S < tog2y?

2
we get

a+1
a  (1og(e ) (¢ ™)
5 22
O [, mEenr o

To prove (3.3), we use the cancellation condition of 2 to get

/ / —z\Il(ts)E z 1‘ |Q I _d )
sn—1J1/2

Therefore, by the last estimate and using that ¥ is increasing we get (3.3). The
lemma is proved. a

if |T(2" )¢ > 2.

By the same argument as in [16, p. 57] we get

Lemma 3.2. Let ¢ be a nonnegative, decreasing function on [0,00) with
f[o o) Pt)dt = 1. Then

/ fa -ty )dt|<M 1),

where
R

My f(z) = sup _Ili |f(z — sy')|ds
ReR

is the Hardy-Littlewood mazimal functwn of f in the direction of y'.
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Lemma 3.3. Let 1 < p < 00 and w € A,(R,). Assume that Q € L1(S"1)

and ¥ is in C*([0, 00)), conver, and increasing function with ¥(0) =0. Then
there exists a positive constant C, such that

(6) ”U*(f)“LP_(w) <G ”Q”Ll(sn—l) “f”Lp(w) .

Proof. By definition of o, we have

Ilatl*f(x|<c<// Y| | f(z — (s)y')| do(y )‘i“”).
Thus

) 5" 1) <O ( [ 1)) Mw,y'(lfl)(w)da(y')> ,
M\Ily f - Sup "

where
t€R+

Without loss of generality, we may assume that ¥(s) > 0 for all s > 0. By a
change of variable get

1 W(t) , ds
My (z) < sup - (/ 7=l m—(») |

Since the function —ﬁﬁ is non-negative, decreasing and its integral over

[0, ¥(¢)] is equal to 1, by Lemma 3.2 we obtain

(8) My,y f(z) < My f(z).

By (3.7)-(3.8) we get

O Dl < ([ 106017 ()

By (8) in [6] and since w € 4,(R.) we have

(10) ”My'f”Lp(w) <C ”f”Lp(w)

with C' independent of 3'. Thus, by (3.9)-(3.10) we get (3.6). This completes
the proof of Lemma, 3.3. a

Lemma 3.4. Let1 < p < o0 and w € Ay (Ry). Assume that Q € L1(S*1)
and ¥ is in C*([0,00)), conver, and increasing function with ¥(0) =0. Then
there exists a positive constant C, such that
1/2
(Z nglz>
kEZ

gk+1 1/2
t
(Z/ low % i) —>
k€Z

holds for arbitrary functions {gr(-)} kez on R™

(11)

Lr(w) Lr(w)
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Proof. By a change of variable, we have

gk+1 dt 1/2 9 1/2
(12) (Z /zk |oe * gi|? T) < (1;z/1 |oges * gr|? dt) .

keZ

By Lemma 3.3, we get

<

Lr(w)

<C

Lr(w)

(13)

sup sup |oarg * g

sup |gi|
keZ te(1,2]

kEZ

o"(sup |gx|)
keZ

Lr(w)

On the other hand, by the Riesz representation theorem, there exists a non-
negative function f in L¥ (w) with ||f|| () < 1 such that

2
Z/ |oar s * gi| dt
1

2
< 020 * g1 (2)] diwo(2) f (2)d
keZ L7 (w) /"IE‘/I ’ ‘
2
< logke| * |9k ()| diw(x) f (z)dz.
/n ,Z:Z/l 5 Gk w(z)f(z)dz

Thus, by Fubini’s theorem and Holder’s inequality we get

2 —
k d * —2\d
’;Zfl 030 * gul dt o < /Rn%;m(m)w (@F))(~2)ds
< ,§|gk| }g’*(((:}\}')) LP’(wl—p/)’
LP(w)

where i(z) = u(~z). Since w € A,(R4) if and only if w'~? € A, (Ry), by

Lemma 3.3, we get

2
Z / |oak, * gi| dt
1

kEZ

(14) <G,

Lr(w)

> 19l

keZ

Lr(w)

Therefore, we can interpolate (3.13) and (3.14) (See [7, p.481], for the vector-
valued interpolation) to get

) 1/2 1/2
(Z /1 |oges * il dt) <G (Z lgkl2>
kEZ

Lo(w) kEZ

Lr(w)

which when combined with (3.12) yields (3.11). Thus Lemma 3.4 is proved. O
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4. Proof of Theorem 1.1

For k € Z, let ar = ¥(2%). We notice that {a:k € Z} is a lacunary
sequence with axy1/ax > 2. Let {Ax}”_ be a smooth partition of unity in (0,
o0) adapted to the interval I, = [a,:il, a;',]. To be precise, we require the
following;:

Ak € C%, 0<A<T, D A(t) =1
k
dsAk(t)I C.

supp Ay, € It | S

where C; is independent of the lacunary sequence {ay, : k € Z}. Let f‘;(f) =

Ar(l€))-
By Minkowski’s inequality we have
5 1/2

dt
t

x o0 dt\ /?

Z 27k (/ |-k * f($)|2 7)

0
k=0

Mb y f(z) = ( [
(=5=) ([ oun st %’3)/
Decompose

fx Ut(w) = Z Z(F’H-j * O * f)(x)x[zkzkﬂ)(t) = ZE]‘(JJ, t)

JEZ kEZ j€Z

Z 27 Gy % f(2)
k=0

IA

and define

5, = ([ By(a, o) %) "

Then

Meu9) < (125 ) 50)

JEZ

holds for f € S(R™).
Thus, to prove (1.6), it is enough to show that

1) 1S5 (I owy < Co@+ 13D I fll oy

for p € (3532,2 + 20) and w € AI(Ry).
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To prove (4.1), let us first compute the L2(R™)-norm of S;(f). By using
Plancherel’s theorem, we have

2k+1

dt
15 sy = X [ Mesroes @) T

kEZ
gk+1

ZZ/A (/ G ff—})

Ar={¢eR": ¢ € Li}.
By Lemma 3.1 and a straightforward computations we get
1Si(NMlparey < CUIT T fllpemny 5 < -1
1S;(Nlpzmny < C277 N fllpaqrny 420

IN

i@ ae,

where

and hence
(2) 1S5 (Wl 2mny £ CA+1IDT*H I fll 2y for all j € Z.

Next, let us compute the L?(w) boundedness of the operator S;. For p €
(22,2 + 20) and w € AJ(R), we have

9k+1 dt 1/2
||Sj(f)”1,p(w) = (Z /Qk log * Dpyj % f|2 —t')
keZ Lo (w)
1/2
< G| (Simeest)
keZ L7 (w)
(3) < Collfllpey

where the first inequality follows by Lemma, 3.4 and the last inequality follows
from a well-known weighted Littlewood-Paley inequality (see [10]) because we
have A{,(R.{.) C AP(R+) C AP(R+)

By interpolating between (4.2) and (4.3) with w = 1, for every p € (%, 24+
2a), there is a 6, > 1 such that

(4) 1S5 o greny < CA+ 13D~ 11l o ey

holds for j € Z. Using Stein and Weiss’ interpolation theorem with change of
measure, we interpolate (4.3) with (4.4) to get, for every p € (22,2 + 20)

1+20°
and w € AJ(R), there is a g, > 1 such that

(5) 1S5(F)ll oy < O+ 13D 11l oy

holds for j € Z and hence by we get (4.1). This completes the proof of Theorem
1.1.
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5. Additional results

In this section, we shall apply the result in Theorem 1.1 to get the weighted
L? boundedness for a class of parametric Marcinkiewicz operators Mg%, , and
M@ v s related to the Littlewood-Paley g}-function and the area integral S,
respectively. These parametric Marcinkiewicz operators are defined by

1/2
2 dydt
Mowsf(z) = (/r( : F§ g f(z,1) tfﬂ) ;

nA 1/2
t 2 dydt
Py = - Fp v
Mawaf () (//R'_;_“ (t+|~’6—y|) ’ Q’q'f(x’t)| t"“) ’

where A > 1, T'(z) = {(y,t) e R} : |z — y| < t}.
The results regarding these operators are given as follows:

Theorem 5.1. Let ¥ be in C2([0,0)), convez, and increasing function with
V(0)=0. IfQ e F_(S*1) for some a > 0, there exists C,, > 0 such that

©  [|Maesr],,

MGu () ==y Mllze o)

<
L (w) ” L)~ (1-277)
for2<p<ooandw € A£/2(R+), where o = Rep.

The proof Theorem 5.1 will mainly rely on the following lemma whose
proof can be obtained by using Theorem 1.1 and following the same argument
employed in the proof of Theorem 5 in Torchinsky and Wang [18].

Lemma 5.2. Let A > 1. Then, for any nonnegative locally integrable function
g, we have

(7) /Rn (Mwa,Af(w))z’h(;,;)dx < ﬁ /Rn (@) Mh(z)dz

for positive constant C.

Proof of Theorem 5.1. It is easy to see that Mg, 4 ¢f(z) < Q"AMgz’;I,’)\f(m).
Thus, we only consider the operator Mafp y-Ifp =2 thenw € AlR,) C

A;(Ry) C A1(Ry) and hence M w(z) < Cw(z) almost everywhere. Thus by
Lemma 5.2 we have

® [ (Mar@) w@ds < = [ 1P wta)s

which implies that Mg, , is bounded on L?(w). Now, if 2 < p < oo, we have

/Rn (M?z’}:,xf(x))zh(z)dx ,

= su
H & Af”L ) AP
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where the supremum is taken over all h(z) satisfying 1Pl pes2y i-Grary < 1.
Thus, by Lemma 5.2 and using Hélder’s inequality we get

2 C
A — * Mh(z)d
[Mesatl,,, < qgmyew [ 1@F Mh@)as

c 2

< m ||f||Lp(w) Sl}llp ||Mh||L(,,/2),(w1_(p/2),)
C 2

< =

L

which ends the proof of Theorem 5.1. ad

We remark that Theorem 5.1 extends and improves the corresponding results
in [12] in which the authors of [12] proved the LP(2 < p < 00) boundedness of
MGy and M 4 ¢ if ¥(t) =t and Q € Lip, (") (0< 7 <1).

A special class of radial weights is the power weights |z|”,7 € R. It is
known that |z|” € A,(R") if and only if —n < v < n(p — 1). By noticing that
|z|” € AII,(R+) for v € (=1,p — 1), and applying Theorem 1.1 we obtain the
following;:

Corollary 5.3. Let ¥ be in C2([0,00)), convez, and increasing function with
T(0)=0. IfQeF_(S*!) for some a > 0, and p € (32222 4 2q), then
] 11l Lo )

o0
HM?z,\p(f) Lo (@) < a

for all w(z) = |z|” and vy € (-1,p—1).

CP
— 92—0c
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