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ABSTRACT 
 

KUNHOTH SUCHITHRA., Masters : June : 2018, Masters of Science in Electrical Engineering  

Title: Cancer Detection and Identification on Scarce and Low- Resolution Data 

Supervisor ofThesis: Mustafa Serkan Kiranyaz, Somaya Al Maadeed 

Machine learning algorithms have been contributing immensely in the biomedical 

sector with the innovation of several automatic and semi-automatic diagnostic devices. 

They are well suited for applications such as the diagnosis of cancer, which is a prevalant 

and devastating disease nowadays. A computer-aided diagnostic system can detect and 

classify various tumor tissues and thereby ensures a reliable and rapid screening procedure. 

They serve as an additional confirmatory tool which is independent of pathologist expertise 

and experience. In this thesis study, we perform comparative evaluations among several 

recent approaches for cancer detection and identification on a scarce and low-resolution 

biopsy image dataset. The biopsy samples comprise of normal as well as cancerous 

colorectal tissues, collected from the Al-Ahli hospital, Qatar. We have built two separate 

image datasets, multispectral and optical  from the collected samples. Using our 

multispectral image acquistion system,  images are acquired in various wavelength bands 

spanning from visible to near infrared to build the first dataset. The second dataset is 

composed of optical images (in RGB raw format)  of the same samples. 

A Multispectral image based tumor identification system was developed using 

rotation invariant Local Phase Quantization technique and  Support vector Machine (SVM) 

classifier. The comparative evaluations demonstrate that it could outperform Local Binary 

Pattern for the feature extraction and Random Forests (RF) in classification of the 
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colorectal tumor tissues. We compared the classification accuracies yielded with the two 

image modalities- multispectral and RGB and the former one exhibited higher accuracy. 

Furthermore, we have presented a band selection strategy to eliminate the redundant bands 

from the multispectral imagery. This could reduce the computation time along with 

improving the classification accuracies. 

As the main contribution of the thesis, we propose a compact and adaptive CNN 

approach for the detection and identification of the tumor tissues on the RGB image dataset. 

This approach is fully automatic with the absence of any manual pre-processing, tuning or 

prior segmentation phase to aid the classification algorithm. Its performance is compared 

against the SVM classifier with three different kernel types and five state-of-the-art texture 

feature extraction methods including rotation invariant Local Binary Pattern, rotation 

invariant Local Phase Quantization, and Haralick features. The proposed systematic 

approach with adaptive and compact CNNs and the top performing conventional method 

with the best texture feature have achieved the highest identification accuracies with 

respect to the task of discriminating four classes of colorectal tissues. However, the 

proposed method has achieved the highest cancer detection performance, around 94.5%, 

as compared to the best detection score of 87% achieved by the best conventional method. 

This is despite the fact that the proposed method used low-resolution image data (64x64 

pixels) in contrast to the original patch resolution (300x300) used by the conventional 

methods. Finally, the proposed approach can further exhibit a superior computational 

complexity and minimal false alarms. The promising results throw light on the competence 

of adaptive CNNs for cancer detection in low-resolution images from a limited dataset.  
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CHAPTER 1: INTRODUCTION 

Cancer has been found to be the second leading cause of death all over the world. 

It is responsible for 8.8 million deaths in 2015[1]. This statistic indicates that nearly one 

out of six deaths worldwide is attributed to cancer. Based on the incidence rates, lung 

cancer holds the first position followed by breast and colorectal cancer. According to the 

worldwide statistics for mortality rates from cancer in the year 2012, lung cancer (1.6 

million deaths), liver cancer (745,000 deaths), and stomach cancer (723,000 deaths) come 

in the first three positions [2]. It has turned out to be a dangerous disease because of its 

increasing probability and high mortality rate. Medical researches have provided only 

specific treatment approaches that can increase the life expectancy to a small extent. It is 

evident that timely screening reduces the impact on patient’s life, but appropriate attention 

is not paid to the matter [3]. Although several diagnostic methodologies were proposed in 

the past, histopathological techniques or biopsy analysis is considered to be the major 

screening tool for majority of the cancer types. 

Cost-effective diagnostic methodologies have been introduced with the rapid 

technological advancements in the field of image processing and machine learning [4]. 

Automatic inspection of the biopsy sample serves to screen a larger mass of population 

within a limited time while maintaining or improving the diagnostic results. Computer 

aided analyses of the biopsy images serve to minimize the dependency of diagnostic 

accuracy on any specific individual. As far as a pathologist is concerned, it is a tedious task 

to inspect and analyse several tissue samples. The complexity of the task elevates it further 

when it comes to the case of categorizing the cancerous tissues into specific classes based 

on their malignancies. This monotonous task of investigation under the microscope for 
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continuous hours can produce erroneous results which can be either false positives or false 

negatives. Moreover, the inter-personal variation in the analysis has a prominent role in the 

diagnostic outcome. The expertise and experience of the pathologist will be counted 

towards the accuracy of detection and identification of cancer tissues [5].  Automated 

analysis can improve the detection accuracy along with the inter operator variation problem 

being solved. Automated cancer screening tools aid to deliver accurate results in a short 

period of time.  

Histopathological analysis, which is the major diagnostic approach followed in 

cancer screening can be accomplished by a pattern recognition system. In those 

approaches, features are extracted from the digitized biopsy samples and fed to a suitable 

classifier which demarcates the cancerous lesions from the non-cancerous ones. Having an 

efficient algorithm, it can even discriminate between the different tissue types or tumor 

grades. The image acquisition can follow two main modalities such as optical, e.g., color 

(RGB) or grayscale as well as multispectral imaging techniques. Since the overall object 

characterization with RGB imaging is limited by the use of only three color channels, 

multispectral methods seem to be more promising. Several pre-processing steps commonly 

incorporated in these algorithms include image enhancement, segmentation of the 

prospective tumor region, etc. The image enhancement is meant to rectify some issues that 

may arise as a result of non- uniform illumination conditions during the imaging process. 

Stain normalization has also been suggested for histopathology images in order to cope 

with problems such as color differences in the tissue images due to varying conditions of 

tissue preparation, stain reactivity variations when using the stains from different 

manufacturers, individual dependencies and the use of microscopes from different 
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manufacturers or different modes of lighting [6]. Segmentation phase is incorporated to 

emphasize the glandular regions alone from the tissues for extracting relevant features. 

Automated methods for segmentation have proved its efficiency in certain instances. 

Commonly, the segmentation is accomplished manually or with certain semi-automatic 

techniques. Different tissue types can be distinguished with the extracted features such as 

color, size and shape of gland and nuclei, statistical measures, and texture characteristics 

etc. As explained here, the general schematic of pattern recognition based cancer tissue 

classification system follow the processing stages as shown in the Figure 1. Feature 

extraction is followed by the classification stage. State-of-the-art classifiers such as 

Support Vector Machines (SVM), Random Forests (RF), Artificial Neural Networks 

(ANN) are usually deployed to realize the supervised learning strategies. In recent years, 

deep convolutional neural networks (CNNs) have become a major tool for image 

classification and object recognition tasks including several medical applications [7-13]. 

Compared to conventional classification approaches, CNNs have proved to yield state-of-

the-art accuracies with significant performance gaps.   
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Figure 1. Basic schematic for cancer detection/identification from biopsy images 

 

 

1.1 Objectives 

This thesis study aims to perform comparative evaluations among several recent 

approaches for cancer detection and identification using our colorectal biopsy image 

datasets. The set of biopsy samples comprise specimens from 4 major categories of 

colorectal tissues including one normal and three abnormal (cancer) classes. The samples 

were acquired using both multispectral and RGB modalities. The prospective cancerous 

regions were identified by the pathologist to serve as the ROIs for our classification and 

identification algorithms. The main objectives of the thesis work can be summarised as 

follows: 

1) Investigation of the performance of texture based feature extraction methods 

including LBP, LPQ and their variants along with classifiers such as SVM and RF 
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for cancer tissue classification. Experiments should be conducted on the 

multispectral images 

2) Comparison of the two different imaging modalities: RGB and multispectral 

imaging in the context of cancer identification 

3) The development of a  band selection methodology to select the relevant 

multispectral image bands alone for further processing 

4) The development of a compact adaptive CNN approach for the cancer detection 

and identification task, which makes use of RGB image dataset for the validation. 

The results are further compared with the conventional methods. We have 

considered 5 different feature extraction techniques: rotation invariant LPQ (rLPQ), 

rotation invariant LBP (rLBP), uniform rotation invariant LBP, Haralick and the 

combined rotation invariant LPQ- rotation invariant LBP feature and SVM 

classifier with 3 different kernel types, Radial Basis Function (RBF), Linear and 

Polynomial. Texture feature based classification needs to be carried out on 

comparatively higher resolution images than that used for CNN. Both the cancer 

detection (normal- abnormal tissue discrimination) and the identification (4- class 

classification) should be performed with the conventional and CNN approaches.  

The major highlights of the proposed adaptive CNN scheme include: 

• Dataset with limited number of biopsy images; unlike very large number of images 

as with deep CNNs 

• Low- resolution image patches utilized in CNN experiments to validate the 

algorithm efficiency on low- resolution images 
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• No manual pre-processing and segmentation phase  

• No additional hardware requirements for our compact adaptive CNNs with limited 

complexity 

1.2 Contributions 

We propose a systematic approach using a compact and adaptive CNN for the detection 

and identification of the tumor tissues. Unlike the deep CNNs, the proposed network 

confıguration could work effectively with low-resolution patches generated from a limited 

dataset. The adaptive property eliminates the restrictions imposed on the input image size 

as well as the number of hidden layers. Being compact, the computational complexity can 

be reduced. We have developed a biopsy image database with both multispectral and RGB 

image counterparts. It is comprised of 200 images, which is reasonably good compared to 

the existing datasets. The variability within the dataset is guaranteed well with our biopsy 

samples of 151 patients, which is the highest number of patients ever used for this 

challenging task. The images are distributed equally in each of the 4 classes. Our algorithm 

is devoid of any prior manual or semi-automatic image enhancement or segmentation 

stages. In this study, results of the proposed CNN based approach are further compared 

against five conventional classification methods each based on a state-of-the-art texture 

feature. 

1.3 Thesis Outline 

We commence with a review of the related works in Chapter 2, where different 

methodologies available for cancer detection and identification till date will be discussed. 

The contributions of our work are also introduced with a view to address the limitations of 
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existing methodologies. Chapter 3 introduces the datasets, medical aspects of the 

concerned samples as well as the data acquisition and augmentation techniques that we 

followed. The image acquisition techniques for both the RGB and multispectral imaging 

are detailed in this chapter. All the experiments on our multispectral image dataset are 

summarised in the Chapter 4. The comparative study on multispectral and RGB techniques, 

and the proposed band selection strategy is also included in this chapter. The proposed 

approach with the adaptive and compact CNNs is presented in Chapter 5 with relevant 

technical explanations and implementation details. The conventional methods used for the 

comparative evaluations of the proposed approach are also discussed here. Chapter 6 

presents the experimental results along with the comparative evaluations. Chapter 7 

summarizes the work with the relevant conclusions we reached. Finally, the scope of some 

potential future work is discussed. 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

 Several computer vision approaches have attempted to detect and classify the 

tissues related to different types of cancers. Based on the feature extraction techniques 

adopted, they can be classified as belonging to texture, morphological, and approaches 

based on Deep Learning. The related work in the literature is organized in the succeeding 

section based on this categorization. 

2.1 Texture features 

 The whole slide histopathologic analysis in [14] is based on the well-known grey 

level co-occurrence (GLCM) textural features. The classification system was built upon a 

support vector machine (SVM) algorithm to differentiate normal and cancerous colorectal 

tissue samples. The study in [15]  aims to compare the performances of various texture 

features including local binary patterns, Haralick features and local intensity order patterns 

for multispectral image based colorectal tissue classification. It was the local binary 

patterns when combined with Support Vector Machine classifier that gave the best 

classification accuracy of 91.3%. A range of texture features including Markovian co-

occurrence matrices, run-length analysis, Laws features, wavelet decomposition, and 

Fourier analysis was evaluated in [16] to predict the risk of breast cancer. The automated 

breast cancer identification system in [17] relies on textural and architectural image 

features. Both cancer detection and identification were carried out on a dataset of 48 breast 

tissue biopsy slide images. Gabor features turned out to exhibit the highest discriminatory 

capability for the task. Chaddad et al. [18] proposed an improved version of the snake 

algorithm for segmentation followed by Haralick texture feature extraction from the 

segmented images. A four-class identification schema for the colorectal tissue types such 
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as Carcinoma (Ca), Intraepithelial Neoplasia (IN) and Benign Hyperplasia (BH) was 

experimented further in the work. Melanoma skin cancer detection using GLCM features 

and multilayer perceptron [19] could be performed with 92% accuracy when validated on 

a dataset with 102 dermoscopy images. The methodology in [20] follows an approach 

involving active contour segmentation of pathologic ROI followed by the extraction of 

texture features such as discrete wavelets, GLCM etc. A three-class identification system 

was implemented on a database of 480 images generated from 30 patients. Texture 

characterization with textons enabled to build the automated Gleason grading system in 

[21]. The framework for texture classification relied on two simple stages: filtering and 

clustering. Further, Gleason grades 3 and 4 were discriminated with the support of an SVM 

classifier. In [22], the concept of gray level co-occurrence matrix is extended for the texture 

characterization in multiband images and hence to discriminate the healthy and 

pathological prostatic tissues. In order to reduce the multispectral band representation, a 

band selection technique was employed which selects the best relevant bands of 

multispectral prostate cancer database. The system in [23] was intended to analyze the 

significance of multispectral imaging in order to discriminate cancer and non-cancer nuclei 

in liver tissues. Textural features were extracted using Gabor descriptors, which include 30 

Gabor patterns at different scales and orientations. The results have indicated 

approximately 99% classification accuracy. It was the images taken in wavelength bands 

418-467 nm, 481-513 nm and 548-641 nm that proved efficient to classify normal and 

hepatocellular carcinoma in high-magnification.  Qi et al. [24] have conducted a 

performance study to compare the classification accuracy using both multispectral imaging 

(MSI) and standard bright-field imaging (RGB) to characterize breast tissue microarrays. 
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Feature extraction comprised texton library training and histogram construction. 

Experimental results showed that the multispectral images delivered a higher classification 

rate than RGB images. Meaningful features offered for classification by multispectral 

imaging technology is well exhibited in the two latter works.  

2.2 Morphological features 

Apart from the texture features, color and morphometric characteristics were also 

incorporated for the Gleason grading of prostatic biopsy images in [25]. Performance of 

several classification algorithms such as Bayesian, nearest neighbor, and SVMs was also 

investigated. Detection of cancer tissues in [26] follows a series of stages: microscopic 

image enhancement, segmentation of background cells, feature extraction, and finally the 

classification. Shape and color-based features are utilized along with several texture 

descriptors including Tamura's feature and Law’s texture energy features. The study in [27] 

has proposed a method for colorectal cancer tissue classification using shape features and 

nearest neighbor classifier. Area, Xor Cell-Convex, and Solidity features were proved out 

to efficiently differentiate the carcinoma tissues from the other cancer types. Color and 

shape geometry features were utilized for the skin cancer detection and identification in 

[28]. The algorithm involved an automatic skin lesion segmentation stage as well to 

separate the unwanted background prior to feature extraction. A hybrid feature set 

encompassed of geometric characteristics, morphological features, traditional SIFT, etc., 

were applied on 174 colon biopsy RGB images to implement a cancer detection system 

[29]. An accuracy of 98% was achieved with the help of a Radial basis function (RBF) 

kernel SVM classifier. Structural features such as roundness and shape distribution were 

considered for the classification of prostatic biopsy images into five Gleason grades [30]. 
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A prior segmentation stage is incorporated in the algorithm to identify the glandular 

regions. The classification follows a tree structure approach with each stage performing a 

binary classification using intensity and shape features. Evaluation on two different 

datasets with 91 and 199 images produced 95% and 85% accuracy respectively. The 

methodology in [31] also commences with the glandular segmentation using the color 

space information. Fifteen structural features were extracted from the glandular regions in 

order to classify them as benign, grade 3 and grade 4 tissue types. Various state of art 

classifiers like nearest neighbor, decision tree, SVM etc., were experimented in the work. 

A segmentation and identification schema for hepatocellular carcinoma (HCC) biopsy 

images was proposed in [32]. In order to remove noise and highlight the nuclear shape, a 

dual morphological grayscale reconstruction method was adopted. Watershed transform 

and snake models were applied for the nuclei segmentation. A set of 14 features including 

but not limited to nuclear size, nucleocytoplasmic ratio, irregularity, and haralick were 

extracted from the segmented nuclei to perform the classification task. With the aid of an 

SVM based decision graph classifier, the proposed approach could yield an accuracy of 

94.54% on a dataset of 804 images with 5 different grades of tissues. Another work for 

prostate cancer grading have been done with morphological features from individual glands 

[33]. Automated gland boundary segmentation was done with level set method followed 

by the extraction of seven boundary features. Utilizing the SVM classifier, the algorithm 

yielded an accuracy of 75% in distinguishing benign epithelium and grade 3, 85.71% 

between benign epithelium and grade 4, and 72.73% between grade 3 and grade 4. The 

dataset comprised of 29 tissue patches. Similar research has been carried out for 4 class 

grading on 54 tissue image patches [34]. The system extracts architectural, nuclear density, 
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gland morphology as well as texture based features from the tissue patterns to classify the 

biopsy images according to the 4 Gleason grades. The SVM classifier could result in an 

accuracy of 92.8% when discriminating between Gleason grade 3 and stroma, 92.4% 

between stroma and epithelium, and 76.9% between Gleason grades 3 and 4.  The 

methodology in [35] relies on the concept of statistical shape model of manifolds (SSMM).  

They make use of the morphologic features of glands from prostatic specimens to 

automatically distinguish between Gleason grades 3 and 4. Khalid et al [36] presented a 

binary grading system for prostate cancer tissue types. The algorithm commences with a 

segmentation stage based on textural features. Architectural changes in nuclei and stroma, 

luminal characteristics etc. were captured in the feature extraction phase. The classification 

results on a dataset of 88 ROIs from 30 whole slide images exhibited an accuracy of 97.6%. 

2.3 Approaches based on Deep Learning  

In recent years, Deep Learning with CNNs has become the de-facto standard for image 

classification and object recognition tasks including medical applications. But the major 

drawback lies in the necessity of a massive size dataset for the training of such deep 

networks usually with 100M or above parameters. This turns out to be a prominent issue 

since the biomedical datasets are often available with a limited number of samples. A four-

class identification strategy for breast biopsy images using deep CNNs was proposed in 

[37]. Features extracted by CNNs were used to differentiate normal tissue, benign lesion, 

in situ carcinoma and invasive carcinoma. An augmented dataset of 70000 different patches 

was generated from the original 250 training images by applying arbitrary rotations and 

mirroring. Then each of the patches was considered to have the same label as the original 

image. Algorithm evaluation of 20 images yielded 77% accuracy for four class 
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identification and 80% accuracy for non-carcinoma vs carcinoma discrimination. When the 

features extracted by CNN were trained on an SVM classifier, the two class discrimination 

accuracy could be improved up to 83%. A benign vs malignant classification of biopsy 

images of the breast was performed in [38]. The dataset was composed of 7909 images 

with nearly 2000 image belonging to each magnification level from 40, 100, 200 and 400. 

Four different patch generation approaches were applied to yield a minimum of 54 and 

maximum 1000 patch per original image. The training was done patchwise and testing 

involved the accumulation of results over the individual patches of the original image. The 

maximum accuracy of 90% was reported which is obtained for 40x magnification level. 

Detection and classification of cell nuclei in cancerous tissue is also a prominent task, 

which was accomplished using a spatially constrained convolutional neural network in 

[39]. Multispectral colorectal images were classified in [40] into one of the three classes 

using CNN approach. The highest accuracy of 99.17% was achieved in the segmented 

image regions. However, the dataset was very small comprising 30 images in total and the 

segmentation was accomplished using a semi-automatic procedure. The database of [38] 

was deployed for the realization of a multi-class breast cancer classification system in [41]. 

A class structure based deep CNN was proposed in the work to perform the classification 

among 4 different grades each of benign and malignant classes. Data augmentation was 

carried out for building the training partition of the database. The average accuracy of the 

patient level testing was 93.2%, and image level testing was 93.8% among all the 

magnification factors. Another deep learning method was proposed in [42] to perform a 

magnification independent classification of breast cancer tissues. The same database of 

[38] was utilized here also.  An average recognition rate of 82.13% was achieved for 
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benign/malignant classification problem. The multi-task CNN architecture introduced here 

was able to predict both the image magnification level and its malignancy status 

simultaneously. 

Many works in the literature lack proper validation because of the insufficient dataset. 

Especially the deep CNNs require datasets with massive sizes, e.g., in the “Big Data” scale. 

In fact, this requirement alone makes deep 2D CNNs inapplicable to many practical 

problems that have limited datasets including the problem addressed in this study [40]. The 

variability of the dataset is also another aspect which depends on the number of patients 

from which the biopsy samples are collected. Even though [20] and [29] indicate a dataset 

of more than 100 images, they are taken from only 30 and 68 different patients, 

respectively. A slightly larger dataset of [38] is generated from the biopsy samples of only 

82 patients. Several works [18,20,28,40] have incorporated a segmentation stage in order 

to remove the background efficiently. This is basically needed to localize the tumor regions 

prior to feature extraction. But some of them rely on semi-automated or even manual 

procedures, which obviously reduces the practical usability of the proposed approach. 
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CHAPTER 3: COLORECTAL TUMOR DATASETS 

We have used a colorectal tissue dataset comprising four different types of tissues for 

the validation of the considered algorithms. The medical aspects ([43-45]) of colorectal 

cancer tissues is briefly explained in the Section 3.1.The image acquisition and data 

augmentation procedures are detailed next. 

3.1 Colorectal Tumor: Medical Aspects 

This disease affects the colon or rectum, the parts of the large intestine. Initially, most 

colon cancers appear as colorectal polyps, which refer to the abnormal growths inside the 

colon or rectum. Although they are considered to occur without a malignant property, 

neoplastic polyps found in the colon can be the precursor of the colorectal carcinoma. The 

different types of colonic polyps based on their malignancy potential are described in the 

succeeding sections. 

3.1.1 Non-neoplastic polyps 

An abnormal mucosal maturation or inflammation can lead to the formation of the 

non- neoplastic polyps. These make up about 90% of the epithelial polyps in the large 

intestine of persons above the age of 60. The different types of non- neoplastic polyps are 

as presented below: 

1) Hyperplastic polyps 

These are the small nipple-like, hemispherical, smooth protrusions of the mucosa which 

may appear individually or in multiple numbers. Approximately half of such polyps occur 

in the recto sigmoid region. Although they are not dangerous, some hyperplastic polyps on 
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the right side of the colon can be the precursors of the colorectal carcinoma. This 

transformation occurs due to a series of genetic mutations in these lesions. Most 

hyperplastic polyps are less than 5mm in size and are characterized by cells having a 

hypermature appearance. 

2) Hamartomatous polyps 

These are the benign malformations which have the same growth rate as that of a normal 

tissue. 

a) Juvenile Polyps:-  Hamartomatous proliferations of the lamina propria are typically 

found in younger children. It is characterized by large lesions of 1-3 cm in diameter which 

are rounded, smooth or lobulated and having a stalk up to 2 cm long. It commonly occurs 

individually in the rectum.  Based on several factors such as inheritance method, severity 

and degree of involvement of GI tract, the Juvenile Polyposis Syndrome (JPS) is 

subdivided into four subgroups such as Infantile Polyposis Syndrome, Juvenile Polyposis 

Coli, Generalized JPS and Gastric JPS . 

b) Retention Polyps:- These refers to the Juvenile Polyps in adults, but are comparatively 

smaller lesions. 

c) Peutz- Jeghers Polyps:- These polyps develop as a result of an autosomal dominant 

Puetz- Jeghers syndrome, which in turn occurs by germ- line mutations in the LKB1 gene 

that encodes a serine threonine kinase. 

3) Inflammatory Polyps 

These refer to the non- dysplastic crypts formed as a result of some injury to the mucosa. 

The number and the appearance of such polyps may be dependent on the level of severity 

of the causative factor. Mucosal prolapse and the inflammatory bowel disease are the 
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commonly described reasons for the arrival of such inflammatory polyps. 

3.1.2 Neoplastic polyps 

In contrast to the non-neoplastic type, these have a malignancy nature. Neoplastic 

polyps are those with a higher probability to develop cancer. 

1) Adenomas 

Epithelial proliferation and dysplasia may lead to the formation of the malignant neoplastic 

polyps, which are the adenomas. There is an equal chance of occurrence in both males and 

females and the hereditary aspect also prevails in case of sporadic adenoma. The 

malignancy with the adenomatous polyp may depend on the polyp size, histologic 

architecture and the severity of epithelial dysplasia. Adenomas may have a larger size 

ranging from few millimeters to several centimeters compared to the hyperplastic polyps. 

Among these, the maximum diameter is a prominent feature that affects the adenoma to 

carcinoma transformation. The three subtypes of adenomatous polyps are: 

 a) Tubular Adenoma:- It is the most common type among the three adenomas. It appears 

small and pedunculated but the smallest tubular adenomas are sessile. The larger ones will 

have slender stalks and raspberry like heads. 

b) Villous adenoma:- They are the dangerous ones and mostly found in older persons. A 

large and sessile structure is the characteristic feature of villous adenoma. They appear as 

villiform extensions of the mucosa covered by dysplastic columnar epithelium and 40% of 

these lesions tend to have invasive carcinoma  

 c) Tubulovillous adenoma:- The appearance, features and also the risk of these adenoma 

lies intermediate between the tubular and villous adenoma. 
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Other than having the pedunculated or sessile structures, another non- polypoid group 

called flat adenomas were discovered later. They are sometimes almost depressed and are 

found to exhibit a high grade dysplasia. 

2) Familial Polyposis Syndrome 

Familial polyposis syndrome is an autosomal dominant disorder that may later turn out to 

a malignant situation. A number of 500 to 2500 colonic adenomas, both tubular and villous 

may develop over the mucosal surface in this Famililal Adenomatous Polyposis disease 

(FAP).  The genetic defect due to APC gene on chromosome 5q21 was found out to be the 

causative factor of FAP. 

3.1.3 Colorectal carcinoma 

The adenomatous polyps may transform into the malignant adenocarcinoma if not 

cured at any early stage. Males are 20% more affected when compared to females. The 

development of carcinoma from adenomatous lesions is directly related to the number of 

adenomas. Thus the probability of cancer is higher in patients with the Familial Polyposis 

Syndrome.   

The whole classification scheme described here for the colorectal polyps/tumor can be 

illustrated in the Figure 2. 
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Figure 2. Colonic tumor/abnormalities classification 

 

 

3.2 Colorectal Biopsy Samples 

The colorectal tissue slides and the concerned medical details were collected from the 

Pathology and Laboratory Medicine lab at Al-Ahli hospital, Qatar. This study was 

reviewed and approved by Qatar University’s Institutional Review Board (QU-IRB). A 

total of 164 tissue samples collected between the years 2007 and 2016 were provided by 

the hospital from 151 different patients.  Each sample belongs to one of the four classes of 

colorectal tissue: Normal, Hyperplastic polyp (HP), Tubular Adenoma with low-grade 

dysplasia (TA_LG) and Carcinoma (CA). The distribution of images with respect to the 
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number of patients as well as the number of biopsy slides can be deduced from  

Table 1.  

 

 

Table 1. Image distribution with respect to number of patients and slides 

 
 Normal HP TA_LG CA Total 

No. of images 50 50 50 50 200 

No. of patients 31 36 38 49 151 

No. of biopsy slides 38 38 38 50 164 

 

 

The tissues were initially fixed overnight in 10% neutral buffered formalin. It is 

followed by placing them in an auto processor where it will be subjected to different 

concentrations of ethyl alcohol, xylene, and paraffin. After that, the tissue is embedded in 

paraffin and cut by microtom into 5 micron thickness. Finally, they are mounted on glass 

slides and stained by hematoxylin and eosin stain. 

 Except for the normal class, specific marking was done by the consultant 

histopathologist in order to indicate the ROI belonging to the concerned class. Normal class 

stands for the non-cancerous, non-malignant class without any disease symptoms [43].  

Hyperplastic polyp belongs to the non-neoplastic polyp category. Although they are 

harmless, some hyperplastic polyps on the right side of the colon can be the precursors of 
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the colorectal carcinoma. Tubular Adenoma falls under the neoplastic polyp category. The 

malignancy with the adenomatous polyp may depend on the polyp size, histologic 

architecture and the severity of epithelial dysplasia. The adenomatous polyps may 

transform to the malignant carcinoma if not cured at an early stage. 

3.3 Image Acquisition 

We have built two different setups in our Lab in order to prepare multispectral and 

RGB databases of the samples. Specific sensors and microscope were used for the image 

acquisition. Both types of images are captured under transmission microscopy mode. ROIs 

captured in the multispectral imaging case were recorded manually and exactly the same 

region was acquired with the RGB imaging setup also. Both techniques are detailed in the 

following subsections.  

3.3.1 Multispectral Imaging (MSI) 

Our work [46] presents the multispectral image acquisition system to develop a 

database for the colorectal biopsy slides. Each biopsy sample is acquired in different 

wavelength bands corresponding to both visible and near infrared spectrum. With the 

acquired partial database, a preliminary experiment was carried out which involved an LBP 

algorithm with RF classifier. 

We followed the tunable filter approach to build our multispectral imaging system. 

Since a single tunable filter covering the whole range from visible to near infrared is not 

available, we had to setup two different arrangements for acquiring images in both ranges. 

Our detector is the Xeva-1.7-320 VisNIR digital camera with a thermoelectrically cooled 

InGaAs detector head. The model XEN000165 we are using offers a frame rate of 60Hz, 
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with a camera link digital output interface. It supports spectral imaging in the range of 400 

to 1700 nm. The Varispec liquid crystal tunable filter (LCTF) VIS-20-20, LNIR-20-20 

enables the hyperspectral acquisition in the visible and near infrared bands respectively. 

The tuning of wavelength in the desired range is enabled by the Varispec filter software. 

Image acquisition is controlled by the Xeneth Software delivered with the camera.  

The ROI to be acquired is decided based on the proper recommendation from the 

histopathologist. Once the bands in the visible range are acquired, the co-ordinate marking 

scheme in the zeiss microscope allows capturing the same region over the NIR bands also, 

after replacing the VIS LCTF (visible range) with the LNIR LCTF (near infrared range) 

1) Visible Range Acquisition 

 Acquisition of hyperspectral images in the visible range involves the deployment of 

Xenics camera, VIS Filter, VIS Relay lens as well as the microscope. Zeiss axioscope a1 

microscope with halogen illumination was employed for the 10x magnification of 

specimens. The imaging setup used for multispectral image acquisition in the visible range 

is shown in Figure 3 

The usage of the microscope (objective lens) at the end implies that the lens is not 

used just in front of the camera. This particular setup demands the usage of an additional 

optical component, a relay lens so as to reduce the vignette. The relay lens also supports 

easy focus adjustment. The VIS Filter software allows the tuning of filter’s wavelength 

from 400 to 720 nm so that corresponding images in any of this desired wavelength range 

can be acquired.  

Thirteen multispectral visible bands were captured for each specimen at wavelength 

intervals of 20nm starting from 470nm. 
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Figure 3. Multispectral image acquisition in the visible band 

 

 

2) Near Infrared Acquisition 

  Acquisition of hyperspectral images in the near infrared range involves the 

deployment of Xenics camera, LNIR Filter, LNIR Relay lens as well as the microscope. 

The same objective lens of 10x specification was used here too. During the infrared 

imaging, the heat protection filter arranged in the light path of the microscope for visible 

range acquisition had to be removed. We captured 26 multispectral near infrared bands for 

each specimen at wavelength intervals of 20nm ranging from 1150nm to 1650 nm.  

The resolution of our Xenics camera is 320x256 pixels, which resulted in a 

320x256x39 multispectral cube for each specimen. A total of 200 images with 50 images 

per class contributed to our MSI database. Some of the bands captured in VIS as well as 
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NIR range for a ‘normal’ colorectal tissue are shown in Figure 4. 

 

 

 

 

Figure 4. Multispectral image bands of a normal tissue: VIS Range (Top), NIR range 

(Bottom) 

 

 

3.3.2 Standard RGB Imaging 

The biopsy slides were digitized using a Canon Power Shot A650IS digital camera 

mounted over the halogen illuminated zeiss microscope (Figure 5). The resolution of the 

digital camera was 640x480 pixels. The images were acquired with the setting of a 10x 

objective lens (Figure 6). The same set of 200 images in MSI database was captured with 

the RGB setup.  
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Figure 5. RGB Image Acquisition setup 

 

 

 
 

Figure 6. Normal Tissue (Top Left), Hyperplastic polyp (Top Right), Tubular Adenoma 

with low-grade dysplasia (Bottom Left), Carcinoma (Bottom Right) 
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3.4 Visual Inspection of biopsy images 

Having a look at Figure 6, it seems that the visual characteristics of glandular structures 

differ greatly between the classes. The glands in the normal tissue often appear circular in 

shape. Depending upon whether transverse or longitudinal cross section was considered 

during biopsy, it may change to slightly elliptical shape. The structure will be well 

organized within the tissue. The hyperplastic polyp tissues appear to be a transformed 

version of the normal tissues with elongated glands. It is also characterized by a star shaped 

lumen. In tubular adenoma with low grade dysplasia, there will be thickly populated cells 

on the epithelial lining. The size and number of these cells may vary. The carcinoma tissue 

looks much dissimilar to other classes. We cannot identify individual glands within quite 

a disorganized structure.  

Now we can have a closer look on a series of images belonging to each of these classes 

(Figure 7). We can infer the high complexity underlying the task of automatic 

discrimination between the four types of tissues. It is obvious that there are several 

instances of inter-class similarities and intra-class variations. Among the classes TA_LG 

and CA there tend to be a great deal of confusion. It can be inferred from the images below. 
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Figure 7. Sample images from the dataset: Normal tissue (column 1), Hyperplastic polyp 

(column 2), Tubular Adenoma with low grade dysplasia (column 3), Carcinoma (column 

4) 

 

 

3.5 Data Augmentation 

The dataset should be sufficiently large in order to have enough samples for the training 

and testing phases of supervised learning algorithms. We applied specific augmentations 

to our MSI and RGB datasets with an intention to build a larger database. The augmentation 
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procedure on the latter dataset was meant to provide a greater number of images than the 

former since they were being used for the CNN experiments. 

3.5.1 MSI Dataset 

 Each multispectral image was split into 4 equal sized non-overlapping patches. 

This resulted in the enlarged database comprising 800 images (patches), with 200 images 

per class. The images of decreased resolution, 128x160 was used for the evaluation of 

algorithms. 

 

 

 

 

Figure 8. (Left) Original Image (Right) 4 patches generated from the image 

 

 

3.5.2 RGB Dataset 

The 640x480 image was initially divided into four 300x300 sized patches; two from 
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the top half and two from the bottom half. Each of the 4 patches was subjected to 3 major 

rotations (90°, 180°, and 270°) and a transpose (Figure 9). This enabled us to build a 

database of 4000 images (patches) with 1000 patches per class. 

 

 

 
 

Figure 9. (Left) Original Image (Right) 20 patches generated from the image 
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CHAPTER 4: CANCER IDENTIFICATION ON MULTISPECTRAL IMAGES 

We have provided a review of tumor detection methodologies utilizing 

multispectral images in [47]. Some prominent researches carried out to accomplish the 

detection of cancers affecting cervix, breast, colon, lungs, and prostate are discussed in the 

work. The ultimate aim of hyper/ multispectral imaging of biopsy slides is to achieve an 

efficient demarcation between the normal and abnormal tissues in automated diagnostic 

systems. Since a high computational load is accompanied with the multispectral image 

processing, it is expected to surpass the efficacy of RGB imaging. 

The most challenging problem with multispectral data processing is the 

phenomenon known as, “Curse of Dimensionality”. Acquisition of medical datasets with 

high spatial & spectral resolution can also be a complex task. Another aspect we have to 

deal with is the high expenses incurred in the procurement of concerned equipments. 

Capturing the extremely fine variations both spectrally and spatially paves the development 

of an ideal automated system for the classification of the various tissue types. Extraction 

of relevant information from the high dimensional data cubes can be a challenging phase 

when dealing with multispectral images. The time constraint due to the increased 

complexity of the multispectral image processing should be overcome by the selection of 

the appropriate spectral bands from the redundant data. 

It can be seen that most of the works in the literature involve experiments on a small 

number of images. This can be due to the unavailability of the multispectral dataset, which 

demands complex acquisition. A small dataset is not sufficient to quantify the success rate 

of specific algorithms which may need extensive training for learning purpose. 

Multi/Hyper spectral imaging provides imaging in invisible bands such as infrared, thus 
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offering the capability to reveal information that cannot be seen by the naked eye. But the 

full spectrum ranging from ultraviolet to near and the mid infrared have not been 

completely exploited with the current spectral imaging systems in the cancer diagnostic 

field. All multispectral and hyperspectral imaging methods till date have utilized only the 

visible part of light spectrum. This may not be much adequate to reveal the complete tissue 

characteristics, as near-infrared / mid-infrared spectrum remains unutilized.  

4.1 Tumor identification system based on multispectral imaging 

Our research work [48] presents a multispectral image based colorectal tumor 

identification system.  The algorithm validation is performed on our augmented MSI 

database comprising 800 images. ie, 200 images each from the 4 classes, viz. normal, 

hyperplastic polyp, tubular adenoma with low grade dysplasia and carcinoma tissues. All 

the texture feature based methodologies in our work extract corresponding feature 

independently for each band and concatenate together to form the feature vector for 

classification. Rotation invariant Local phase quantization (rLPQ) feature extraction on our 

multispectral images have yielded a classification accuracy of 86.05% with an SVM 

classifier. Moreover, the experiments were carried out on another small multispectral 

image dataset which had 3 categories of tissues. The obtained results were also satisfactory 

to demonstrate the effectiveness of rLPQ in the context of tumor identification. 

Feature Extraction includes LBP, Uniform Rotation invariant LBP, LPQ, and 

rLPQ. For all type of features extracted from the multispectral images, the classification 

performance was compared for two supervised learning techniques: SVM and RF. The 

whole dataset was split into 70% for training and the remaining for validation. These 

partitions was done randomly from the 800 patches and hence irrespective of the patient, 
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biopsy sample and image. The classification performances are presented in Table 2. All 

classification accuracies are based on a 50 fold data shuffling method of holdout validation. 

 

 

Table 2. Classification accuracies (%) on our multispectral image dataset 

 
Method SVM RF 
LBP 77.86 62.10 
Uniform Rotation invariant LBP 83.61 72.18 
LPQ 67.52 60.14 
Rotation invariant LPQ 86.05 72.04 

 

 

It is obvious that rLPQ outperforms all other methods studied. Regarding the 

performance of classifiers, SVM could provide higher classification accuracies when 

compared to the RF method.  

In the same work, we conducted experiments on another multispectral image 

dataset (Dataset II) [15]. But it was composed of image bands from VIS spectrum alone. 

The 29 images of the database were split into 16 patches of dimensions 128*128*16, which 

allowed us to have a larger dataset. These patches were then labeled with the same label as 

the image from which they were extracted. Therefore, the resultant database on which the 

tests were conducted consists of 160 CA, 160 BH and 144 IN images of size 128*128*16. 

The classification results of LPQ, rLPQ as well as Uniform rLBP on the dataset are shown 

in Table 3. 
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Table 3. Classification accuracies (%) on Dataset II 

 
Method SVM RF 
Uniform rotation invariant LBP 91.49 88.81 
LPQ 80.92 79.91 
Rotation invariant LPQ 90.39 84.53 

 

 

It can be concluded that the rLPQ and uniform rLBP methods yielded comparable 

accuracies for Dataset II, where it was required to discriminate between three classes. It is 

worth noticeable that SVM classifier outperformed the RF classifier here also, with an 

insignificant margin. 

4.2 Comparative evaluations between RGB and Multispectral Imaging based 

approaches 

The four textural features; LBP, Uniform rLBP, LPQ, and rLPQ are used in the 

comparative study to evaluate the classification performances achieved with the two image 

modalities in the scenario of cancer tissue identification. Since the resolution of images in 

the MSI and RGB datasets were different, we performed a resizing of the images as in the 

latter one. Moreover, RGB dataset was augmented on the basis of the method followed for 

the MSI dataset (section 3.5.1).  Eventually, all experiments were carried out on the 

generated 800 patches of both the databases (Table 4). 
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Table 4. Comparison of classification accuracies with Multispectral and RGB Images 

 
Method Multispectral 

Images  
RGB 
Images 

LBP 77.86 65.32 

Uniform Rotation invariant LBP 83.61 66.99 

LPQ 67.52 65.29 

Rotation invariant LPQ 86.05 80.71 

 

 

Table 4 reveals that the multispectral imaging approach is delivering the best results 

for all the methods, with the greatest accuracy improvement on Uniform rotation invariant 

LBP. The higher accuracy has to comprise with the increased computational complexity 

arising from the 39 bands in MSI compared to the 3 in RGB images. The processing time 

for each algorithm is depicted in Figure 10. The rLPQ technique using multispectral 

imagery provides the highest accuracy and consumes a greater time in comparison to its 

RGB counterpart.  
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Figure 10. Comparison of computational complexity 

 

 

4.3 Band Selection in Multispectral Imagery 

Selection of the relevant bands from the multispectral image data can be the 

solution to reduce the computational complexity without significantly suffering from the 

classification performance. Our idea was based on mutual information. In information 

theory, the mutual information measures the statistical dependence between two random 

variables [49]. In other words, it can indicate the amount of information one variable 

contains regarding another variable. It has been utilized as a tool to realize image 

registration, where it serves to measure the similarity between two images.  

The redundancy in the image bands can be captured with the calculation of mutual 

information between the neighboring bands. Higher values of MI come with the bands 

which are highly similar. Initially, mutual information (MI) is computed between the 
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individual neighboring bands. The bands which have the MI value less than a certain 

threshold alone are retained. If there are multiple neighboring bands which are similar (MI 

above the threshold), then the band with the highest information should be identified and 

selected. It is based on the entropy values of that particular band. The band which has the 

highest entropy corresponds to the one with maximum information and is retained. When 

the threshold is varied from high to low, the number of bands that are selected will be 

reduced. The whole process is represented in  Figure 11. 

 

 

  

 
Figure 11. Proposed methodology for band selection 



  
   

37 
 

Figure 12 shows a plot of mutual information of the respective bands for several 

sample images from the database. It is obvious that all curves follow a similar pattern, 

which indicates the bands that should be retained for a dataset can be generalized from this 

finding. This process insists on performing the band selection algorithm as an offline 

procedure and should not be repeated for new images that are collected from the same 

setup. In contrast to existing methods [50], this approach enables to reduce the computation 

time with a much simpler algorithm. 

 

 

 

 

Figure 12. Mutual information among adjacent thirty nine bands: The plot is given here 

for randomly selected seven images in the database 
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 We applied this band selection algorithm for tumour identification using the 

Rotation invariant LPQ features. The LPQ is selected here because it is the one with the 

highest accuracy as presented in Table 4. The local window size used in the precomputed 

LPQ filters applied with the rotation invariant LPQ descriptors was the default value of 9. 

Here, we are setting the window size values to 3, 5, 7 and 9 and the corresponding band 

selection results are investigated. The classification methods that use all the 39 bands are 

represented in Table 5.  In order to decide the acceptable MI, we have chosen 4 different 

thresholds for which a different number of bands could be selected. Table 6 shows the 

classification accuracies with different number of bands with the variation in the filter size 

as well. 

 

 

 

Table 5. Classification accuracies without band selection (For filter window size 3,5, 7, 
and 9) 

 
Filter size 3 5 7 9 
Rotation Invariant 
LPQ 

86.11 
 

86.39 
 

87.70 
 

86.05 
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Table 6. Classification accuracies with band selection: An MI threshold of 3.25 leads to 

the selection of 22 image bands from the 39 dimensional multispectral image cube 

 

 No. of bands 22 
 

(MI< 3.25) 

19 
 

(MI<3) 

17 
 

(MI<2.75) 

10 
 

(MI<2.5) 
 
Filter size 
3 86.17 85.30 

 
83.62 
 

78.86 
 

5 86.83 
 

87.31 
 

86.82 
 

85.12 
 

7 87.87 
 

87.91 
 

87.50 
 

87.15 
 

9 86.52 
 

86.77 
 

86.19 
 

85.37 
 

 

 

A quick scan through the above 2 tables conveys that classification accuracies are 

increasing or remaining largely the same compared to the results obtained with the full set 

of 39 bands. It is evident that the accuracy has improved from 87.70% to 87.91%,   when 

only 19 bands are used. This finding indicates that many redundant bands could be 

eliminated with the band selection. Consequently, the processing time could be greatly 

reduced. Moreover, the feature extraction from mere relevant bands resulted in increased 

accuracy. Even with the 10 bands, an accuracy of 87.15% is obtained, which is not 

significantly less than the result obtained without band selection. 

In order to evaluate the significance of band selection algorithm, we carried out our 

band selection approach on another dataset (Dataset II)[15]. The images in this database is 

augmented in a similar manner as that of our MSI dataset (Section 3.5.1), which generated 

464 images.  
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Table 7 shows the classification accuracies obtained when using the original set of 16 

bands. The results are displayed for the different window sizes of 3, 5, 7 and 9 of the 

LPQ filters. The band selection algorithm produces the classification results indicated in 

Table 8. 

 

 

Table 7. Classification accuracies without band selection (For filter window size 3, 5, 7, 

and 9) 

 

Filter size 3 5 7 9 
Rotation Invariant 
LPQ 

92.21 
 

91.96 
 

91.68 
 

90.32 
 

 

 

Table 8. Classification accuracies with band selection: An MI threshold of 3 leads to the 

selection of 13 image bands from 16 dimensional multispectral image cube 

 
    No. of Bands 13 

 
(MI<3) 

10  
 

(MI<2.75) 

8  
 
(MI<2.5) 

5  
 

(MI<2.25) 
 
Filter size 

 

3 92.57 
 

93.83 
 

93.77 
 

90.11 
 

5 91.44 
 

94.09 
 

93.96 
 

92.75 
 

7 91.22 
 

92.24 
 

92.60 
 

92.86 
 

9 90.73 
 

92.39 
 

92.55 
 

91.84 
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Similar to our MSI dataset, the classification accuracy has improved with the band 

selection. The previous accuracy of 92.21% with the 16 bands was improved to 94.09% 

when 6 bands were removed. This finding demonstrates the band selection benefits for 

better classification and reduced computational complexity. Feature extraction on mere 5 

bands from the total 16 could deliver a higher accuracy than those obtained from the full 

set of bands. This signifies the ability of our algorithm to eliminate the redundant bands by 

mutual information and identify the prominent bands from the image entropies.  
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CHAPTER 5: THE PROPOSED APPROACH 

5.1 CNN Overview 

CNNs are the basic feed-forward artificial neural networks which were initially 

developed as crude models of mammalian visual cortex. A typical CNN structure can be 

visualized in Figure 13. The input layer is fed with our original images which will be 

comprised of specific number of channels according to the modality of images. There are 

sub-sampling layers between each convolutional layers which is intended to decimate the 

feature maps of the neurons of previous layers. After the different subsampling layers, a 

scalar (1-D) neuron should be reached in the last subsampling layer. Finally, CNNs contain 

fully-connected layers that have the structure similar to Multi-Layer Perceptrons. 

We should consider and specify certain parameters prior to the CNN training phase. 

This includes width and height of the input image, filter dimensions at each level, number 

of CNN hidden layers, number of MLP hidden layers, number of neurons in each layer, 

and subsampling factor for each level. Basically, the input image dimension should comply 

with the number of CNN layers, filter size and subsampling factors so that at the final layer, 

we can reach to a scalar feature map.  
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Figure 13. Structure of the conventional CNN (top), Convolutions with only 

convolutional layers shown (bottom) [51] 

 

 

5.2 Adaptive 2D CNNs 

In the proposed adaptive CNN implementation, there are two types of hidden 

layers: CNN layers into which conventional “convolutional” and “subsampling” layers are 

merged, and fully-connected (or MLP) layers. Neurons of the hidden CNN layers are, 

therefore, modified in such a way that each neuron is capable of both convolution and 

down-sampling. The intermediate outputs of each neuron are sub-sampled to obtain the 

final output of that particular neuron. The final output maps are then convolved with their 

individual kernels and further cumulated to form the input of the next layer neuron. In order 

to simplify the CNN analogy and to have the freedom of any input layer image dimension 
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independent of the CNN parameters, neurons of the hidden “CNN layers” are modified as 

shown in Figure 14. Here, each neuron is capable of convolution and down-sampling. The 

final output of the kth neuron at layer l,  𝑠𝑠𝑘𝑘𝑙𝑙 , is, therefore, the sub-sampled version of the 

intermediate output, 𝑦𝑦𝑘𝑘𝑙𝑙 . The input map of the next layer neuron will be obtained by the 

cumulation of the final output maps of the previous layer neurons convolved with their 

individual kernels, as follows: 

𝑥𝑥𝑘𝑘𝑙𝑙 =  𝑏𝑏𝑘𝑘𝑙𝑙 +  � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2𝐷𝐷�𝑤𝑤𝑖𝑖𝑖𝑖𝑙𝑙−1, 𝑠𝑠𝑖𝑖𝑙𝑙−1,′ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑′�    
𝑁𝑁𝑙𝑙−1

𝑖𝑖=1
 

 

(1) 

  

 

f

+

f’

+

+

+

Layer (l-1) Layer l Layer (l+1)

SS(2,2)

US(2,2)

kth neuron

(22,22)

(20,20)

(10,10) (8,8)

 

 

Figure 14. Three consecutive CNN layers in the adaptive CNN implementation 
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The number of hidden CNN layers can be set to any number. This ability is possible 

in this implementation because the sub- sampling factor of the output CNN layer (the 

hidden CNN layer just before the first MLP layer) is set to the dimensions of its input map, 

e.g., if the layer l+1 would be the output CNN layer, then the sub-sampling factors for that 

layer is automatically set to ssx = ssy = 8 since the input map dimension is 8x8. Besides 

the sub-sampling, note that the dimension of the input maps are gradually decreasing due 

to the convolution without zero padding. As a result of this, the dimension of the input 

maps of the current layer is reduced by (Kx-1, Ky-1) where Kx and Ky are the width and 

height of the kernel, respectively. The input layer is fed with the down-sampled patches 

each of which has three color channels (R, G, B). We performed down-sampling to 64x64 

pixels in order to mimic the low-resolution data.  

For an N-class problem, for each patch with its corresponding target and output 

vectors, [𝑡𝑡1, … . , 𝑡𝑡𝑁𝑁] 𝑎𝑎𝑎𝑎𝑎𝑎 [𝑦𝑦𝑙𝑙𝐿𝐿, … . ,𝑦𝑦𝑁𝑁𝐿𝐿 ] respectively we are interested to find out the 

derivative of this error with respect to each individual network parameter (weights and 

biases). Let l=1 and l=L be the input and output layers, respectively. The error (MSE) in 

the output (MLP) layer can be expressed as:  

𝐸𝐸 = 𝐸𝐸(𝑦𝑦1𝐿𝐿 , … … ,𝑦𝑦𝑁𝑁𝐿𝐿
𝐿𝐿 ) =  �(𝑦𝑦𝑖𝑖𝐿𝐿 −  𝑡𝑡𝑖𝑖)2

𝑁𝑁𝐿𝐿

𝑖𝑖=1

 

 

 

(2) 

  

The Back Propagation (BP) training of the MLP layers is identical to the 

conventional BP for MLPs and hence skipped here.  The BP training of the CNN layers is 

composed of 4 distinct operations as detailed below. 
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5.2.1 Inter BP among CNN layers: ∆𝒔𝒔𝒌𝒌𝒍𝒍
∑
← ∆𝒍𝒍𝒍𝒍+𝟏𝟏 

The basic rule of BP states: If the output of the kth neuron at layer l contribute a 

neuron i with weight 𝑤𝑤𝑘𝑘𝑘𝑘
𝑙𝑙  in the next layer l+1, the next layer neuron’s delta ∆𝑙𝑙𝑙𝑙+1 will 

contribute with the same weight to form ∆𝑘𝑘𝑙𝑙 of the neuron in the previous layer l. This 

means:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘𝑙𝑙

=  ∆𝑠𝑠𝑘𝑘𝑙𝑙  
Σ
←  Δ𝑙𝑙𝑙𝑙+1,∀𝑖𝑖 ∈ {1,𝑁𝑁𝑙𝑙+1} 

 

(3) 

  

Where E is the total error (MSE)  

Specifically: 

𝑠𝑠𝑘𝑘𝑙𝑙 =  �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑙𝑙+1

 
𝜕𝜕𝑥𝑥𝑖𝑖𝑙𝑙+1

𝜕𝜕𝑠𝑠𝑘𝑘𝑙𝑙
=  � ∆𝑙𝑙𝑙𝑙+1

𝜕𝜕𝑥𝑥𝑖𝑖𝑙𝑙+1

𝜕𝜕𝑠𝑠𝑘𝑘𝑙𝑙

𝑁𝑁𝑙𝑙+1

𝑖𝑖=1

𝑁𝑁𝑙𝑙+1

𝑖𝑖=1

 

 

(4) 

  

 
Where;  

 𝑥𝑥𝑖𝑖𝑙𝑙+1 = ⋯+ 𝑠𝑠𝑘𝑘𝑙𝑙 ∗ 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 + ⋯ 

 

(5) 

  

 
It is obviously hard to compute the derivative directly from the convolution. Instead, let us 

focus on a single pixel’s contribution of the output, 𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛) , to the pixels of the 

𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚,𝑛𝑛) with the assumption of a 3x3 kernel. 

𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚− 1,𝑛𝑛 − 1) = ⋯+  𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛).𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (2,2) + ⋯ 

      𝒙𝒙𝒊𝒊𝒍𝒍+𝟏𝟏(𝒎𝒎− 𝟏𝟏,𝒏𝒏) = ⋯+ 𝒔𝒔𝒌𝒌𝒍𝒍 (𝒎𝒎,𝒏𝒏).𝒘𝒘𝒌𝒌𝒌𝒌
𝒍𝒍 (𝟐𝟐,𝟏𝟏) +⋯        

 

(6) 
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𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚 + 1,𝑛𝑛 + 1) = ⋯+  𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛).𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (0,0) + ⋯ 

This is illustrated in Figure 15 where the role of an output pixel,  𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛), over two pixels 

of the next layer’s input neuron’s pixels, 𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚− 1, 𝑛𝑛 − 1) and 𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚 + 1, 𝑛𝑛 + 1) is 

indicated. 

Considering the pixel as an MLP neuron that is connected to other MLP neurons in 

the next layer, according to the basic rule of BP one can then easily write the delta of 

𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛) as follows: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘𝑙𝑙

 (𝑚𝑚,𝑛𝑛) =  ∆𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛)

=  � ( � � ∆𝑙𝑙𝑙𝑙+1(𝑚𝑚 + 𝑟𝑟,𝑛𝑛 + 𝑡𝑡).𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (1 − 𝑟𝑟, 1 − 𝑡𝑡)
1

𝑡𝑡=−1

1

𝑟𝑟=−1

)
𝑁𝑁𝑙𝑙+1

𝑖𝑖=1

 

 

(7) 

  

If we generalize it for all pixels of  ∆𝑠𝑠𝑘𝑘𝑙𝑙 , 

∆𝑠𝑠𝑘𝑘𝑙𝑙 =  � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2𝐷𝐷(∆𝑙𝑙𝑙𝑙+1, 𝑟𝑟𝑟𝑟𝑟𝑟180�𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 �, ′𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑑𝑑′)
𝑁𝑁𝑙𝑙+1

𝑖𝑖=1

 

 

(8) 

  

Note that this is a full convolution with zero padding by (Kx-1, Ky-1) zeros to each 

boundary of the ∆𝑙𝑙𝑙𝑙+1in order to achieve an equal dimensions (width and height) for  ∆𝑠𝑠𝑘𝑘𝑙𝑙  

and ∆𝑙𝑙𝑙𝑙+1 with the 𝑠𝑠𝑘𝑘𝑙𝑙 . 
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Figure 15. A single pixel’s contribution of the output, 𝒔𝒔𝒌𝒌𝒍𝒍 (𝒎𝒎,𝒏𝒏), to the two pixels of the 

𝒙𝒙𝒊𝒊𝒍𝒍+𝟏𝟏  using a 3x3 kernel. 

 

 

5.2.2 Intra BP within a CNN neuron: ∆𝒌𝒌𝒍𝒍 ← ∆𝒔𝒔𝒌𝒌𝒍𝒍  

Once the first BP is performed from the next layer, l+1, to the current layer, l, then we 

can further back-propagate it to the input delta. Let zero order up-sampled map be: 𝑢𝑢𝑢𝑢𝑘𝑘𝑙𝑙 =

 𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑘𝑘𝑙𝑙 ), then one can write: 

∆𝑘𝑘𝑙𝑙 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝑙𝑙 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑘𝑘

𝑙𝑙  𝜕𝜕𝑦𝑦𝑘𝑘
𝑙𝑙

𝜕𝜕𝑥𝑥𝑘𝑘
𝑙𝑙 =  𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢𝑢𝑢𝑘𝑘
𝑙𝑙  𝜕𝜕𝑢𝑢𝑢𝑢𝑘𝑘

𝑙𝑙

𝜕𝜕𝑦𝑦𝑘𝑘
𝑙𝑙  𝑓𝑓′�𝑥𝑥𝑘𝑘𝑙𝑙 � = 𝑢𝑢𝑢𝑢�∆𝑠𝑠𝑘𝑘𝑙𝑙 �𝛽𝛽 𝑓𝑓′(𝑥𝑥𝑘𝑘𝑙𝑙 )         

 

(9) 

  

Where 𝛽𝛽 = (𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠)−1 since each pixel of 𝑠𝑠𝑘𝑘𝑙𝑙  was obtained by averaging ssx.ssy 

number of pixels of the intermediate output, 𝑦𝑦𝑘𝑘𝑙𝑙 . Instead of averaging if maximum pooling 

is used, then Eq. (9) should be adapted accordingly. 
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5.2.3 BP from first MLP layer to output CNN layer 

As illustrated in Figure 16, the output layer of CNN can be connected to the 1st MLP 

layer and hence the outputs of this layer CNN neurons, 𝑠𝑠𝑘𝑘𝑙𝑙 , are scalars. In other words, 

𝑠𝑠𝑘𝑘𝑙𝑙  and of course, ∆𝑠𝑠𝑘𝑘𝑙𝑙  are now all scalars and to achieve this recall that the subsampling 

factors, ssx and ssy, in this particular layer are all set to the dimensions of the input map 

(ssx= 8, ssy= 8) as in the figure. 

f

+

f’

+

+

+

Output CNN Layer 
(l)

1st MLP layer 
(l+1)

SS(8,8)

US(8,8)

kth neuron

(8,8)
f

f

f

 
 

Figure 16. Output CNN layer- 1st MLP layer 

 

 

Similarly the weights of this CNN layer neurons, 𝑤𝑤𝑘𝑘𝑘𝑘
𝑙𝑙 , are also all scalar and instead of 

convolution, scalar multiplication is performed as in a regular MLP. So from MLP layer to 
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the CNN layer, the regular (scalar) BP is simply performed as in Eq. (10) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘

𝑙𝑙 =  ∆𝑠𝑠𝑘𝑘𝑙𝑙 =  ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝑙𝑙+1  𝜕𝜕𝑥𝑥𝑖𝑖
𝑙𝑙+1

𝜕𝜕𝑠𝑠𝑘𝑘
𝑙𝑙

𝑁𝑁𝑙𝑙+1
𝑖𝑖=1 =  ∑ ∆𝑖𝑖𝑙𝑙+1𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙

𝑁𝑁𝑙𝑙+1
𝑖𝑖=1       

 

(10) 

  

 

And intra BP to get: ∆𝑘𝑘𝑙𝑙
𝐵𝐵𝐵𝐵
��  ∆𝑠𝑠𝑘𝑘𝑙𝑙  is identical as in Eq. (9) 

∆𝑘𝑘𝑙𝑙 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝑙𝑙 = 𝑢𝑢𝑢𝑢�∆𝑠𝑠𝑘𝑘𝑙𝑙 � 𝛽𝛽 𝑓𝑓′(𝑥𝑥𝑘𝑘𝑙𝑙 )        

 

(11) 

  

Finally, the weight and bias sensitivities, too, are identical to a regular MLP 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘

𝑙𝑙 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝑙𝑙+1  
𝜕𝜕𝑥𝑥𝑗𝑗

𝑙𝑙+1

𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘
𝑙𝑙 =  ∆𝑗𝑗𝑙𝑙+1𝑠𝑠𝑘𝑘𝑙𝑙         

 

(12) 

  

and       𝝏𝝏𝝏𝝏
𝝏𝝏𝒃𝒃𝒌𝒌

𝒍𝒍+𝟏𝟏 =  𝝏𝝏𝝏𝝏
𝝏𝝏𝒙𝒙𝒌𝒌

𝒍𝒍+𝟏𝟏
𝝏𝝏𝒙𝒙𝒌𝒌

𝒍𝒍+𝟏𝟏

𝝏𝝏𝒃𝒃𝒌𝒌
𝒍𝒍+𝟏𝟏 =  ∆𝒌𝒌𝒍𝒍+𝟏𝟏    

5.2.4 Computation of weight and bias sensitivities 

As in the regular BP on MLPs, the delta of the ith neuron at layer l+1, ∆𝑖𝑖𝑙𝑙+1will be used 

to update the bias of that neuron and all weights of the neurons in the previous layer 

connected to that neuron. 

𝑥𝑥𝑖𝑖𝑙𝑙+1 =  𝑏𝑏𝑖𝑖𝑙𝑙+1 + ⋯+ 𝑦𝑦𝑘𝑘𝑙𝑙𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 + ⋯ →  𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘

𝑙𝑙 =  𝑦𝑦𝑘𝑘𝑙𝑙 ∆𝑖𝑖𝑙𝑙+1          

 

(13) 

  

and   𝝏𝝏𝝏𝝏
𝝏𝝏𝒃𝒃𝒍𝒍

𝒍𝒍+𝟏𝟏 =  ∆𝒊𝒊𝒍𝒍+𝟏𝟏 

The update rule of conventional BP states: The sensitivity of the weight connecting 

the kth neuron in the current layer to the ith neuron in the next layer depends on the output 

of the current layer neuron, and the delta of the next layer neuron. For CNN layer neurons 
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we need to follow a similar approach to find out weight and bias sensitivities. Figure 17 

illustrates the convolution of the output of the current layer neuron, 𝑠𝑠𝑘𝑘𝑙𝑙 , and kernel, 𝑤𝑤𝑘𝑘𝑘𝑘
𝑙𝑙 , to 

form the input of the ith neuron, 𝑥𝑥𝑖𝑖𝑙𝑙+1, at the next layer l+1. 

 

0 1
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2

2 0 1 2
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Figure 17. Convolution of the output of the current layer neuron, 𝒔𝒔𝒌𝒌𝒍𝒍 , and kernel, 𝒘𝒘𝒌𝒌𝒌𝒌
𝒍𝒍 , to 

form the input of the ith neuron, 𝒙𝒙𝒊𝒊𝒍𝒍+𝟏𝟏, at the next layer l+1 

 

 

So if we focus on the contribution of each kernel element over the output, in 

analytical form one can write:  

𝑥𝑥𝑖𝑖𝑙𝑙+1(0,0) = . . + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (0,0)𝑠𝑠𝑘𝑘𝑙𝑙 (0,0) + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (0,1)𝑠𝑠𝑘𝑘𝑙𝑙 (0,1) + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (1,0)𝑠𝑠𝑘𝑘𝑙𝑙 (1,0)+..  

𝑥𝑥𝑖𝑖𝑙𝑙+1(0,1) = . . + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (0,0)𝑠𝑠𝑘𝑘𝑙𝑙 (0,1) + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (0,1)𝑠𝑠𝑘𝑘𝑙𝑙 (0,2) + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (1,0)𝑠𝑠𝑘𝑘𝑙𝑙 (1,1)+.. 

𝒙𝒙𝒊𝒊𝒍𝒍+𝟏𝟏(𝟏𝟏,𝟎𝟎) = . . + 𝒘𝒘𝒌𝒌𝒌𝒌
𝒍𝒍 (𝟎𝟎,𝟎𝟎)𝒔𝒔𝒌𝒌𝒍𝒍 (𝟏𝟏,𝟎𝟎) + 𝒘𝒘𝒌𝒌𝒌𝒌

𝒍𝒍 (𝟎𝟎,𝟏𝟏)𝒔𝒔𝒌𝒌𝒍𝒍 (𝟏𝟏,𝟏𝟏) +
𝒘𝒘𝒌𝒌𝒌𝒌
𝒍𝒍 (𝟏𝟏,𝟎𝟎)𝒔𝒔𝒌𝒌𝒍𝒍 (𝟐𝟐,𝟎𝟎)+..     

…. 

 

(14) 
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𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚,𝑛𝑛) = . . + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (0,0)𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛) + 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (0,1)𝑠𝑠𝑘𝑘𝑙𝑙 (0,𝑛𝑛 + 1)

+ 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (1,0)𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚 + 1,𝑛𝑛)+.. 

𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚,𝑛𝑛) =  ∑ ∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙 (𝑟𝑟 + 1, 𝑡𝑡 + 1)𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚 + 𝑟𝑟,𝑛𝑛 + 𝑡𝑡)+. .1
𝑡𝑡=−1

1
𝑟𝑟=−1              

Since each weight (kernel) element is used in common to form each neuron input, 

𝑥𝑥𝑖𝑖𝑙𝑙+1(𝑚𝑚,𝑛𝑛), the derivative will be the cumulation of delta- output product for all pixels. ie,

  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘

𝑙𝑙 (𝑟𝑟,𝑡𝑡)
=  ∑ ∑ ∆𝑖𝑖𝑙𝑙+1(𝑚𝑚,𝑛𝑛)𝑠𝑠𝑘𝑘𝑙𝑙 (𝑚𝑚 + 𝑟𝑟,𝑛𝑛 + 𝑡𝑡)𝑛𝑛𝑚𝑚            

 

(15) 

  

⟹
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘𝑙𝑙

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2𝐷𝐷(𝑠𝑠𝑘𝑘𝑙𝑙 ,∆𝑖𝑖𝑙𝑙+1, ′𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑′) 

Similarly, the bias for this neuron, 𝑏𝑏𝑘𝑘𝑙𝑙  , contributes to all pixels in the image (same bias 

shared among all pixels), so its sensitivity will be the cumulation of individual pixel 

sensitivities as expressed in Eq. (16) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑘𝑘

𝑙𝑙 =  ∑ ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝑙𝑙 (𝑚𝑚,𝑛𝑛)
𝜕𝜕𝑥𝑥𝑘𝑘

𝑙𝑙 (𝑚𝑚,𝑛𝑛)
𝜕𝜕𝑏𝑏𝑘𝑘

𝑙𝑙 =  ∑ ∑ ∆𝑘𝑘𝑙𝑙 (𝑚𝑚,𝑛𝑛)𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚             

 

(16) 

  

As a result, the iterative flow of the BP for each patch in the training set can be stated as 

follows: 

1) Initialize weights (kernels) and biases (e.g., randomly, U(-0.1, 0.1)) of the CNN. 

2) For each BP iteration (t=1:iterNo) DO: 

a. For each patch, p,  in the train set, DO: 
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i. FP: Forward propagate from the input layer to the output layer to 

find the output of each neuron at each layer,  𝑦𝑦𝑖𝑖𝑙𝑙 ,∀𝑖𝑖 ∈

[1,𝑁𝑁𝑙𝑙] 𝑎𝑎𝑎𝑎𝑎𝑎 ∀𝑙𝑙 ∈ [1,L]                                           

ii. BP: Compute delta error at the output (MLP) layer and back-

propagate it to first hidden CNN layer to compute the delta errors, 

∆𝑘𝑘𝑙𝑙 ,∀𝑘𝑘 ∈ [1,𝑁𝑁𝑙𝑙]𝑎𝑎𝑛𝑛𝑛𝑛 ∀𝑙𝑙 ∈ [2, 𝐿𝐿 − 1] 

iii. PP: Post-process to compute the weight and bias sensitivities using 

Eqs. (15) and (16) 

iv. Update: Update the weights and biases with the (cumulation of) 

sensitivities found in (c) scaled with the learning factor, ε: 

𝑤𝑤𝑖𝑖𝑖𝑖𝑙𝑙−1(𝑡𝑡 + 1) =  𝑤𝑤𝑖𝑖𝑖𝑖𝑙𝑙−1(𝑡𝑡) −  𝜀𝜀
𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖𝑙𝑙−1
 

 

(17) 

  

𝑏𝑏𝑘𝑘𝑙𝑙 (𝑡𝑡 + 1) =  𝑏𝑏𝑘𝑘𝑙𝑙 (𝑡𝑡) −  𝜀𝜀
𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑘𝑘𝑙𝑙

 

5.3 Methodology 

We have proposed an adaptive CNN algorithm to implement the cancer detection 

and identification system. As illustrated in Figure 18, the proposed systematic approach for 

cancer detection and identification has four main blocks: Image acquisition from biopsy 

samples, patch generation for data augmentation, classification by an adaptive CNN and 

final decision by majority ruling.  Biopsy samples are digitized using a Zeiss microscope 

with the 10x objective lens. Over each sample, an image is acquired with 640x480 pixel 
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resolution and then augmented to deliver 20 300x300 pixel patches as explained in the 

section 3.5.2. These patches are further resampled to a size of 64x64 to mimic low-

resolution data which is then used as the input to the proposed adaptive 2D CNN that was 

trained by using Back-Propagation (BP) in advance.  Once the patches of each image are 

classified, the final decision is composed by the majority rule as follows: the values that 

represent the probabilities for belonging to each class obtained from the classifier are 

averaged over the patches and the final decision for that specific image is taken based on 

the highest probability obtained.  

 

 

Biopsy Sample

Patch Generation

 640x480 
RGB image
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Figure 18. Proposed system architecture for cancer detection and identification 
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5.4 Investigated Conventional Methods 

Conventional classification methods consist of two consecutive processes: feature 

extraction and classification. For the former, 5 state of art texture-based feature extraction 

algorithms are evaluated. For the latter, we used the SVM classifier with 3 different kernels. 

Both of them are detailed in the following sections. 

5.4.1 Feature Extraction Methods 

(1) Rotation Invariant Local Phase Quantization (rLPQ) 

Local Phase Quantization is a feature descriptor proposed recently by Ville 

Ojansivu [52]. It is based on the quantized phase of the discrete Fourier transform (DFT) 

computed over local image windows. Local computation of DFT phase at every pixel 

location followed by concatenation of the resulting codes as a histogram generates the LPQ 

feature vector. Several applications including recognition of blurred faces, fingerprint 

liveness detection etc. have exploited the LPQ features successfully. The codes produced 

by the LPQ operator are usually insensitive to centrally symmetric blur. The invariance to 

uniform illumination changes arising from the utility of mere phase information is a 

distinctive characteristic of the technique. The LPQ feature extraction procedure generates 

a 256-dimensional feature vector. 

A blur and rotation insensitive local phase quantization texture descriptor was later 

proposed by the same authors in [53]. It consists of mainly two stages:- (1) estimation of 

local characteristic orientation (2) extraction of directed binary descriptor vector. Both 

stages apply the phase of the locally computed Fourier transform coefficients.  These 

coefficients are insensitive to centrally symmetric image blurring. The characteristic 

orientation is estimated from the quantized STFT (Short time Fourier transform) 
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coefficients. The second stage of descriptor extraction follows the same principle as that of 

ordinary LPQ feature extraction. But the neighborhood at each location will be rotated to 

the direction of the estimated characteristic orientation. 

(2) Rotation Invariant Local Binary Pattern (rLBP) 

Local Binary Pattern (LBP) [54], proposed by Ojala et al. is a texture descriptor which 

is a special case of texture spectrum model. The key idea behind LBP is that it is capable 

of encoding the relationship between a specific pixel and its neighboring pixels. 

Accordingly, a code word is generated for each pixel. Each bits ‘1’ or ‘0’ in the code word 

represents whether the pixel’s value is greater than or less than the neighboring pixel. When 

8 neighborhood points are considered, the resulting code word will be of length 8. Decimal 

conversion of these code words followed by a histogram generation finally yields the 

feature vector.  

There are several variants for LBP including rotation invariant LBP, uniform rotation 

invariant LBP [55] etc. The LBPP,R operator produces 2P distinct output values, 

corresponding to the different binary patterns that can be formed by the total P pixels in 

the neighborhood. When the image is rotated, the gray values will correspondingly move 

along the perimeter of the circle around a certain pixel. Rotating a particular binary pattern 

obviously result in a different LBP value. This does not happen with patterns consisting of 

mere 0s (or 1s). Those will remain constant at all rotation angles. To remove the effect of 

rotation, a unique identifier is assigned to each rotation invariant local binary pattern. 36 

unique rotation invariant local binary patterns can exist in the case of P= 8. A rotation 

invariant feature descriptor can hence reduce the feature size from 256 to 36 along with 

achieving rotation invariance. 
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(3) Uniform Rotation Invariant Local Binary Pattern (Uniform rLBP) 

Uniform rLBP tends to reduce the original LBP feature size by such a representation 

that involves same bin for several similar patterns.  The concept of uniform patterns arises 

from the fact that some binary patterns occur more frequently in texture images than others. 

A specific LBP is called uniform if the binary pattern contains at most two bitwise 

transitions from 0 to 1 or vice versa when the bit pattern is traversed circularly. So in 

uniform LBP, all the uniform patterns from the whole 256 patterns are assigned separate 

labels and all the non-uniform patterns are accumulated to a single label. Since a circularly 

symmetric neighbor set of P pixels comprise only P+1 uniform binary patterns, the ultimate 

feature vector has a small length of 10 in the case of an 8 neighborhood. 

(4) Haralick 

Haralick features are calculated from the GLCM matrices extracted from the images 

[56]. These matrices represent an average spatial relationship which the gray levels in the 

image have between one another. We can deduce a measure of the frequency with which 

an intensity value ‘i’ occurs at a predefined spatial relationship with another value ‘j’. 

These spatial relationships can be indicated by the 4 different orientations such as 0, 45, 90 

and 135 degrees. Finally, the following Haralick features are computed from the 

normalized GLCM matrices p(i,j) for each of the orientations. The four features obtained 

for each orientation can be concatenated together to yield the Haralick descriptor. 

Energy: ∑ 𝑝𝑝(𝑖𝑖, 𝑗𝑗)2𝑖𝑖,𝑗𝑗  

Contrast: ∑ |𝒊𝒊 − 𝒋𝒋|𝟐𝟐𝒑𝒑(𝒊𝒊, 𝒋𝒋)𝒊𝒊,𝒋𝒋     

 

(18) 
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 Homogenity: ∑ 𝒑𝒑(𝒊𝒊,𝒋𝒋)
𝟏𝟏+|𝒊𝒊−𝒋𝒋|𝒊𝒊,𝒋𝒋  

                        Correlation: ∑ (𝑖𝑖−𝜇𝜇𝜇𝜇)(𝑗𝑗−𝜇𝜇𝜇𝜇)𝑝𝑝(𝑖𝑖,𝑗𝑗)
𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑖𝑖,𝑗𝑗          

We calculated the above four features: Energy, Contrast, homogeneity, and 

correlation for each of the 4 different orientations resulting in a 16 dimensional feature 

vector. ‘Energy’ is basically the sum of squared elements in the GLCM matrix. The 

attribute ‘Contrast’ will measure the intensity contrast between each pixel and its neighbor. 

Homogeneity accounts for the closeness of distribution of elements in the GLCM to 

diagonal elements of GLCM. ‘Correlation’ indicates the level of correlation between each 

pixel and its neighbor for the whole image. 

(5) Concatenated feature: rLPQ+ rLBP 

This represents the concatenated feature vector generated by combining the feature 

descriptors from both rLPQ and rLBP methods. We have chosen these two because of the 

better results produced by both techniques compared to the other texture features studied. 

The resultant feature vector had a length of 292. 

5.4.2 Classification 

Support vector machine (SVM) was introduced in 1963 by Vapnik. It is a 

discriminative classifier which is defined by a separating hyperplane. Given a labeled 

training data input, the algorithm outputs an optimal hyperplane which categorizes new 

data, test dataset [57]. It would not be a difficult task in the case of linearly separable data. 

But in the case of patterns that are not linearly separable, the original data should be 

mapped to a new space by means of a kernel function [58]. The main objective of SVM is 
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to maximize the margin around the separating hyperplane. This decision function is 

characterized by a small subset of the training samples, called as support vectors that lie 

closest to the hyperplane. The problem of finding the optimal hyper plane is basically an 

optimization problem and can be solved by Lagrange multipliers.  

 

 

 

 

Figure 19. SVM classification [58] 

 

 

Suppose we have a set of (input, output) training pair samples with input features 

(x1, x2…xn), and the output result y. The training process generates a set of weights whose 

linear combination predicts the value of y, which in turn decide the output class. The 

equation defining the decision surface separating the classes is a hyperplane of the form: 

f(x)= wTx + b = 0; w: weight vector, x: input vector; b: bias. When an unknown point 

measured on features xi is given, the classification can be done based on the sign obtained 
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for the expression f(x). 

Non-linear SVMs perform a mapping of the data to a higher dimensional space in 

order to achieve separability. Kernel functions are exploited here to achieve this 

transformation. They are based on calculating the inner products of two vectors. The three 

types of kernel we have used in our experiments are defined as follows. 

Linear kernel:   𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� =  𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 

RBF kernel:   𝒌𝒌�𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋� =  𝒆𝒆−(
|�𝒙𝒙𝒊𝒊− 𝒙𝒙𝒋𝒋�|

𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐
)    

             

             Polynomial kernel: 𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = (𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 + 1)𝑏𝑏  

 

(19) 

  

 



  
   

61 
 

CHAPTER 6: EXPERIMENTAL RESULTS 

The experimental results of the proposed approach, as well as the conventional 

methods, are presented in the subsequent sections. The system implementation details, as 

well as the evaluation matrices used for the comparative study, are also explained briefly. 

6.1 Experimental Setup 

Texture feature extraction algorithms were tested and evaluated in MATLAB. Libsvm 

toolbox [59] of MATLAB was utilized for SVM training and testing. The parameter 

estimation (cost and gamma) was done using grid search method.  An 8-neighborhood 

schema was used for the LBP implementations. For the LPQ, a local window size of 3 was 

used with frequency estimation based on STFT with Gaussian window. A precomputed 

filter of window size 7 was applied to the rotation invariant LPQ descriptor. The 

implementation of the adaptive CNN is performed using C++ over MS Visual Studio 2015 

in 64bit. This is a non-GPU implementation; however, Intel ® OpenMP API is used to 

obtain multiprocessing with a shared memory. We used a computer with I7-4700MQ at 

2.4GHz (8 CPUs) and 16Gb memory for the training and testing purpose. The CNN 

configuration parameters are presented in   Table 9. 
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Table 9. CNN Parameters 

 

Parameter Name Value 

Convolution filter size 5 

Subsampling factor 2 

No. of CNN Layers 3 

No. of MLP Layers 2 

 

 

For all experiments, we employed an early stopping training procedure with setting the 

maximum number of BP iterations to 50 and the minimum training error to 8% to prevent 

over-fitting. We initially set the learning factor, ε = 10-3 and then a global adaptation has 

been applied during each BP iteration in order to dynamically set a proper learning factor 

for the iteration, i.e.,  if the train MSE decreases in the current iteration we slightly increase 

ε by 5%; otherwise, we reduce it by 30%, for the next iteration.  

6.2 Evaluation Metrics 

We performed 5-fold cross validation over the dataset with the train rate set to 80%. 

Therefore, for each fold, 160 images and corresponding 3200 patches were used for 

training and the rest was used for the test. This allows us to test the proposed system over 

all the records. The patches are divided in such a way that patches from same image will 

not come simultaneously in training and testing. Once the final decision is performed by 

the majority rule over the patch classification results, the confusion matrices (CMs) of the 

classification results of the test images are then cumulated to compute the final CM. We 
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used the classification accuracy (Acc) computed over the final CM to evaluate the overall 

cancer identification performance. For the cancer detection performance, the final CM that 

consists of classification results of 4 categories was first deducted to a binary CM that has 

the numbers for normal and cancer categories. In other words, the classification results of 

the three cancer categories are merged into a single “cancer” class.  Over the binary CM, 

we computed several standard metrics, i.e., cancer detection accuracy (Acc), sensitivity 

(Sen), specificity (Spe), and positive predictivity (Ppr). The definitions of these standard 

performance metrics using the hit/miss counters obtained from the binary CM elements 

such as  true positive (TP), true negative (TN), false positive (FP), and false negative (FN), 

are as follows: Accuracy is the ratio of the number of correctly classified images to the 

total number of images, Acc = (TP+TN)/(TP+TN+FP+FN); Sensitivity (Recall) is the rate 

of correctly classified cancer images among all cancer images, Sen = TP/(TP+FN); 

Specificity is the rate of correctly classified normal images among all normal images, Spe 

= TN/(TN+FP); and Positive Predictivity (Precision) is the rate of correctly classified 

cancer images in all images classified as cancer, Ppr = TP/(TP+FP). 

6.3 Results and Comparative Evaluations 

Cancer detection is a binary classification where the images are categorized either 

cancerous or normal. Cancer identification extends this to a multi-class classification where 

the cancer types are further categorized. The classification accuracies obtained by the 

conventional methods are given in Table 10. In the table, accuracies with respect to the 

three experimented SVM kernels are presented for the two tasks.  

Among the investigated texture features, rLPQ exhibited the highest accuracy for both 

cancer identification and detection tasks. Except for the combined feature, all the other 
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methods exhibited comparatively lower classification accuracies. But when discrimination 

to be carried out was between just two classes, both rLBP and Uniform rLBP could 

compete with rLPQ and the combined feature to yield comparable results. This 

demonstrates the efficiency of rLPQ in the scenarios where there are multiple numbers of 

classes. The Linear kernel yielded the best classification performance using rLPQ while 

the Polynomial kernel has the best performance when using the other texture features. No 

significant performance improvement was observed when features are concatenated. The 

classification performance of the Haralick features was the poorest. 

 

 

Table 10. Classification Accuracy (%) for Conventional methods with Multi- class and 

Binary classification 

 
Method  Cancer Identification Cancer Detection 

RBF Linear Poly. RBF Linear Poly. 

rLPQ 67.5 74 71 84.5 87 83.5 

rLBP 58 57.5 65.5 81 82.5 86 

Uniform rLBP 56.5 54 59.5 80 79.5 83 

Haralick 38 40 42.5 71 65 73 

rLPQ+ rLBP 64 73.5 74 84 86 87 
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Since the combined rLPQ and rLBP features achieved the highest accuracy, it is used 

for the comparative evaluations of the proposed approach. In order to have a more detailed 

evaluation, the 4-class confusion matrices (CMs) obtained for cancer identification are 

presented in Table 11 and Table 12 respectively. Classes 1 - 4 represent the normal, 

hyperplastic polyp, tubular adenoma with low-grade dysplasia and carcinoma, 

respectively. 

 

 

Table 11. Confusion matrix of the Proposed approach  

 
 
 
 
 
 
Real 

Truth 

 1 2 3 4 

1 41 1 0 1 
2 5 29 6 3 
3 1 5 31 0 
4 3 15 13 46 

 

 

Table 12. Confusion matrix of the Top performing conventional method 

 
 
 
 
 
 
 

Real 

Truth 

 1 2 3 4 

1 33 8 1 0 
2 14 32 3 6 
3 3 6 43 4 
4 0 4 3 40 
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According to the results, it is clear that the proposed systematic approach with an 

adaptive and compact CNN and the top performing conventional method with the best 

texture feature achieved the highest cancer identification performances within a close 

margin. This is despite the fact that the proposed method used low-resolution image data 

(64x64 pixels) while the competing methods used the original patch resolution (300x300). 

This demonstrates the high robustness of the compact CNNs against low image resolution. 

Another observation worth mentioning is that the false alarm rate (9/50 = 18%) of the 

proposed approach is minimal while the best performing conventional method almost 

doubles it (17/50 = 34%). 

Using the CMs of cancer identification presented in Table 11 and Table 12, the 

corresponding binary CMs for cancer detection can be computed as presented in                                                                                                                                         

Table 13 and Table 14.  From the binary CM the standard evaluation metrics, cancer 

detection accuracy (Acc), sensitivity (Sen), specificity (Spe), and positive predictivity (Ppr) 

are computed and presented in Table 15. 
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Table 13. Confusion matrix for cancer detection using the proposed approach 

 

 
 
 
Real 

Truth 

 1 2 

1 41 2 

2 9 148 

 

 

Table 14. Confusion matrix for cancer detection using the Top performing conventional 

method 

 

 
 
 

    Real 

Truth 

 1 2 

1 33 9 

2 17 141 
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Table 15. Performance Comparison of Proposed method and Conventional methods for 

Cancer Detection 

 

 

 

 

 

 

 

 

 

The cancer detection results clearly indicate that the proposed systematic approach 

with the compact and adaptive CNNs at its core achieved a superior detection performance 

with an elegant Precision and Recall (Sensitivity) levels around 95%. This indicates such 

a level that is more than 4% higher than the top-performing method. However, the most 

distinctive performance gap occurred on the Specificity level (>95%) which is around 17% 

higher. This shows the robustness of the proposed method in terms of the minimal false 

alarm rate achieved.  Cancer detection can serve as a methodology for finding the target 

ROIs and aid the pathologists to proceed with further investigations. 

 

Method Sensitivity Precision Specificity Accuracy 

Adaptive CNN 94.27 98.67 95.35 94.50 

rLPQ 89.24 94.00 78.57 87.00 

rLBP 90.67 90.67 72.00 86.00 

Uniform rLBP 87.66 90.00 67.39 83.00 

Haralick 80.38 84.67 45.24 73.00 

rLPQ+ rLBP 89.74 93.33 77.27 87.00 
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6.4 Computational Complexity Analysis  

We implemented the proposed system using C++ over MS Visual Studio 2015 in 64bit. 

This is a non-GPU implementation; however, Intel ® OpenMP API is used to obtain 

multiprocessing with a shared memory. The experiments are performed on a computer with 

I7-4700MQ at 2.4GHz (8 CPUs) and 16Gb memory. In theory, this should yield 8x speed 

improvement but in practice, the observed speed improvement was between 4.8x to 5x.  As 

mentioned earlier, one of the crucial advantages of the proposed approach is its 

significantly low computational cost that makes real-time cancer detection and 

identification feasible. Specifically, with the aforementioned computer implementation, 

the total time for forward-propagation of a 64x64 patch over the adaptive CNN is about 

88.35ms.   

We used the MATLAB R2015a on a computer with i7-5600U CPU at 2.6GHz and 8 

Gb RAM for the training and testing of conventional methods. It took around 57.00 ms for 

performing the classification on a single patch. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

With this work, we aimed to perform comparative evaluations among several recent 

approaches for the detection and identification of tumor tissues.  In order to accomplish 

this objective, we have developed an image database for colorectal tumor biopsies in two 

modalities: multispectral and RGB. The variability of biopsy samples in terms of the 

number of patients is comparatively higher than those used in the existing researches. Our 

multispectral image database also remains unique in the sense we attempted to acquire 

images in the near infrared bands also.  

The classification performances of texture based algorithms with state-of-the-art 

classifiers were experimented on our multispectral image dataset. A comparative study was 

also carried out in order to demonstrate the significance of multispectral images over RGB 

images in the realization of an automated cancer identification system. Furthermore, we 

have proposed a band selection algorithm to remove the redundant bands in the 

multispectral imagery. The significance of our algorithm is demonstrated well with the 

reduced computational time and improved classification accuracies.  

As the main contribution of this thesis, we proposed a novel cancer detection and 

identification approach based on CNNs. The relevance of the algorithm can be realized 

when we have a scarce and low-resolution dataset. The proposed system is based on 

compact and adaptive CNNs and in contrast to the deep counterparts which require a 

massive size dataset, they can learn and generalize well on such limited and low-resolution 

data. Furthermore, we also performed comparative evaluations against the conventional 
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approaches which used state-of-the-art texture features. The proposed approach was able 

to achieve a comparable cancer identification accuracy despite the resolution was 

significantly low. However, it achieved the best cancer detection performance with a 

significant margin compared to conventional methods. Besides the elegant detection 

accuracy, it also provides very low false alarm rate with no manual feedback/tuning. 

Finally, it is a fully automatic method and can function without any additional hardware.   

7.2 Future Work 

Our study revealed that the images in the MSI database could perform better than those 

in the RGB database. This prompts us to experiment further with the multispectral images. 

Moreover, the proposed band selection algorithm can be utilized in order to lessen the 

computational complexity. As part of the future work, we intend to experiment and 

compare the CNN- texture-based techniques on the MSI dataset.  The database can also be 

improved further by adding more biopsy images. We also aim to diversify our dataset by 

adding biopsy samples from more number of patients. However, collection of data from 

patients have to comply with the ethical aspects which should be considered carefully. 

Currently, we have used the raw RGB images in the classification algorithms. Since 

our images are captured under halogen illumination mode, we need to verify whether a 

preprocessing stage such as stain normalization could improve our results. All of these will 

be the topic of our future work.
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