QATAR UNIVERSITY

COLLEGE OF HEALTH SCIENCE

CHARACTERIZATION OF GENOMIC ALTERATIONS AND TCRB REPERTOIRE

OF TUMOR- INFILTRATING LYMPHOCYTES IN BREAST CANCER

BY

AYEDA ABDULSALAM AHMED

A Thesis Submitted to
the Faculty of the College of Health
Science
in Partial Fulfillment
of the Requirements
for the Degree of
Masters of Science in

Biomedical Sciences

January 2018

© 2018 Ayeda Ahmed. All Rights Reserved.



COMMITTEE PAGE

The members of the Committee approve the Thesis of Ayeda Abdulsalam Ahmed defended
on 26/12/2017.

Ahmed Mohamed Malki Mohamed Youssef
Thesis/Dissertation Supervisor

Dr. Nasser Moustafa Ragheb Rizk
Committee Member

Dr. Joel Malek
Committee Member

Ala-Eddin Al Moustafa
Committee Member

Approved:

Asma Al-Thani, Dean, College of Health Science



ABSTRACT

AHMED, AYEDA,A., Masters of Science:

January : 2018, Biomedical Sciences

Title: Characterization of Genomic Alterations and TCRP Repertoire of Tumor- Infiltrating
Lymphocytes in Breast Cancer

Supervisor of Thesis: Ahmed M. Youssef.

Breast cancer still remains a major cause of morbidity and mortality among
women in Qatar and worldwide. More recent studies indicate that the diversity and
the composition of the entire set of antigen receptors within tumor-infiltrating
lymphocytes (TILs) is strongly correlated with tumor prognosis and therapeutic
response with breast cancer. Unfortunately, the relationship between somatic
mutational load and TCR diversity of TILs across breast cancer still limited. For
this purpose, first we characterized the somatic mutations of Formalin-Fixed
Paraffin-Embedded breast cancer samples from 79 patients using NGS of a panel
of cancer related genes. Second, we classified and identified the TCRR repertoire
for these 11 samples using the ImmunoSEQ platform. Preliminary data
demonstrated that the 11 patients had high diversity of TCRR-CDR3 within the
tumors. However, there was no statistically significant association between the
somatic mutational loads in the gene panels we sequenced and the number of

productive TCRE-CDR3 rearrangements.
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CHAPTER 1: INTRODUCTION

Breast cancer still remains a major cause of morbidity and mortality among
women worldwide despite the favorable outcomes provided by early cancer
detection and newer therapies (CDC, 2017) . In Qatar, according to the Qatar
Cancer Society, breast cancer is the most common cancer among women with
incidence rate of about 39% of all cancers in females. Furthermore, 3% of the
diagnosed breast cancer cases are in the age group of 15-19 years (Qatar Cancer

Society, 2015).

Breast cancer disease is highly complex and heterogeneous, with significant
genotypic and epigenetic diversity. Cancergenesis is a result of a multistep
accumulation of genetic alterations such as mutations, rearrangements, and copy
number alterations that can significantly affect disease progression (Koboldt et al.,
2012). From the clinical perspective, different schemes are used to classify breast
cancer in order to select the most appropriate treatment. Traditionally, the major
categorizations are based on the histological appearance, stage, and grade.
Currently, breast cancer subtypes are classified into four groups based on gene
expression profiles of hormone receptors (estrogen and progesterone), human
epidermal growth factor receptor 2 (HER2) status and Ki67 index. The four
subtypes are luminal A, luminal B, HER2 and Triple Negative (TN) (Cheang et al.,

2009; Eisenbeisz, 2016).



In the past few years, gene expression and proteomic platforms have been
used in an effort to identify and confirm novel diagnostic markers of breast cancer
and more importantly to evaluate disease development and treatment response
(Criscitiello et al., 2014). However, the capacity of these methods is limited in
predicting the length of disease-free survival. These methods showed that there are
other factors that malignant cells require for their growth and proliferation that are
not directly linked to changes in the genetic elements of the tumor (Criscitiello et
al., 2014). To define other potential markers, several investigators have focused on
the breast cancer microenvironment. Tumor microenvironment studies have shown
that the presence of tumor-infiltrating lymphocytes (TILs) serves as a favorable
marker of the disease. Thus, host immune response to the tumor plays a vital role
in defining patient prognosis (Asano et al., 2016; Criscitiello et al., 2014). More
recent clinical studies indicate that the diversity and the composition of the entire
set of antigen receptors within TILs is strongly correlated with tumor prognosis and
therapeutic response of a number of solid tumors, including breast cancer (Hadrup
et al., 2013). Furthermore, many studies reported that patients with aggressive

breast cancer subtypes have high level of TILs (Stanton & Disis, 2016).

Presently, it is unclear why some patients have cancer with higher T cell
infiltration and diversity than others, even within the same subtype. Some studies
hypothesize that aggressive tumors have a high rate of genomic instability which
might increase the chance of presenting mutated proteins at the cell surface of the
cancer cells. This stimulates the immune response by increasing the level of T cell

diversity within the tumor (Criscitiello et al., 2014; Sherene Loi, 2013).



Unfortunately, the relationship between somatic mutational load and TCR diversity
of TILs across breast cancer subtypes remains largely unexplored. With the
availability of next generation sequencing (NGS), it has become possible to
sequence TCRB-CDR3 and profile the TILs across patients with different range of

mutational load.

1.1 Hypothesis

There is an association between tumor mutational load and T cell diversity

within each breast cancer subtype.

1.2 Research Aims and Objectives

The aim of this study is to examine the association between somatic
mutation load of and their corresponding to TCR  composition in tumor using the
most advanced high throughput DNA sequencing technologies on Formalin-Fixed

Paraffin-Embedded (FFPE) samples.

Objective:

e Characterize the somatic mutations of FFPE breast cancer samples from 79
patients within each breast cancer subtype using next generation sequencing
of a panel of breast cancer related genes.

e C(lassify and identify the TCR repertoire for a set of these samples using

the ImmunoSEQ platform at the survey level.



CHAPTER 2 : REVIEW OF THE LITERATURE

2.1. Breast Cancer

Breast cancer is a disease characterized by uncontrolled growth of
abnormally dividing cells beyond their boundaries in the breast tissue. Breast
cancer is classified into several forms and each type has its own distinct
morphology, behavior and clinical characteristic. According to the World Health
Organization (WHO), invasive (or infiltrating) ductal carcinoma (IDC) and lobular
carcinoma (ILC) are the most common diagnosed breast cancer types among
women at a rate of 70- 80% (Viale, 2012) . Breast cancer can occur at any age but
typically older women especially at age 50 years and older are more likely to
develop breast cancer disease (Bilimoria & Morrow, 1995; National cancer

Institution, 2012).

2.2. Breast Cancer Current Statistics

Breast cancer is one of the most prevalent and deadly malignant diseases in
women worldwide. The American Cancer Society's reported that in 2017, breast
cancer in women ranked as the most common diagnosed cancer and as the second
leading cause of cancer death after lung cancer (Figure 2.1). It is estimated that
during 2017, 252,710 new breast cancer cases are expected to be diagnosed. This
would account for about 30 % of all female cancers diagnose. Furthermore, it is
expected that 40,610 would die of the breast cancer, representing 14% of all cancer
cases. Since the last decade, the incidence rates were stable, while mortality trends

declined significantly by 38%, likely due to both early diagnosis and improved



treatment efficacy. Breast cancer can also occur in men but is rare. It is about 100
times less common among men compared to the women (American Cancer Society,

2017).

In Qatar, according to the Qatar Cancer Registry, breast cancer is continuing
to be the most prevalent cancer among women, accounting for 39% of cancer cases
in women. Furthermore, 3% of the diagnosed breast cancer are in the age group of
15-19 years (Qatar Cancer Society, 2015). According to the arab countries registry
between 2003-2007, Qatar ranked as one of the top countries for the incidence rate
of breast cancer at 45.7 per 100,000 populations (after Bahrain and Kuwait
respectively). 32% of the incidences were among the Qatari population and the

remaining 68% were among non-Qatari patients (Al Bader et al., 2016).
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Figure 2.1. Estimation of New Cancer Cases and Deaths in the United States
of America by Sex — 2017. Breast cancer in women ranked as the most common
diagnosed cancer and as the second leading cause of cancer death after lung cancer

(American Cancer Society, 2017).



2.3. Risk Factors

There are several important factors associated with increased risk of breast
cancer (American Cancer Society, 2017). Simply being a woman is the most
significant risk factor. This might be because of the activity of the female hormones
estrogen and progesterone, which can promote breast cancer cell growth. Age is
another crucial factor, where the chance of getting cancer is significantly increased
with age. About 5% to 10% of breast cancer cases are assumed to be hereditary,
inherited mutations in particular BRCA1, BRCA2, or other breast cancer
susceptibility genes are associated with increased risk of breast cancer. Menstrual
and reproductive history as well as dense breast tissue can also be associated with
increased risk for breast cancer. Additionally, lifestyle risk factors like: lack of
physical activity, poor diet, being overweight or obese, drinking alcohol and
radiation to the chest are associated with incidences of breast cancer Breast Cancer

Classification (American Cancer Society, 2017).

2.4. Breast Cancer Classification

Different schemes are used to classify breast cancer, each of these schemes
use various principles and criteria to divide breast cancer into subclasses. The main
categorizations are based on the histological appearance, stage, grade and receptor
status. These classifications are periodically updated as cancer cell biology
knowledge expands. The purpose of the classification is to help in selecting the
most appropriate treatment. In fact, this disease is highly complex and

heterogeneous and there is no single treatment for all the subclasses. Certain classes



of breast cancer are aggressive and life-threatening, and must be treated
aggressively, while others are less aggressive and can be treated with less invasive
treatments; such as lumpectomy. Selecting the best treatment is mainly based on

the available evidence that is provided by the categorization (Eisenbeisz, 2016).

24.1. Grade

Grade is the description of the tumor based on how close cancer cells appear
and their growth patterns compared to normal cells. It is an indicator of how rapidly
the cancer cells are dividing and spreading. The grade scale system helps physicians
to predict prognosis and develop a treatment plan. In general, a "well-differentiated"
tumor indicates that the cells and tissue of the tumor are close in appearance to the
normal cells and tissue. This type of tumor tends to have well-organized patterns

and slower rate of growth. While " undifferentiated " or "poorly differentiated"”
tumors have abnormal cell appearance and may grow aggressively in disorganized
and irregular patterns. This method of classification depends on visual observation

of breast cancer cells and tissue under a microscope (National Cancer Institute,

2013).

According to the National Cancer Institute(NCI), most of the cancer cells
are rated on a scale from 1 to 3. However, some types of cancers for instance breast
and prostate cancers have their own grading systems. The most common grading
system for the breast cancer is Nottingham (also called the Elston-Ellis modification
of the Scarff-Bloom-Richardson grading system). This system grades tumors based

on three features, which are tubule formation, nuclear grade and mitotic rate. Each


https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044779&amp;version=Patient&amp;language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000681122&amp;version=Patient&amp;language=English

feature gets a score from1 to 3, then their scores are summed, yielding a total score

between 3 to 9 (National Cancer Institute, 2013). Three possible grades are listed

in Table 2.1.

Table 2.1.

Breast Cancer Grading System

Score Grade Description

Low grade or well
Score 3-5 Grade 1

differentiated

Intermediate grade or
Score 6-7 Grade 2 moderately

differentiated

High grade or poorly
Score 8-9 Grade 3

differentiated



https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000386205&amp;version=Patient&amp;language=English

24.2. Stage

Staging refers to how widespread and large the cancer is when it is first
diagnosed. Knowing the stage helps physicians to determine how serious the cancer
is, and how successful the treatment might be. This classification method requires
several examinations such as chest x-ray, CT scans, MRI, mammograms and lab

tests (National Cancer Institute, 2015).

The TNM system is the most widely used cancer staging system in hospitals
and medical centers. This system is applicable to all forms of cancers, including

breast cancer. In the TNM system:

e The T refers to the size and extent of the of the breast tumor.
e The N refers to spread of the cancer to nearby lymph nodes.

e The M refers to whether the cancer has metastasized (spread beyond the

breast to other parts of the body).

Sometimes stage is expressed as a number on a scale of 0 to IV. As rule, the
lower the value is, the less the cancer has spread, and the higher the value is, the
more the cancer cells have spread into adjacent tissues and affected lymph nodes

(National Cancer Institute, 2015). Stages number described in the Table 2.2.

10



Table 2.2.

Stages of Breast Cancer

Stage Description

0 Cancer cells in situ, limited to inner lining surface of the
organ and has not spread to nearby tissue.

I, 11, and  Cancer has grown in size and has spread to distant lymph

i nodes (except stage I).

v Cancer has metastasized and spread to distant parts of the

body.

11



2.4.3. Histological Appearance

Histological appearance is the primary method used for diagnosis and
classification of cancer (Eisenbeisz, 2016). This method involves direct
examination of cancer biopsy by a pathologist to determine the type of cancer
whether is in situ or invasive. However, histological analysis does not always
explain the differences in breast cancer (Makki, 2015). Currently the WHO
classifies breast cancer into 20 major tumors and 18 minor subtypes. This
classification has been adopted worldwide. The most common histological types of
cancer include; Ductal Carcinoma in situ (DCIS) which is a cancer that is in the
ductal system but not spread to the nearby tissues. IDC which originates is in the
milk ducts attacks other surrounding tissues and can get to other parts of the body
through the lymph nodes. Lobular Carcinoma in situ (LCIS) is another type but
very rare. It is not easily detected because there is no formation of palpable mass.
ILC originates from lobules, the milk-producing glands at the end of breast ducts.
This type is considered the second common type of breast cancer consisting of 10%

of cases (American Cancer Society, 2017; Viale, 2012).

12



2.4.4. Breast Cancer Hormones Status

The most recent breast cancer classification is based mainly on gene
expression profiles of hormone receptor (estrogen (ER) and progesterone (PR)) and
HER?2 status (Zhang et al., 2014). In the last decade, the high-throughput gene-
expression platforms such as microarray-based gene-expression methods have been
extensively applied for breast cancer studies to identify signatures associated with
prognosis and response to therapy (Weigelt & Reis-Filho, 2009). The breast cancer
molecular classification was established in 2000 when Perou and his group reported
the gene expression profiles of 38 primary invasive breast cancer tissue by using
complementary DNA microarrays. Their results exhibited marked variation
between cancer tissues and they ended up classifying breast cancer into four
molecular subtypes, each one has its own clinical characteristic (Perou et al., 2000;

Weigelt & Reis-Filho, 2009)

The four-intrinsic subtype are:

=

Luminal A

no

Luminal B

3. HER2-enriched (HERZ2E)

s

Triple negative (TN)

13



244.1. Luminal A

Luminal A is the most prevalent subtype among women and comprise 50%-
60% of all breast cancer cases (Yersal & Barutca, 2014). This subtype is defined
as ER and/or PR positive and HER2 negative. It is also characterized by the high
expression of luminal epithelial cytokeratins(CK) 8 and 18, and other luminal
markers such as Estrogen Receptor 1(ESR-1), GATA-binding protein 3 (GATA3),
Forkhead Box Al Protein (FOXA1), X-Box Binding Protein 1 (XBP1). Also,
Lumina A tumors exhibit a low expression of proliferation-related genes, such as
Cyclin B1 (CCNBL), Proliferation-Related gene Ki-67 (MKI167) and MYB Proto-

Oncogene Like 2 (MYBL2) gene (Koboldt et al., 2012; Zhang et al., 2014).

Patients with Luminal A type have a good prognosis and are always
subjected to endocrine therapy with tamoxifen, to inhibit the functions of ER. The
therapeutic strategies of blocking the estrogen signaling pathway have been highly
effective for ER™ subtypes and are currently used as the first-line clinical treatment
option (Zhang et al., 2014). The relapse rate is significantly low compared to the
other subtypes and recurrence commonly occurs to bone, whereas other organs such
as liver, lung and central nervous system occur in less than 10% of patients (Yersal

& Barutca, 2014) .

14



24.4.2. Luminal B

The Luminal B subtype is not very common compared to Luminal A and
accounts for 15%-20% of total diagnosed cancers. Like the Luminal A subtype,
Luminal B is also characterized by the expression of ER, PR genes. In contrast to
Luminal A, this subtype is associated with the higher expression of proliferation-
related genes, such as CCNB1, MKI167 , MYBL2 and basal-like gene such as Human
epidermal growth factor receptors 1 (HER1) & HER2. (Yersal & Barutca, 2014;
Zhang et al., 2014). Patients with these subtypes have more aggressive tumor
phenotype, higher histological grade, proliferative index, worse prognosis, higher
recurrence rate and lower survival rates compared to luminal A subtype (Sotiriou
& Pusztai, 2009; Zhang et al., 2014). In a clinical practice, Ki67 index is used as a
potential marker to distinguish between Luminal subtypes, where it is highly
expressed in the luminal B subtype (Cheang et al., 2009). As the Lumina B tumor
is highly proliferative and expresses ER and some of basal-like gene patterns, the
patients could be subjected to combined therapeutic strategy of chemotherapy and

endocrine treatment. (Dai et al., 2015).
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2443. HERZE

HERZ2E cancer accounts for 15-20% of breast cancer subtypes. This subtype
is characterized by overexpression of HER2 and HER2-associated genes and
negative expression for both ER and PR. In addition, HER2E tumor are associated
with the higher expression of proliferation-related genes. Patients with HER2E
tumor have high histological and nuclear grades. These tumors mostly display
aggressive biological and clinical behavior (Yersal & Barutca, 2014). Patients
diagnosed with this subtype can benefit from HER2 targeted therapy such as
Transtuzumab. The targeted therapies for HER2 subtype have significantly

improved overall survival and reduced the risk for recurrence (Petrelli et al., 2008).

2444. TN

TN represents 10 % to 20 % of all diagnosed breast cancer. This type does
not express ER, PR and HER2, hence referred to as triple-negative (Dillon et al.,
2016). However, TN tumors express high levels of basal myoepithelial markers,
such as CK5, CK 14, CK 17. TN tumor are characterized with high histological and
nuclear grade, high mitotic activity, lymphocytic infiltrate and high proliferative
rate. Like HER2, TN tumors exhibit aggressive clinical behavior and very high
tendency to metastasize to the brain and lung (Yersal & Barutca, 2014). Unlike
other breast cancer subtypes, TN is very difficult to treat due to lack of therapeutic
target receptors, thus leaving chemotherapeutic treatments the only option for

systemic therapy of TN patients (Weisman et al., 2016).
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2.5. Breast Cancer New Prognostic Markers

Despite the favorable outcomes provided by earlier cancer detection and
newer therapies, breast cancer still remains a major cause of morbidity and
mortality among women worldwide. In the past few years, gene expression and
proteomics platforms have been used in an effort to identify and confirm novel
diagnostic markers of breast cancer and more precisely to evaluate disease

development and response to treatment (Criscitiello et al., 2014; Qin & Ling, 2012).

However, the capacity of these methods is limited in predicting the length
of disease-free survival due to factors not directly linked to changes in genetic
elements of tumors, which the malignant cells needed for the growth and
proliferation. For example, the prognostic and predictive genetics signatures were
mainly limited with TN and HERZ2E subtypes that are by nature highly proliferative
and aggressive compared to luminal subtypes. To overcome this limitation, several
investigators have focused on the breast cancer microenvironment to define other
promising diagnostic markers. Recent evidence has demonstrated that the host
immune response to tumor microenvironment plays a vital role in defining patient
prognosis and their response to treatment. Later on, many clinical studies supported
the concept that the presence of TILs within the tumor tissue indicates an antitumor
cellular immune response, and the degree of infiltration has been strongly correlated
with good tumor prognosis and therapeutic response(Asano et al., 2016; Criscitiello

etal., 2014).
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2.6. Immune System

The immune system consists of two subsystems: innate and adaptive
immunity (or acquired immune systems). Innate immune system is composed of
physical epithelial barriers, chemicals and cells that protect the host against the
invasion of pathogens by providing immediate, non-specific and non-memory
response. Unlike the innate immune system, the adaptive immune system relies on
specialized cells that are more specific for any individual foreign antigens and their
effective responses occur only after several days of exposure to pathogens. Also,
the adaptive response produces memory cells that persist in a dormant state for
decades after initial contact, but they can rapidly re-express after subsequent
exposure to the same target antigen (Janeway et al., 2001). Moreover, the most
significant difference between the two systems is that all recognition mechanisms
of the innate immune system are encoded in the genes of the host's germ-line. For
instance, the innate immune cells rely on the recognition of only specific molecules
and molecular patterns which are associated with entire classes of pathogens such
as bacteria, viruses and fungi and absent from the host cells; therefore, it is a limited
response. On the other hand, the adaptive immune system can
specifically recognize an almost infinite diversity of antigens by a process called
somatic gene rearrangements of antigen-binding molecules, so each potential
foreign antigen can be targeted specifically (Chaplin, 2010). The adaptive system
not only works to defend the host against hordes of microorganisms, but also helps

to eliminate defected and mutated cells from the body. Impaired adaptive immunity
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leads to an increase in the susceptibility to infection, autoimmune diseases and

even cancer (Janeway et al., 2001).

2.7. Adaptive System

The adaptive immune system is composed of two major response classes:
humoral immunity and cellular immunity, and they are carried out by
two distinct types of lymphocytes: B cells and T cells respectively. Each recognizes
antigens through the antigen receptors on their surfaces; the B-cell receptor (BCR)
on B cells and T-cell receptor (TCR) on T cells. Both T and B lymphocytes play
central roles in the adaptive immune system but cell-mediated immunity plays a
key role in transforming cell recognition and rejection (Janeway et al., 2001).
Indeed, the maturation and activation processes in the adaptive immune system are
highly complex. Briefly, both lymphocytes cells are generated in the bone marrow;
only the B cell matures there whereas the T cell migrates to the thymes to mature

(Janeway et al., 2001).

There are two main phases for lymphocyte maturation: first, the
lymphocytes programmed to recognize sufficient diversity of target antigens
through a process called somatic DNA recombination. This is also known as VDJ
recombination; as discussed in more detail in later sections. Second, lymphocytes
with receptors which bind to self-antigens and react towards healthy self-tissue are
removed during development by inducing apoptosis in the cell (Janeway et al.,
2001). After maturation, these cells enter the blood circulation, then the secondary

lymphoid organs, such as lymph nodes and spleen where they localize and wait for
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exposure to the antigen that they are pre- programmed to recognize. Localized cells
are known as naive lymphocytes. Antigenic activation of these cells requires
interaction with antigen presenting cells (APCs) such as B lymphocytes,
macrophages and dendritic cells (DCs). The main role of APC in this mechanism is
taking up antigens from infected peripheral tissues into the lymph nodes for
presentation and activation of the appropriate naive lymphocyte. After exposure to
antigen the selected lymphocytes with specific target receptors to the antigen are

proliferated and mature into effector cells (Janeway et al., 2001).

In humoral immunity, activated effector B cells secrete different types of
antibody called immunoglobulins, which help in the elimination of extracellular
microorganisms and prevent spread of their infections. Naive B cells are triggered
by the encounter with the direct antigens in the lymph nodes and usually require T
helper cells to produce antibodies. These antibodies mainly circulate in the
bloodstream and body fluids where they can act over long distances. The antibodies
are specifically bind to antigens or toxins that stimulate their production then block

their ability to bind to the host cell receptors (Janeway et al., 2001).

In the cellular immunity, T lymphocytes are divided into:1) cytotoxic T cells
(CD8), directly attack and kill infected cells, 2) helper T cell (CD4), help to activate
cells in both humoral and cellular immune responses and 3) regulatory T cells
(FOXP3), down-regulate immune responses. Activation of naive T cells requires
at least two independent signals: i) antigen specific signals and ii) co-stimulatory
signals (Figure 2.2). The first signal is based on the interaction of TCR with antigen

peptides presented by the major histocompatibility complex (MHC) on cell surface
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of APC, either class I or class Il molecules. Unlike BCR, TCRs do not bind directly
to antigens; instead their antigen on APC must be processed to suitable peptides

that bind to MHC (Janeway et al., 2001).

The second signal is derived from the interaction of co-stimulatory receptors
CD28 on T cell with B7-1 and B7-2 ligand on APC (signal 2), without second
signals, T cells cannot be activated, but instead become tolerized or anergic (Iwai
et al.,2017; MacLeod, 2015). The effecter T cells then migrate from lymphoid
organs to sites of infection where they can act only locally on adjacent cells. Most
importantly, once cytotoxic T cells activate, they will kill only the infected cell that
bearers the exact antigens. Effecter cytotoxic T cells trigger apoptosis in the
targeted infected cells either through secreting perforin and granzymes or
displaying Fas ligand on their surface. On the other hand, effecter helper T cells
secrete a variety of signal proteins called cytokines. These cytokines act as
mediators by influencing the behavior of the numerous cell types that they help

(Alberts et al., 2002).

MHC proteins have an important role in the adaptive immune system. The
function of MHC molecules is to display non-self-peptide antigens on the cell
surface for recognition by the appropriate T cells. MHC class | molecules present
peptides derived from intracellular/endogenous proteins to cytotoxic T cells, and
they are located on the cell surface of all nucleated cells in the body. While MHC
class Il display peptides derived from extracellular/exogenous proteins to CD4+ T

cells and they are found only on APCs (Janeway et al., 2001).
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Figure 2.2. Activation of T Cells Requires Two Signals: Antigen Specific Signals
and Co-stimulatory Signals. The first signal is based on the interaction of TCR with
antigen peptides presented by the major histocompatibility complex (MHC) on cell
surface of APC, either class | or class Il molecules. The second signal is derived from
the interaction of co-stimulatory receptors CD28 on T cell with B7-1 and B7-2 ligand
on APC. Without second signals, T cells cannot be activated, but instead become

tolerized or anergic (MacLeod, 2015).

In this chapter, | will therefore only discuss concepts relevant to T cells and

cancer since T cells play a key role in transforming cell recognition and rejection.
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2.8. The Development of TCR Diversity

2.8.1. V(D)J Recombination

In the invertebrate immune system, the diversity of the T cell receptors is
huge, which enables the immune system to provide broad protection against the
vast diversity of nonself-antigens. The TCR protein is encoded by a unique protein-
coding system of germline genes. The TCR is composed of two disulfide-linked
polypeptide chains (alpha [o] and beta [B], or gamma [y] and delta [5]).
Approximately 95% of human T cells express o/p and only 5% of circulating T
cells express y/6 (Cruse & Lewis, 2010). Each chain is composed of constant (C)
and variable (V) regions. The C-domain is proximal to the cell membrane and the
V-domain is distal to the membrane (Figure 2.3). The recombinable genes which
rearrange during T cell development and contribute to the great diversity of TCR
fall into the VV domain. Basically, the TCR 3 chain VV-domain is encoded by three
genes segments, the variable (V), diversity (D) and joining (J), while the TCR a

chain V-domain is encoded by V and J genes segments, without D (Murphy, 2014).
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Figure 2.3. The Basic Structure of Two Classes of TCR. Each T cells consist
of two different polypeptide chains, both of which are heterodimer with constant
(C) and variable (V) regions. The C-domain is anchor to the cell membrane and

the V-domain is distal to the membrane (Murphy, 2014).
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V(D)J recombination or somatic recombination is a process by which T cells
randomly assemble different gene segments of V, D, and J in the  chain or V and
J genes in the a chain, in order to generate unique antigen receptors. There are
multiple copies of V, D, and J gene segments within each receptor gene locus
bearing high sequence homology. For instance, the human TCR B-chain locus is
located on chromosome 7 and contains 52 V gene, 2 D gene and 13 J gene segments,
while the TCR a -chain locus is located on chromosome 14 and consists of ~70 V
genes and 61 J genes (Murphy, 2014). In each recombination only one copy of
V/(D) 1J gene can take part by random selection. Initially one of the D segments is
joined with one of the J segments, next is the assembly of the DJ region to one of
V segments, yielding the final VVDJ region that has a size of ~ 500 bp. Together,
this process provides the basis for the TCR diversity (Murphy, 2014; Woodsworth

etal., 2013).

Furthermore, along with recombination, the diversity of TCR is
significantly increased by the addition and deletion of a set of non-template
nucleotides at the joints between the gene segments. This process is termed as
junctional diversity. The added nucleotides are known as P-nucleotides and N-
nucleotides. P nucleotides are so named because they make up palindromic
sequences, which are added at the ends of the gene segments, and N nucleotides are
so named because they are non-template encoded (Janeway et al., 2001; Saada et

al., 2007).
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Briefly, during junctional diversity (Figure 2.4), RAG enzyme cleaved
coding segments to create hairpin structures at the end of gene segments. After the
formation of the DNA hairpins, RAG catalyzes single-stranded cleavage at a
random point within the coding sequences. This lead to the formation of a single-
stranded tail from a few nucleotides of the coding sequence along with the
complementary bases from the other DNA strand, thus generating the palindromic
sequences. Then, random nucleotides are added by terminal deoxynucleotidyl
transferase (TdT) enzyme to the ends of single -stranded gene segments. After the
addition of the nucleotides, the two single-stranded ends pair over a short region.
The unpaired nucleotides are removed by exonucleases and gaps are filled by repair
enzymes, which help in creating coding joints between gene segments (Janeway et

al., 2001; Saada et al., 2007).

The two processes: V(D)J recombination and junctional diversity generate
complementarity determining region 3 (CDR3), which is the main domain of the
TCR that is in contact with peptide-MHC antigen and largely determine TCR
specificity (Figure 2.5) (Saada et al., 2007; Woodsworth et al., 2013). It is estimated
that the adaptive immune system of each person can generate approximately up to

10 distinct ap pairs of TCR CDR3 (Robins et al., 2009).
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Figure 2.4. Generation of Junctional Diversity steps on TCR (Janeway et al.,

2001).
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2.8.2. The TCR Development in the Thymus

It is good to point out that VV(D)J recombination of TCR o and  chains does
not happen in parallel. Infact during T cell maturation, TCR [ chain gene segments
rearrange first. Only when these rearrangement events yield a productive TCRp
chain, the cell will be able to produce a functional pre-T-cell receptor and blocks
further gene rearrangement. Following a successful productive rearrangement, the
TCR continues to rearrange its TCR a locus until a productive and useful TCR p/a
is generated. If the TCR fails to synthesize productive rearrangement the T cell will

die (Murphy, 2014).

In addition to V(D)J recombination during TCR development, the B chain
of TCR exhibits allelic exclusion. Allelic exclusion is a regulatory mechanism
which states that only one of the two alleles of the B chain loci is rearranged and
expressed in the T cell, thus ensuring that a given T cell will make TCR molecules
with only a single specificity (Murphy, 2014). In the case of the a chain, allelic
exclusion may not always be the rule; rearrangement on both alleles is very
common and 20-30% of mature T cells could express two productive V,-Ju
rearrangements on the cell surface. However, the a chains of both rearrangement
are regulated by post-translational events (Rybakin et al., 2014). Based on this fact,
studying the diversity and the clonotype aspects of T cell receptors rely on
sequencing the B chains not the a. Since each T cell only expresses single 3 chain
rearrangement on its surface, the number of  chain sequences is a reflection of the

number of TCR clonotypes present in a sample (Woodsworth et al., 2013).
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Figure 2.5. The Interaction of TCR and Antigen Peptide. A) The T-cell receptor
(TCR) encounter with antigen presenting cell (APC) that presents peptide antigen
by MHC on its cell surface. B) Complementarity determining region 3 (CDR3) is
the main domain that directly contacts with peptide-MHC. CDRS3 region is unique
to each TCR and largely determine TCR specificity to peptide antigen. C)
Representation of TCR-p V(D) J gene recombination. In each recombination only
one copy of each different gene segments of V, D, and J in the 3 chain can take part
in the process by random selection, resulting in TCR diversity (Woodsworth et al.,

2013).
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2.9. The Concept of Tumor Immune Surveillance

The link between the immune system and cancer has been under
investigation for many years and is still ongoing. Paul Ehrlich in 1909 first
postulated the idea that nascent transformed cells spontaneously arise in our bodies
and that the immune response could effectively eradicate them before they are
manifested clinically (R. Kim et al., 2007). However, this idea was not vigorously
pursued as at that time the field of immunology was still immature. In the mid-20th
century, 50 years later, interest in this area was renewed by Medawar and his
colleagues who clarified the significant role of cellular components of the immune
system in recognizing and mediating allograft rejection. Their experiments showed
strong immune-mediated rejection of transplanted tumors derived from noninbred
strains of mice. However, the results were used to argue for the existence of a tumor
specific immunity, rather than that the tumor was seen simply as a foreign graft

(Dunn et al., 2002; Smyth & Hayakawa, 2004).

Soon after, with the wide availability of inbred strains of mice, it was
possible to address whether tumors arising in mice were immunologically
distinguishable from normal cells in the same syngeneic mice. The results showed
that the mice were able to provoke their immune system and prevent the outgrowth
of syngeneic tumors induced by chemical carcinogens or virus. This work
formulated the fundamental principle of cancer immune surveillance, which is that
immune cells would recognize the presence of transformed tissue in the body if

tumor cells express distinctive recognition structures on the surface of cells, as was
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postulated by Macfarlane Burnet and Lewis Thomas in 1957. At the core of their
hypothesis was the discovery of the existence of tumor specific antigens.
Furthermore, they proposed the idea that lymphocytes were mainly responsible for
the recognition and elimination of genetically transformed cells (Dunn et al., 2002;

Smyth & Hayakawa, 2004).

Years later, a large number of experiments with mouse models harboring
mutations in one or several immune response genes have been performed to
understand the mechanism of tumor immune surveillance. The accumulated
evidence supports that immune surveillance of cancer was dependent on
lymphocytes cells. The relative importance of lymphocytes derived from the use
of mouse models lacking the recombination activating genes 1 (Rag 1) or Rag 2.
Those genes encode proteins that are involved in the initiation of V(D)J
recombination during B and T cell development. The loss of Rag genes function in
mouse models results in absence of mature B and T cells. In experiments using both
wild type mice and mouse models exposed to chemical carcinogens, the frequency
of tumor formation and the kinetics of tumor growth were measured. The Rag
knockout mice failed to prevent the formation of cancer. They formed tumors
earlier and with greater frequency compared to wild type mice that had the same

genetic background (R. Kim et al., 2007).

Further analysis has underscored a central role of T lymphocytes in the
antitumor immune response by studying mice that lacked T cells. These
experimental mice showed rapid formation of large tumors compared to wild-type

strains (R. Kim et al., 2007). Other studies have reached similar conclusion using
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mice strains lacking IFNy, interleukin-12 (IL-12), components of the MHC class |
antigen processing and presentation pathways, CD8+ T cells, perforin or granzymes
and Fas. All these are considered important components of the cell mediated
mechanism of tumor recognition and elimination (Dranoff, 2011). These findings
indicate a distinct contribution of T cells in the regulation of tumor growth, and

inhibition of initial tumor (Dranoff, 2011; R. Kim et al., 2007).

Recently, A large body of evidence from clinical studies and mouse models
supported that the immune system plays a dual role in cancer. It can participate
both i) in tumor elimination and control by destroying cancer cells or inhibiting
their outgrowth (via the actions of the adaptive immune system) or ii) in tumor
development by establishing conditions within the tumor microenvironment that
facilitate tumor cell survival, outgrowth and spread in the host (via chronic
inflammation by the innate immune system). The dual role of the immune system

in cancer is known as cancer immunoediting (Criscitiello et al., 2014).

Immunoediting represents a contemporary view of the relationship between
the immune system and the tumor. It defines a complex process that leads to the
selection of tumors that can evade the immune system as the immune system edits
the tumors to kill those that it can recognize. Immunoediting can be divided into
three phases: elimination, equilibrium, and escape. The elimination phase
represents the classical concept of cancer immunosurveillance, equilibrium is when
tumor cells are held in control but are not eradicated by the immune system. The
escape phase refers to the final stage when immune cells fail to restrict tumor

outgrowth and the tumor becomes clinically detectable. Studies report that even
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with advance stages of cancer the immune can directly or indirectly help in defining
tumor prognosis and response to treatment (Dushyanthen et al., 2015). In summary,
the data obtained from both mouse and human studies provided strong evidence of
the complex role of the immune system in tumor initiation, progression, and

inhibition.

2.10. TIL

In clinical practice, the presence of T cells in tumors and their potential
impact have been studied over the past years. Studies provide compiling evidence
for a positive correlation between the presence of high density of T cells at the
tumor site and improved patient overall survival (OS) (Hadrup et al., 2013). Most
of the convincing evidence originates from studying patients with cutaneous
melanomas. TIL patterns were classified into three categories as brisk, non-brisk
and absent according to criteria suggested by Clark et al. and Elder et al. "Brisk"
was defined as the presence or infiltration of lymphocytes within tumor, the "non-
brisk™ category is when lymphocytes are present in one or more focal location of
the tumor, and "absent" are cases in which no lymphocytes were present in the
tumor. Early data proposed that a brisk TIL in melanoma lesions was a positive
prognostic factor (Hadrup et al., 2013; Mihm et al., 2015). In cohort study, of 5-
10 year follow-ups for more than 500 patients with melanoma, the results indicated
that patients in the brisk TIL category had highly significant survival advantage
compared to patients in non-brisk and absent TIL groups. The result showed that
the brisk TIL group tended to live 1-1.5 to 3 times longer than those with in the

absent group and non-brisk patients had intermediate survival (Dunn et al., 2002).
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Similar methodological approaches for evaluating TIL have been used in
several other solid tumor studies. Same positive correlation between the presence
of TILs and improved patient survival have been found in breast, ovarian, bladder,
prostate, colon and other cancers. This data suggested the use of TIL as a diagnostic
marker in routine clinical practice for the predication of patient survival outcome

(Hadrup et al., 2013).

2.11. Tumor Mutation Burden and TIL

At present, there is limited knowledge as to why some patients have cancer
with heavy T cell infiltration than others, even within patients that have similar
cancer subtypes. Some studies report that tumorigenesis can induce T-cell-
mediated immune response against malignant cells because the genetic alterations
in the tumor lead to profound changes in the cells. The genetic alterations can either
lead to the presentation of new antigens known as tumor-specific antigens (TSA),
antigens only expressed on tumor cells. Or they can cause change in gene
expression level on the cell surface known as tumor-associated antigens (TAA),
antigens expressed on both normal and tumor cells but the quantity is significantly
higher in tumor cells. As suggested these tumor antigens can trigger the immune

system to recognize and destroy cancer cells (Escors & David, 2014).

Several studies elucidated that not all intracellular foreign antigens will have
a chance to be recognized by CD8 T cells. Studies clarified that for a mutation to

give rise to a foreign antigen (called neoantigens; an antigens that is recognized
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with high specificity by patient T cells), three criteria must be met: a) the mutated
protein must be processed and presented as a peptide; derived from the intracellular
proteolysis machinery ii) the mutant peptide must be loaded with high affinity on
MHC class I molecules on the surface of cancer cells iii) the patient’s T cells
repertoire must contain a TCR with an optimal binding affinity and specificity for

the mutant epitope (Martin et al., 2016).

The vaccine studies are the most appropriate examples for the effect of these
restrictive criteria to the immune response. Not all viral proteins given in a vaccine
can be naturally processed, presented on MHC class I, or/ and recognized by CD8
T cells (Martin et al., 2016). For instance, in one study that focused on influenza A
virus epitopes, in total of 180 peptides used in this experiment, predicted from
protein sequence of several HIN1 viruses, only 120 (66.6%) were found to be
binding to the MHC molecule, of those only 13 (7.2 %) were verified as actual
strong CD8 cytotoxicity epitopes (Lundegaard et al., 2010). Indeed, this data
illustrated that only a small proportion of mutations can become neoantigens and a

small subset of those can become strong CD8 cytotoxicity epitopes.

Furthermore, many studies underscore the significant role of mutational
load in increased T cell infiltration and diversity in human cancer. The Cancer
Genome Atlas (TCGA); which is an important database created by both National
Cancer Institute (NCI) and the National Human Genome Research Institute
(NHGRI), contain a comprehensive catalog of somatic tumor mutations of 33 types
of cancers identified by deep sequencing. The TCGA data has revealed that human

tumors are heterogeneous and the spectrum of somatic mutations are extremely
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variable within and across tumor types. In addition, the analysis of cancers genomes
has highlighted the positive association between total tumor mutational load or
neoantigen burdens with increased cytotoxic T cell infiltration within samples

(Brown et al., 2014; Roszik et al., 2016).

2.12. Tumor Mutation Burden and TCR Diversity

It has been reported that the diversity of T cell receptor (TCR) repertoire
within the TIL is a fundamental property of an effective immune defense
system and is closely related to the capacity of T cells to recognize cancer antigens
(Li et al., 2016). Several studies proposed that neoantigens derived from somatic
mutations might shape and modulate the diversity of infiltrating T cells in human
cancer (Savage et al., 2014). Recently, with the availability of high throughput
approaches, it became possible to address this issue. One important study used deep
sequencing data to analyze the TCR repertoire of the tumor microenvironment in
different types of tumors. This study reported that tumors that showed high levels
of T cell infiltration had more TCR reads compared to tumors that had low TIL
infiltration. As each T cell clone possesses a unique TCR, the study confirmed
positive correlation between somatic mutational load and T cell clonotype diversity

(Lietal., 2016).
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2.13. Breast Cancer and TIL

Breast cancer has not traditionally been considered a typical immunogenic
tumor, perhaps owing to its low mutational rate when compared to melanomas and
renal cell carcinomas. However, TIL is observed in breast cancer and has been
reported to be a good prognosis feature for subsets of the disease (Criscitiello et al.,
2014; Dushyanthen et al., 2015). Clinical trials reported that TIL located in the
surrounding stroma contributes to treatment efficacy and survival rate in all
subtypes of breast cancer. Higher TIL counts are significantly observed with ER
negative, larger tumors, higher histologic grade, high HER2 amplification and more
involved lymph-nodes tumors. All these are mostly feature of HER2 and TN

subtypes (S. Loi et al., 2014).

Notably, a lot of observational studies reported that TN patients are more
likely to have tumors with >50% lymphocytic infiltrate, which is called lymphocyte
predominant breast cancer (LPBC). Every 10 % increase in TIL was associated with
increased survival benefit in LPBC patients. However, HER2 patients mostly had
similar TIL infiltration as TN patients but have not shown the same survival benefits

(Stanton & Disis, 2016).

Some studies have attempted to understand why TN and HER2 patients
have high TIL infiltration. These studies suggested this might be because both of
TN and HER2" subtypes exhibit high proliferation rates and high genomic
instability compared to luminal breast cancer subsets. Genomic instability, as

suggested by the available data, can promote antitumor immune responses through
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inducing and presenting large number of tumor antigens and therefore promotes
increased level of T cells infiltration within the tumor (Criscitiello et al., 2014;

Sherene Loi, 2013).

In addition, the high throughput sequencing data provides a deeper
understanding of tumor molecular biology for each breast cancer subtypes. It has
been observed that TN patients had the highest mutation rates among all the breast
cancer subtypes, whereas luminal subsets had the lowest mutation rates (Wang et
al., 2017). The TCGA breast cancer dataset that consists of 762 invasive breast
cancers confirmed that ER negative subtypes have a higher spectrum of mutations
compared to the ER positive samples (Haricharan et al., 2014). Unfortunately, the
relationship between the load of somatic mutation and TCR diversity of infiltrating

T lymphocytes across breast cancer subtypes remains limited.

2.14. Approaches for TILs Evaluation in the Breast Cancer

Recently TIL has emerged in clinical practice as a predictive and prognostic
biomarker of long term breast cancer disease control. In December 2013, a group
of breast cancer researchers from around the world discussed the important need to
consider methodological and criteria for evaluating and scoring the degree of
lymphocytic infiltration. The International TILs Group recommended using
hematoxylin and eosin (H&E)- stained slides of tumor sections as a standard
method. Scoring the percentage of lymphocytes would be done by selecting areas
with average density of stromal lymphocytes (Figure 2.6) (Salgado et al., 2015).

This semiquantitive method appears to be sufficient for pathologist-based
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assessment. However, this method is limited in providing detailed information
about the immune subpopulations and cannot discriminate between TIL subsets.
Another major issue with this method is the heterogeneity of lymphocyte
distributions within some tumors as this might yield results that are not

representative of the entire tumor (Lee et al., 2016; Salgado et al., 2015) .

Immunohistochemistry (IHC) assay is another method utilized in clinical
practice and research studies for quantification of T cell population. This method is
dependent on using antibodies against human CD3, CD4, and CD8 on FFPE tissue.
Then the stained section is scored and evaluated either by automated digital image
analysis or by visual scoring of a pathologist (Metzger et al., 2012; Rathore et al.,

2014).
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Figure 2.6. Standard Method for Tumor-Infiltrating Lymphocytes (TILS)

Evaluation of the Breast Cancer (Salgado et al., 2015).
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2.15. Methodologies for TCR Repertoire Analysis

Due to the importance of TCR repertoire diversity in understanding the
adaptive immune system, new molecular platforms have been developed to monitor
the TCR within cancer and other immunological diseases. These new approaches
enabled deeper analyses of the degree of heterogeneity of T lymphocyte in the
specimens. Before the emergence the high throughput sequencing, several low-
throughput techniques had been used to assess the diversity of TCR repertoire. The
most important methods were sanger sequencing and gel electrophoresis based
methods known as immunoscope or spectratyping (Ciupe et al., 2013; Dziubianau

etal., 2013).

Sanger sequencing was used to read nucleotide sequences of the
rearranged DNA but it was labor-intensive and generated limited data the TCR
repertoire (Ciupe et al., 2013; Dziubianau et al., 2013). Spectratyping approach
was also used for analyzing the diversity and the spread of clonalities in the
samples. This method depends on the principle that each of T-cell clone have
particular sequences or lengths of CDR3 products. The spectratyping focused on
generating information about the sizes of CDR3 in T lymphocytes and their pattern

of distribution in the specimen (Ciupe et al., 2013).
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Recently, next-generation sequencing (NGS) technologies have provided
high resolution analysis of numerous areas of biology and medicine. Because of the
high throughput nature of these technologies they have provided deep insights into
properties and behaviors of the adaptive immune system. These methods are able
to profile, monitor lymphocytes and capture accurate quantitative measurements of

TCR sequences in the sample from the first time (Dziubianau et al., 2013).
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CHAPTER 3 : MATERIALS AND METHODS

3.1. Materials and Reagents

Table 3.1-3.3 contains a list of all materials and resources used in the

project.

43



Table 3.1.

List of Reagents

ltem

Company

Part Number

Qubit® dsDNA BR Assay Kits

ImmunoSEQ hsTCRB KIT

Agilent High Sensitivity DNA

Kit

Aglilent DNA 1000 Kit

Agencourt AMPure XP

MiSeq Reagent Kit v2 (300

Cycles)

PhiX Control v3

MiSeq Reagent Kit v3 (150

cycle)

KAPA Library Quantification

Kit lHlumina® platforms

Qubit® dsDNA HS Assay Kits

Life
Technologies
Adaptive
Biotechnologies
Agilent
Technologies
Agilent
Technologies
BECKMAN

COULTER

IHlumina

IHlumina

IHlumina

Kapa Biosystems

Life

Technologies

Q32850

ISK10001

5067-4626

5067-1504

A63881

MS-102-2002

FC-110-3001

MS-102-3001

KK4824

Q32854
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SMRTbell Damage repair kit

QIlAseq DNA QuantiMIZE
Assay KiT

GeneRead DNAseq Targeted
Panels V2 (Human Breast
Cancer Panel)

GeneRead DNAseq Panel
PCR Kit V2 (96)
DNQC-100Y-R GeneRead
TM DNA Library I Core Kit(
12)

GeneRead TM Adapter | Set
12-plex(72)

GeneRead TM DNA Librart |
Amp Kit (100)

GeneRead TM Size Selection
Kit (50)

QIAquick R PCR Purification
Kit (50)

QIAGEN Multiplex PCR plus

KIT

Pacific

Biosciences

QIAGEN

QIAGEN

QIAGEN

QIAGEN

QIAGEN

QIAGEN

QIAGEN

QIAGEN

QIAGEN

100-465-900

333414

181900

181942

180432

180984

180455

180514

28104

206152
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Table 3.2.

List of Instruments

Item Company Part Number
2100 Bioanalyzer system Agilent G2943CA
Mi-seq Systems [llumina SY-411-9001DOC
7500 Fast Real-Time PCR  Applied
4351106
System, laptop Biosystems
Veriti™ 96-Well Thermal  Applied
4375786
Cycler Biosystems
Life
Qubit® 2.0 Fluorometer Q32866
Technologies
Table 3.3.
List of Software
Item Company

Immunoseq analyzer 3.0

Ingenuity Variant Analysis

Biomedical Genomics Workbench version 4

Rstudio V.3.3.2.

Mutagen

Adaptive biotechnologies
QIAGEN

QIAGEN

Rstudio

NCBI
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3.2. Study Design
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Figure 3.1. Study Design Workflow. The workflow illustrates the steps of somatic
mutation identification and TCRB repertoir identification. First, somatic mutations
were identified from FFPE breast cancer clinical biopsies from 79 patients. Based
on the results of the somatic mutational load analysis, 11 patients were selected for

the immune analysis.

47



3.3. Methods

3.3.1. Tumor Sample Collection

For this study, we included a total of 182 breast cancer samples provided
by Hamad Medical Corporation (HMC) collaborators. This retrospective study was
approved by the Medical Research Center institutional review board of HMC with
a waiver of the informed consent requirements. All the FFPE biopsies were
obtained from patients with no history of any cancer therapy. These clinical samples
were collected between 2004 and 2012. Sample selection was based on the high
quantification level of lymphocytes in the tumor tissue. Lymphocyte quantification
was determined by the evaluation of hematoxylin and eosin (H&E) stained tissue
slides, which is the standard method at HMC. The molecular subtypes of breast
cancer have been determined based on expression level of ER, PR, HER2, and Ki-

67, as follows (Table 3.4):
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Table 3.4.

Molecular Characteristics of Breast Cancer

Molecular Luminal A LuminalB HERZ2E TN
Subtypes
ER+ ER+ ER- ER-
Characteristics PR+ PR+ PR- PR-
HER2- HER2 +/- HER2 + HER?2 -

Ki-67 -Low Ki-67 -High

3.3.2. Macrodissection of Tissue Samples

All FFPE samples were manually macrodissected according to specific

instructions of the pathologists, to ensure the presence of maximum cancer cells in

the study. Briefly, first the pathologist reviewed the H&E stained slides of FFPE

using the light microscope to select and mark areas of cancer cells for dissection.

Next, the laboratory technician used these marked H&E slides as guide to dissect

FFPE blocks. Furthermore, the exact areas when the FFPE block was taken from

in the tumor (acinar, lobular, ductal..etc) were not provided to our study.
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3.3.3. DNA Extraction and Quantification

DNA and RNA were extracted from dissected FFPE using the AllPrep
DNA/RNA FFPE Kit (Qiagen, USA) according to the manufacturer’s instructions.
DNA concentrations were determined by Qubit 2.0 Fluorometer dsSDNA HS assay
kit (lifeTechnologies, USA). Because the genomic DNA (gDNA) extracted from
FFPE could been have damaged and fragmented as a result of the fixation and
storage conditions, the DNA was qualified and quantified using the QlAseq™ DNA
QuantiMIZE assay (Qiagen, USA). This assay utilizes a qPCR-based approach to
calculate the amount of amplifiable DNA in each sample. Following the
manufacture recommended protocol, 2 PCR components were prepared to amplify
more than 20 genomic loci distributed across the human genome. The first mix was
SYBR Green PCR master mix with primer assay 100 and the second mix was SYBR
Green PCR master mix with primer assay 200, which generate 100 and 200 bp
amplicons respectively. 4 ul of each gDNA sample along with the control sample
were interrogated by 6 reactions; 3 reactions using the 100 assay and 3 using the
200 assay. After the gPCR run was performed, the Crvalues of both assays were
exported from the ABI 7500 real —time PCR instrument to an Excel data analysis
sheet. This Excel sheet was provided by the manufacture to assist in calculating the
integrity of the amplifiable nucleic acid in each sample. RNA samples were stored

in -80C for future studies, and were not used in this project.
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3.3.4. Breast Cancer Target Enrichment

GeneRead DNAseq Targeted Panels V2; Human Breast Cancer Panel
(Qiagen, USA) in combination with GeneRead DNAseq Panel PCR Kit V2
(Qiagen, USA) were used to perform target enrichment by multiplex PCR. The
breast cancer panel consists of four primer pools yielding 2,915 amplicons. These
amplicons cover mutational hotspot regions located in 46 genes, which are known
to be related to breast cancer. This genes list in Table 3.5. Briefly, gDNA samples
were amplified using PCR reagents with 4 primer pool mixes (each primer pool in
a separate well), and PCR was performed in a standard thermocycler following the
protocol recommendation and the number of cycles calculated by QuantiMIZE

analysis.

After the completion of the 4 PCR reactions, the products for each sample
were combined into one 1.5ml LoBind tube and the enriched DNA was purified
using Agencourt® AMPure® XP beads (Beckman Coulter, USA). This step helps
exclude large DNA fragments that could contaminate downstream steps. The
concentration and the size of the purified amplicons were determined using Qubit
2.0 Fluorometer dsDNA BR assay kit (lifeTechnologies, USA) and Agilent

BioAnalyzer 2100 High-Sensitivity DNA kit (Agilent Technologies, USA).
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Table 3.5.

Human Breast Cancer Genes Panel (QIAGEN)

Genes

ACVR1B

AKT1

ATM

BAP1

BRCA1

BRCA2

CBFB

CDH1

CDKN2A

CISD3

EGFR

EP300

ERBB2

ERBB3

ESR1

EXOC2

EXT2

FBX032

FGFR1

FGFR2

GATA3

IRAK4

ITCH

KMT2C

MAP2K4

MAP3K1

MDM?2

MUC16

MYC

NCOR1

NEK?2

PBRM1

PCGF2

PHF7

PIK3CA

PIK3R1

PPM1L

PTEN

PTGFR

RB1

RET

SEPT9

TPS3

TRAFS

WEE1

ZBEDA4
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3.3.5. Library Preparation and Sequencing

A total amount of 80 -160 ng of purified enriched DNA was used as template
to generate NGS libraries. The NGS libraries were prepared using the DNQC-
100Y-R GeneRead TM DNA Library | Core Kit( 12) (Qiagen, USA) and GeneRead
TM Adapter | Set 12-plex(72) (Qiagen, USA). All library preparation steps; End
repair, A-tail, adapter ligation, size selection and PCR amplification were
performed according to the manufacturer’s protocol. The size of the final PCR
products was analyzed using Agilent BioAnalyzer 2100 with 1000 DNA kit

(Agilent Technologies, USA).

To avoid over-clustering during sequencing, an accurate concentration of

the libraries were estimated using Qubit and KAPA Library Quantification Kits for

IIIumina® platforms (Kapa Biosystems, USA). The quantified samples were then
normalized to 2 nM to ensure equal representation of each library within the pool.
After normalization, each 12 libraries were pooled together and spiked with 5% of
PhiX control. Finally, using MiSeq Reagent Kit v2, 300 cycle, a paired-end 260 bp
sequencing run of each pool was carried out on the MiSeq instrument (Illumina,

USA).
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3.3.6. DNA Damage Repair

SMRTbell Damage repair kit (Pacific Biosciences, USA) was used to
perform DNA damage repair for 20 samples, thus to ensure good quality VDJ
sequencing results from FFPE samples. According to the kit guidelines, up to 2 ug
of gDNA were used. Repaired samples were then purified using Agencourt®

AMPure® XP beads (Beckman Coulter, USA).

3.3.7. TCR p CDR3 Amplification and Sequencing

The CDR3 region of TCRP was amplified and sequenced for 12 samples
using the ImmunoSEQ profiling system at the survey level (Adaptive
Biotechnologies, USA). This assay utilized a two-step PCR reaction to amplify the
TCRp immune repertoire. For the survey level means, replicate reactions were
required for each sample. Briefly, total of 150 ng of purified damage repaired
gDNA was used as template. Typically, this concentration will yield the targeted

number of T cells (~ 4,000- 30,000 T cells) for non-lymphoid tissue.

For the first round of PCR, DNA was amplified using the QIAGEN
Multiplex PCR plus KIT (Qiagen, USA) with mix of multiplexed V-and J gene
primers. The forward primers annealed to the(V) region and the reverse primers
annealed to the junction (J) region of TCRp as provided by ImmunoSEQ hsTCRB
KIT (Adaptive Biotechnologies, USA). The reaction cycling conditions were: 95°C
15 min, 30 cycles of [30s at 95°C, 90s at 62°C, and 90s at 72°C], plus a final
extension of 3 min at 72°C. After amplification, the PCR products were purified

using immunoSeq PCR Cleanup reagent following the manufacturer protocol. For
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quality control, the samples were run on Agilent BioAnalyzer 2100 with 1000 DNA

kit (Agilent Technologies, USA).

For the second round of PCR, Illumina adapters and unique DNA barcodes
were introduced to each PCR replicate. Briefly, 2 ul of each purified first PCR
product was mixed into a multiplex PCR reaction with unique barcodes supplied by
ImmunoSEQ hsTCRB KIT. The thermocycling conditions consisted of: an initial
denaturation step at 95°C for 15 min followed by 7cycles of [30s at 94°C, 40s at
68°C and 1 min at 72 °C], and the final extension of 10 min at 72 °C. The second
PCR products were purified according to the protocol recommendations. In this
step, each replicate samples has become uniquely identifiable by the additional of

barcodes.

Following the two step PCR reactions, equal volumes of each 14-barcoded
sample [including positive and negative controls], were pooled together in one tube
without normalization. In total we had 2 pooled samples in this study each

containing 14 barcodes. The final concentration of the pooled samples was

quantified using KAPA Library Quantification Kits for the IIIuminei@ platforms
(Kapa Biosystems, USA). Following quantification, the pooled immunoSEQ
libraries were spiked with 5% PhiX control and sequenced on the MiSeq platform
using MiSeq Reagent Kit v3, 150-cycle (Illumina, USA) as recommended by

Adaptive Biotechnologies.
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3.3.8. Data Analysis

3.3.8.1.  Somatic Mutation Analysis

The output raw data (.fastq files) from the MiSeq instrument were analyzed
using Biomedical Genomics Workbench V 4 (CLC Bio, QIAGEN) following
QIAGEN GeneRead Panel Analysis workflow, which was designed for the
GeneRead DNAseq Targeted Panel users. The workflow starts with mapping
sequencing data to human genome reference (hgl9). A local realignment was
performed to improve the quality of variant detection. The variants were directly
called after trimming sequencing primers and dimers. All reads that non-
specifically mapped or mapped outside of the targeted regions were excluded.
Reads that aligned within the targeted regions were annotated with gene names,
amino acid changes, exon numbers and chromosomal numbers. These annotations
were obtained from different databases like, ClinvVar dbSNP, HapMap, Cosmic and

1000 Genomes project.

Additional filtering steps were performed to remove variants present in the
human reference and reported in doSNP, 1000 Genomes Project, HapMap, Exome
Sequencing Projects and Exome Aggregation Consortium (ExAC) databases. Also,
variants that were present in more than 3% of the studied population were excluded
as they could be due to sequencing artifacts or as-yet undiscovered common
variants. For the remaining variants, the selection parameters for candidate variants
were Quality >=50, Allele fraction > 2, Read depth >= 30. The final list only
included the variants that changed native protein function as predicted by SIFT and

PolyPhen-2 Functional Predictions. We excluded variant with allele fraction < 2
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because the NGS kit not optimize to detect variants with low allele fraction from
FFPE samples. The last filtering steps were done through Ingenuity Variant
Analysis (QIAGEN). Finally, the somatic mutation data were summarized and

plotted using R Program version 3.3.2.

3.3.8.2.  Derivation of Breast Cancer Mutational Signatures

To identify the most likely mutagenic processes underling somatic
mutations of our breast cancer samples in Qatar, the mutational profile was
analyzed for the 79 patients using an online freely available computational

framework MutaGene; https://www.ncbi.nlm.nih.gov/research/mutagene/. To start

this analysis, we uploaded 79 VCF files of filtered germline variants to the

MutaGene system.

Briefly, MutaGene reported the mutational profile according to six base
substitutions which are: C>A, C>G, C>T, T2>A, T>C and T->G; all
substitutions are referred to by the pyrimidine of the mutated Watson—Crick base
pair. Further, each of these substitutions represent information of the neighboring
nucleotidesin5'(C, A, G,and T) and 3' (C, A, G, and T) directions from the mutated
base, so under each of 6 mutation types there are 16 possible 5’3’ sequence contexts,
this mades up in total 96 context-dependent mutation types. The given set of
mutations for each patient were displayed as histogram on the basis of the
trinucleotide frequency across the GRCh37 (hgl9) reference human genome;
regardless of their genomic locations; this represents each patient’s mutational

fingerprint.
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Then, these fingerprints were annotated into mutational signatures and
mutagenic components using the MutaGene database to identify the most likely
mutagenic processes that may have lead to somatic mutational profiles of each of
the breast cancer patients. The MutaGene database includes mutational profiles for

more than 9000 genomes and exomes from 37 different cancer types.

3.3.8.3. TCR B Repertoire Analysis

Raw data (.fastq files) from the MiSeq instrument were transferred to
Adaptive Biotechnology. The sequencing data for each sample was processed and
uploaded to the ImmunoSEQ Analyzer web-based analysis tool. Data processing
steps included annotation, TCRB quantification and clonality assessment. Only
samples with at least 10X amplification factor and high quality sequence data were
included in the study. The analysis pipeline is designed to count both productive
and nonproductive TCR rearrangements. Non-productive templates contain stop
codons or frameshifts that are unlikely to produce a functional protein receptor. In

this study, only the productive TCR rearrangements were reported in this study.
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CHAPTER 4 : RESULTS

4.1. FFPE Clinical Samples

FFPE samples are routine diagnostic specimens used in HMC. The
pathological laboratories in HMC use standard protocols for the fixation process
and subtyping of breast cancer. The molecular characterization of the breast cancer
patients are listed in Table 4.1. Most of the provided samples were of the luminal
A subtypes, which is the most prevalent subtype in women in Qatar and worldwide.
The FFPE samples were isolated from primary breast cancer tissues without lymph
nodes and archived up to 144 months before the study started. The process of the
sample collection starting from the surgery through fixation were not provided.
Additionally, information related to patients age, lymph node status, tumor stage

and size were not available for this project.
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Table 4.1.

Moleculer Subtypes of Breast Cancer Patients Included in this Study

Breast cancer subtypes Number of sample
Luminal A 108

TN 30

Luminal B 23

HER2 21

Total 182




4.2. DNA Quality and Quantity from FFPE

The NGS workflows are highly sensitive to quality and quantity of the input
nucleic acid. The integrity of the extracted gDNA was measured by QlAseq™ DNA
QuantiMIZE assays to ensure that the fragmented DNA samples yielded enough
material to preform NGS library preparation. In general, the quality and quantity of
the FFPE extracted gDNA were barely suitable for the downstream analysis. 46 out
of 182 samples failed quality check and were excluded from further analysis. For
the remaining 136 samples, 2 to 6 PCR additional cycles were needed depending
on the assays quality scores for each sample. The additional cycles were
recommended by the assay to compensate for the differences in gDNA quantity
during the enrichment steps. Because of budget limitations, only 79 FFPE samples
were used for breast cancer somatic mutations detection. Table 4.2 summarizes the

number of samples in each breast cancer subtypes and its status in this study.
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Table 4.2.

Overview of the Number of Each Breast Cancer Subtypes That Passed QC,

Failed QC and Included in the Study

Subtypes Passed QC Failed QC Included in the
study

Luminal A 84 24 31

Luminal B 18 5 16

HERZ2E 18 3 16

TN 16 14 16

Total 136 46 79
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4.3. Target Enrichment and Library Construction for NGS

The 2100 Bioanalyzer instrument was used to check fragment size after the
target enrichment and library NGS construction processes. As shown in the Figure
4.1-A & B, single peaks around 280 bp represent the size of amplicons as described
in the manufacturer protocol. The Bioanalyzer results also show that the NGS
libraries are clean, and do not contain adapter dimer, which it present should be 120
bp peak. To avoid over-clustering the MiSeq flow cell, NGS libraries were
quantified by gPCR and fluorometric quantification method. The results from both
approaches gave similar measurement of the DNA concentration for each sample.
This data was used in the preparation of the final sequence loading concentration of
2 nM. As a result, the MiSeq sequences generated maximum cluster density, with

high Q30 scores as shown in Figure 4.2-A, indicating high read quality.
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Figure 4.1. Agilent 2100 BioAnalyzer Results of Final NGS Libraries. A)
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4.4. Breast Cancer Somatic Mutations

2,813 somatic mutations were identified from all of the 79 samples compiled
in 46 genes. Using SIFT and PolyPhen, 1,557 were predicted to affect protein
sequence; 588 were in Luminal A, 341 in Luminal B, 402 in TN and 226 in HER2.
Only the variants that affect the protein sequence were included for further
downstream analysis. Out of the 1,557 variants, 1378 variants were single
nucleotide variants (SNVs) and 179 were dinucleotide variants. The translational
impacts of these variants were as following: 1,372 missense, 177 in-frame, 5

frameshift, 3 stop codon.

Overall, 21 of the 46 genes tested were mutated in more than 10% of cases
(Figure 4.3-A). MUC16 was the most common altered gene identified. Variants in
MUCL16 were present in 98.7% of patients, followed by KMT2C, TP53, ZEBED4
and ERBB2 which were present in 41%, 39.2%, 22.8% and 22.8% of patients,

respectively.

The first four most frequently mutated genes in each molecular subtype are
listed in Table 4.3. Among the 46 breast cancer genes studied. MUC16, TP53,
KMT2C are the most frequent to contain mutations in all of the subtypes. ERBB2
and RET mutations were enriched in Luminal A and Luminal B respectively, where

each was present in >37 % of the patients.

Figure 4.3-B shows in detail the mutational frequency of the genes in each
of breast cancer subtypes. HER2E samples harbored the least number of mutated

genes compared to other subtypes, 54 % (24/46) of the breast cancer genes were
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mutated in this group. Also, as shown in Figure 4.3-A &B no mutation was detected

in MYC, PTEN CBFB and PHF7 genes in any of the subtypes.

Table 4.3.

The Four Most Frequently Mutated Genes in Each Molecular

Luminal A Luminal B HERZ2E TN
(N=31) (N=16) (N=16) (N=16)
Mutated | Frequency | Mutated | Frequency | Mutated | Frequency | Mutated | Frequency
genes (%) genes (%) genes (%) genes (%)
MUC16 96.7% MUC16 100% MUC16 100% MUC16 100%
KMT2C 38.7% KMT2C 50% TP53 62.5% KMT2C 43.7%
ERBB2 35.4% RET 37.5% KMT2C  31.25% TP53 37.5%
TP53 32.2% TP53 31.25% FGFR1  18.75%  FGFR1 37.5%
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Figure 4.3. Spectrum of Mutations of 46 Genes Among 79 Patients. A) squares
represent the number of patients with mutations per gene. MUC16 present in 78
patients and only split into 2 lines (for the figure resolution) B) The mutational
frequency in all of 79 patients per gene in each of the four molecular breast cancer

subtypes: Lumnal A (n=31), Luminal B (n=16), HER2E (n=16) and TN (n=16).
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4.5. Gene Mutation Frequency Per Patient

The number of altered genes in each patient is detailed in Figure 4.4. The
results showed that 67% (53/79) of breast cancer patients in this study had at least
>=3 mutated genes. Most notably, 8 patients have high rate of genes alterations
(>10 genes). Interestingly, only one patient (LA9) in Luminal A subtypes, did not

show any mutated genes.
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Figure 4.4. Gene Mutation for Each Patient in the Four Molecular Subtypes.
Lumnal A (n=31), Luminal B (n=16), HER2E (n=16) and TN (n=16). X-axis

represent 79 paients , Y-axis represent 46 genes.
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4.6. Total Mutational Load

To test the hypothesis that higher mutational load will increase the
likelihood of creating more neoantigens and this will lead to increased T cell
quantity and diversity within the tumor microenvironment, the total number of
mutations (variants) present in specimens of each subtypes were analyzed. Most
notably, no specific patterns were observed in any subtypes as some studies
reported with ER negatives (Haricharan et al., 2014). There were marked
differences in mutational burden among patients. The median mutational load was

TN:11, Luminal B: 9, Luminal A:9, HER2E:7 (Figure 4.5).

Regardless of the tumor subtypes, we selected 20 samples for further
immune analysis. Three criteria were considered when the samples were selected.
There are: the mutational load, QC call score (obtained from QIAseq™ DNA
QuantiMIZE assay which indicated the degree of DNA fragmentation) and the

amount of gDNA left.
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Figure 4.5. Somatic Mutaional Load in Each Patients of the Four Molecular

Subtypes. Luminal A (n=31), Luminal B (n=16), HER2E (n=16) and TN (n=16).

The identified 1,557 variants were distributed by patient.
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4.7. Mutational Signatures

All cancers are caused by somatically acquired mutations. In some cancer
types, a proportion of somatic mutations are known to be generated by defects in
the DNA repair process or due to exposure to certain carcengenesis; such as tobacco
or ultraviolet light. These mutagenic processes have been previously reported and
often produce distinctive mutational patterns in the cancer tissue (Alexandrov et al.,
2013). In this study, the somatic mutational profile for each patient is analyzed
using MutaGene to examine the most likely mutagenic signature behind the

mutational pattern in each subtype (APPENDIX: B).

Most remarkably, no specific trends were observed in any of the subtypes.
Most patients displayed large peaks under the substitution mutations C>T and
T->C classes, which corresponded to UV radiation or unknown etiology (Figure
4.6-A). Also, the results showed that in 13 patients the deamination of
methylcytosine was largely responsible for more than 55% of the patient’s
mutations (Figure 4.6-B). Tobacco or aflatoxin were other common mutagenics
observed in 65 patients and contributed to 5% to 21% (mean 11%) of total patient
mutations. AID/APOBEC contributed to the mutation burden in 32 patients by 5%

to 18% (mean 7%).
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Figure 4.6. Contribution of Mutational Signatures to Mutational Profile of the
four molecular breast cancer subtypes. A) The four patients shown as an example
from each subtype, no specific trends were observed and most of the patients
displayed large peaks under the substitution mutations C>T. B) LB-16 shown as
example out of 13 patients of the studied patients displayed that deamination of
methylcytosine was largely responsible for more than 55% of the patient’s

mutations.
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4.8. Quality Control of TCR p CDR3 Library and Sequencing

Prior to sequencing, DNA damage repair kit was used for the selected 20
samples to improve the FFPE gDNA by repair any nicks on the DNA strands and
fill in any gaps. Only 12 samples had sufficient starting input to be used for the
ImmunoSEQ profiling assay at the survey level, listed in Table 4.4. Those samples
had different spectrum of mutational load; some with low mutation and some with
high mutational burden. Figure 4.7-A & B shows the TCR B-CDR3 amplification
product in both the first and second PCR steps. The first PCR yielded a peak around
200 bp in size. After the addition of the NGS adapters and DNA barcodes during
the second PCR, the final product at approximately 400 bp (as recommended by
Adaptive Biotechnologies). Good quality immunoSEQ sequencing data was
generated from the MiSeq instrument as shown in the run summary in Figure 4.2-
B. Using The immunoSEQ analyzer, 11 of the samples passed the coverage and
read quality thresholds required. The sample that did not pass the quality thresholds

was excluded from further analysis.
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Table 4.4.

Selected Samples for ImmunoSEQ Profiling Assay at the Survey Level and their

Mutational Load

Patient ID Mutational Load
LB-13 3
TN-12 3
TN-13 3
HER2-7 4
HER2-9 4
HER2-16 6
TN-1 13
TN-15 16
LB-14 25
HER2-15 28
HER2-6 47
LB-7 146
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Figure 4.7. Quality Check of TCR B-CDR3 Library from Both 1stand 2" PCR
Steps. A) 1% PCR: product of amplifying CDR3 region exhibited a band at
approximately 200 bp. B) 2"YPCR: final product after introducing NGS adapters

and DNA barcodes yelided one band of approximately 400 bp.
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4.9. TCRp Rearrangement and Diversity

The total number of TCRp rearrangements detected from the 11 samples
was 22,960. 18533 of them were productive rearrangements that are in-frame and
do not contain a stop codon. Of the productive rearrangements, the total number of
unique TCRB-CDR3 reads identified was 16570, distributed between 411 to 3206
per patient (median 1629). Most of Productive TCR-CDR3 numbers obtained from
each sample were unique reads, indicating samples have high diversity level of

TCRB-CDR3 within tumor tissue studied (Figure 4.8).

Furthermore, the diversity of T clones in each sample was assessed. The
score of the clonality was calculated based on the Shannon diversity index. The
value of clonality was ranged from 0 to 1. Values close to 1 represent monoclonal
distribution and values close to O represent polyclonal distribution. Using this
metric, clonality of the TCRJ repertoires of the 11 tumor tissues ranged from 0.0032
to 0.0243 (median 0.0095). These results indicate that the TCRB-CDR3 in these
patient's tumors were more polyclonal compared to the median clonality of the
ImmunoSEQ hsTCRB assay (Adaptive Biotechnologies, USA) of an adult T-cell

repertoire in blood which is about 0.075.

Figure 4.9 shows the total count of uniqgue TCRB-CDR3 and their level of
diversity for each patient. Overall, HER2-16 and HER2-9 patients had the most
abundant unique TCRB CDR3 rearrangements. Patient TN-15 with 16 mutational
loads had the lowest total diversity of the TCR repertoire in the group; with only

411 unique CDR3. Remarkably, patients carrying only three somatic mutation had
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> 1000 unique TCRp sequence, while in other samples that had only one or three
extra mutations, the diversity of TCR almost doubled (see patients HER2-16 and
HER2-9). On the other hand, patients HER2-15 and HER2-6 with high mutational

load, did not exhibit a remarkable increase in TCR diversity.
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Figure 4.8. Number of Productive and Unique TCRB-CDR3 in Each Sample.
Most of Productive TCR-CDR3 numbers were unique reads, indicating high

diversity level of TCRB-CDR3 within tumor tissue studied.
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Figure 4.9. TCRB CDR3 Diversity of 11 Patients. The red bar represent the total

count of uniqgue TCRB-CDR3 rearrangements for each patient. Blue line represents

the value of clonality, which ranges from 0 (polyclonal distribution) to 1

(monoclonal distribution). The somatic mutational load of each patient stated next

to the patient ID in the brackets.
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4.10. Association of Mutational Load with TCRB-CDR3 Diversity

The association between the mutational load and the clinical outcome in
several cancers, including the breast have been previously reported (Haricharan et
al., 2014), but there have been few reports on the effect of mutational load on TCRf
diversity in breast cancer and clonality level . In the study, association between T
cell diversity and load of mutation were first tested (Figure 4.10-A). According to
the p-value =0.61 the correlation between mutational load and the number of
productive unique TCRB-CDR3 in the studied patient is not statistically significant.
Additionally, there was no significant relationship between the load of mutation and

clonal diversity p = 0.43 (Figure 4.10 -B).
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Figure 4.10. Assocation Betweern Mutational Load and TCR B Diversity
Within Tumor Tissues Studied. A) The patients exhibited no signifigant
assocation between mutational load and the number of productive TCRB-CDR3
rearrangements (r = -0.172, p = 0.61). B) No significat relationship was displayed

between mutaional load and clonal frequency (r =-0.2, p = 0.43).
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CHAPTER 5 : DISCUSSION

5.1 Discussion

The relationship between the immune system and cancer has occupied the
research community for many years now. The critical function of the TCR in the
recognition of cancer cells has been well explained. The role of T cell in the
inhibition of tumor formation and progression is also demonstrated in many studies
(Dranoff, 2011; R. Kim et al., 2007). Additionally clinical studies of solid tumors
including, breast cancer, confirmed the positive correlation between the presence
of TILs and improved patient survival (Hadrup et al., 2013). However, there is
limited knowledge about why some patients have increased TIL infiltration and

diversity than others even within the same cancer subtypes.

A large number of studies have attempted to understand the mechanisms
that are involved in regulating T cell infiltration and their clonal diversity within
the tumor microenvironment. Such studies suggested that the high level of genomic
instability in cancer cells might promote antitumor immune responses and increase
the level of TILs through inducing and presenting a large number of tumor antigens
(Criscitiello et al., 2014; Sherene Loi, 2013). The TCGA has also reported evidence
showing a correlation between mutation burdens or neoantigen load with increased
T cell infiltration within tumors (Brown et al., 2014; Roszik et al., 2016).

Unfortunately, these relationships across breast cancers subtypes remains limited.

83



The traditional approaches of TIL characterization such as H&E staining
and IHC are limited to providing qualitative measurements of TILs and cannot
address the heterogeneity of the TCR diversity within a tumor. With the availability
of NGS based methods, it has become possible to analyze T cell infiltration at the
genetic level by sequencing the TCR rearrangements. This method provides deeper
understanding of the complex relationship between somatic mutations and the
diversity of TCRs within a tumor. Hence in this study we characterized somatic
mutations of 79 FFPE breast cancer samples from patients within each breast cancer
subtype using NGS sequencing of a panel of breast cancer associated genes. To
understand the relationship between mutational load and T cell diversity, we

sequenced TCRB-CDR3 for 11 patients with different levels of mutational load.

In general, archived FFPE tissue is a highly valuable source of DNA, RNA
and protein for molecular analysis of cancer. Hospitals are routinely creating several
FFPE blocks from cancer patient biopsies and preserving for decades (Al-Attas et
al., 2016). However, the biological material in FFPE could be degraded due to the
process of fixation and embedding as well as the storage period and conditions.
These factors might limit the FFPE usefulness in molecular studies. FFPE samples
are mostly used as a reasonably reliable material in identifying cancer somatic
mutations through targeted NGS approaches. However, the heavily degradation of
isolated DNA could have negative impact on the results if not take into

consideration prior to the sequencing process (De Leng et al., 2016).
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In light of the negative impact of FFPE on the gDNA, we took several
precautions to ensure producing high quality results from the NGS workflow,
especially because our FFPE samples aged 4 to 13 years and were stored at room
temperature. For example, the DNA extraction kit that we used (AllPreppa
DNA/RNA FFPE Kit) helps in reversing formaldehyde modification that were
induced during fixation process. Also important was selecting suitable samples for
targeted NGS sequencing with good gDNA using the QlAseq™ DNA QuantiMIZE
assay. For the downstream process, the QIAGEN GeneReader NGS workflows
compatible with FFPE material were used for the enrichment of 2915 amplicons of
breast cancer genes, library preparation and somatic mutation analysis. These steps
ensured that the selected 79 out 136 yielded high quality sequencing results and
amplicons coverage. Moreover, along with these steps for reduce false positive
results we only were called variants with high quality reads, deep depth and Allele

fraction > 2.

The second objective of our study; the assessment of the TCR repertoires
from long period archived FFPE specimen, was much more challenging. The
available protocols for sequencing TCRB- CDR3 from non-lymphoid tissue
required high quality and quantity of gDNA. None of these protocols supported
FFPE samples as input material. The justification that the gDNA in FFPE could be
highly damaged and fragmented and thus may compromise the results of TCRf-

CDR3 identification.

The main issue in the use of damaged gDNA is that damaged bases could

interfere with the DNA polymerase function that is to synthesize complementary
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DNA strand from the damaged template during the PCR reaction. Furthermore,
increased damage may artificially increase the number of TCRB clones that are
reported. The DNA damage can lead to misincorporation, transient stalling and
termination of DNA polymerization (Clark et al., 2011). To avoid these negative
effects, several studies started to use the SMRTbell Damage repair kit to identify
and fix DNA damage before high-throughput sequencing (Clark et al., 2011; K. E.
Kim et al., 2014; Kong et al., 2017). Mostly these studied used the SMRTbell
Damage repair kit to treat high molecular weight gDNA for denovo genome

assembly application.

In accordance with these observations, we decided to use the SMRTbell
Damage repair kit in our study to compensate for the poor gDNA quality from FFPE
prior to immune sequencing. Before using the kit, we selected 20 FFPE samples
with good gDNA quality. After treatment only 12 sample had sufficient starting
material to proceed with immune sequencing. Based on ImmunoSEQ Analyzer
web-based analysis for TCR beta database, we were successfully able to sequence

11 samples with good quality sequencing reads and output data.

For the data analysis, the ideal method for identification of somatic
mutations in tumor is done by comparing the genomes of the tumor to the normal
tissue derived from the same patient. In our case, the matched normal tissues were
not available, so we relied on five publicly available databases to identify potential
cancer somatic variants. This method is considered by several studies as an
alternative pipeline for cancer variant identification whenever normal sample from

the same patient is absent (Kalatskaya et al., 2017; Liu et al., 2015). Software such
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as Biomedical Genomics workbench (CLC Bio, Qiagen) provides such a tool for
these unpaired tissue samples. It incorporates the publicly available databases
[dbSNP, 1000 Genomes Project, HapMap, Exome sequencing Projects and EXAC
databases] that are rich with common germline variants, some of these databases
included variants from Arab population (Koshy et al., 2017) . Furthermore, we also
considered the variants that were present in more than 3% of our study as common
variants in the population according to the definition of genetic polymorphism of
the common allele or sequencing artifact as common results of PCR duplicates of

NGS pipelines issues (Ebbert et al., 2016; Keats & Sherman, 2013).

In the breast cancer gene panels sequenced in this study, we evaluated the
frequency of somatic mutations as well as the mutational load in 79 breast cancer
patients. The most common genetic alteration identified in all of the subtypes was
the MUCL16 gene also known as the CA125 gene, present in 98.7% of all patients.
MUC16 encodes proteins that paly an essential role in forming the protective
mucous barrier. The products of the MUC16 gene is mostly used as a marker for
ovarian cancer, with higher expression levels correlated with poorer outcomes
(NCBI, 2017). Similar findings has been reported in several other studies; the
COSMIC database classified MUC16 gene as one of the top frequently mutated
genes in general cancers (Tan et al., 2015). Moreover, a meta-analysis study
generated from a total of 602 breast cancer samples the MUC16 was reported to be
one of most frequently mutated genes in breast cancer but its mutational frequency
ranged only between 4% to 14% across molecular subtypes (Cornen et al., 2014).

The possible explanation for our observation of higher than usual mutational
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frequency is because MUC16 gene is the largest gene in the whole panel we
sequenced, therefore more likely to have a mutation compared to rest of the genes

in the panel.

Our result showed that TP53 was also largely mutated in the breast cancer
patients, this is in agreement with previous studies (Cornen et al., 2014; Liu et al.,
2015; Tan et al., 2015). In addition, our data demonstrated that the mutational genes
frequency were almost similar across subtypes. For example, MUC16, KMT2C and
TP53 were at the top of the list in terms of most frequently mutated genes across all
molecular subtype, in addition the frequency of mutation on other genes were
almost alike. Furthermore among our small sample size (79 patients) no mutation
was detected in MYC, PTEN, CBFB and PHF7 genes. Those genes also were not
included in both lists of commonly mutated genes in general cancer of COSMIC
databases and in breast cancer meta-analysis study that included huge number of

patients in their analysis (Cornen et al., 2014; Tan et al., 2015).

In one of most comprehensive molecular studies done in breast cancer,
somatic mutations of primary tumors were identified in 825 people using exome
the sequencing approach (Koboldt et al., 2012). The study data exhibited that TP53
was highly mutated in breast cancer, present in 37 % of the total patients. The
aggressive clinical and biological types had higher TP53 alteration ratios; 80% and
72 % in TN, HER2 respectively, followed by 29% and 12 % in Luminal B and
Luminal A respectively. On our results also showed that the TN group also had the
highest mutational frequency in TP53 compared to other breast cancer groups. The

TP53 gene was mutated in 62.5%, 37.5%, 32.2% and 31.25% in TN, HERZ2E,
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Luminal A and Luminal B patients respectively. Taken together, with the absence
of normal tissue pairs, our results revealed that mutations commonly found in breast
cancer were at frequencies similar to those previously reported in other breast
cancer molecular subtypes, thus indicating that FFPE mutational profiles are
reliable and gDNAs extracted from FFPE samples were not significantly damaged.
Furthermore. The results demonstrated the reliability of using QIAGEN

GeneReader NGS workflows for breast cancer panel on FFPE samples.

In regards of mutational load, unlike the TCGA data set, that included 762
invasive breast cancer and showed significant correlation between ER negative
subtypes and high somatic mutational burden (Haricharan et al., 2014), we
identified no specific patterns of mutational load among any breast cancer groups.
Mutational loads ranged from high to low in each subtype. These differences may
be attributed to the fact that we were restricted to 46 genes while the TCGA data
study used exome sequencing to cover all possible somatic mutations. In addition,
we were so conservative when we called patient variants, thus may have lost some

important variants in each subtype.

According to Alexandrov et al. there are ~30 genome wide mutational
signatures across human cancers (Figure 5.1). Some of these signatures are very
common and almost present in every cancer type, while others are rare and only
found in specific types of cancers. C> T substitutions are frequently present in every
identified mutational signature. Aetiologies of some signatures are associated with
defective DNA mismatch repair or known mutagenic exposures, while others still

remain unknown (COSMIC, 2017). In breast cancer disease, there are several
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signatures that contribute to the somatic mutations. For example, signatures 8,
17, 18 and 30 have unknown aetiology, signatures 6, 20 and 26 are associated
with defective DNA mismatch repair. Signatures 2 and 13 has been attributed to
activity of the AID/APOBEC. Previous studies reported that deamination of 5-
methylcytosines, an endogenous mutational process, modifies CpG sequence and
occurs so frequently throughout evolution. This mutagenic process has been
observed in all cancer types and samples (COSMIC, 2017; Nik-Zainal et al., 2016).
In our samples, the mutational signatures were mostly attributed to unknown
atetiology. Moreover, UV radiation, tobacco, aflatoxin and AID/APOBEC were the
main underling somatic mutational profiles identified in our samples. 13 of our
patients showed that deamination of 5-methylcytosines was behind > 55 % of the
mutation pattern profiles. As been well known that formalin fixation process causes
random artificial C > T mutation on FFPE samples (Munchel et al., 2015). This
raise an important point for the possibilities of that mutational profiles for 13

patients affected from the fixation issue.
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In the present study, we demonstrated the possibility of using archived
FFPE to evaluate and characterize TCR-CDR3 in the tumor microenvironment of
several patients. Our data showed high diversity level of the TCRp repertoire within
each tumor. However, because of our limited sample size we failed to identify
statistically significant relationship between somatic mutational load in the

sequenced breast cancer genes and the diversity level of the TCRp repertoire.

Other studies had extracted TCR sequences from 9142 RNA-seq samples
across 29 cancer types including breast cancer. The study found that breast cancer
samples displayed positive association between diversity of T cell clonotypes and
somatic mutational load (Li et al., 2016). In addition, a study in breast cancer
confirmed correlation between the composition of the TCR repertoire in tumors
with somatic mutation patterns by assessing multiple regions of the tumors from 5
patients (Kato et al., 2017) . In our study, further effort is needed by increasing the
number of samples to improve the statistical power of the relationship between

mutational load and T-cell clonal diversity in the breast cancer.
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5.2 Limitations and Prospective

There are several limitations in our study. First, sample size was small and
this provided insufficient power for statistical test of association between the T cell
diversity with the mutational load. Second, absence of paired normal tissue for each
sample lead us to only rely on publicly available databases and stringent cut-off
values for somatic variants. This may have led to excluding some important variants
in our patients. Third, sample selection was based on the presence of high
quantification level of lymphocytes in the tumor tissue and thus might have led to
masking the real differences in diversity of TCR across 11 sequenced samples.
Finally, the exact areas when the FFPE block was taken from in the tumor were not
provided. As breast cancer known to be heterogeneous and TCR diversity is
reported to change accordingly. This may have introduced some kind of sampling
bias if selection was solely based on TIL infiltration without stander criteria being

applied consistently on all the samples.
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5.3 Future Direction

Recently, Qiagen released advance digital DNA sequencing approach for
use with FFPE samples. This technology depends on sequencing unique
molecular indices (UMI) to allow deeper sequencing of PCR products and
detects low-frequency variants with high confidence. Using a breast cancer
panel of these technology would help to remove PCR duplicates and
minimizes PCR amplification error.

Sequencing TCRB-CDR3 for more patients with different range of
mutational load will helps on improve the statistical power of the association
between mutational load and the TCRJ repertoire.

Assessment of somatic mutational load and TCR from multiple regions in
breast cancer of each samples would provide deeper understanding of the
heterogeneity of TCRp repertoire within patient samples and across other
patients. Also, it would minimize sampling bias.

Characterization of TCR-CDR3 from FFPE samples were successfully
evaluated in this present study. Thus, should provide frame-work for

analysis of large-scale of FFPE samples in Qatar in the future.
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CHAPTER 6 : CONCLUSION AND RECOMMENDATION

In this study, we demonstrated that gDNA from FFPE samples could be
used as a resource to identify somatic mutations of breast cancer using NGS based
methods. Moreover, in the present study we also showed that the TCR repertoire
could successfully be evaluated from the FFPE samples. However, the use of FFPE
samples presents challenges in sample processing and correcting for false positive
variant calls. These challenges are caused by formalin fixation process and storage
period and conditions. These factors mostly introduce C>T artifact mutations and
should be taken into account during analysis. Current studies in cancer are mostly
using NGS high throughput technology to detect low allele frequency somatic
variants. As the mutational signature studies showed there are many mutagenic
processes that cause C>T mutation in human cancer genomes (Alexandrov et al.,
2013; COSMIC, 2017), this limits the FFPE usefulness in low allele frequency
molecular genetic analysis. This raises an important need for pathological
laboratories in Qatar to change the collection and storage process of cancer samples
from FFPE to frozen biospecimens. Frozen tissue storage method has already been
initiated in pathology departments and biobanks in United Kingdom since the last

few years (Shabihkhani et al., 2014).
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