
QATAR UNIVERSITY 

COLLEGE OF HEALTH SCIENCE 

CHARACTERIZATION OF GENOMIC ALTERATIONS AND TCRΒ REPERTOIRE 

OF TUMOR- INFILTRATING LYMPHOCYTES IN BREAST CANCER 

BY 

AYEDA ABDULSALAM AHMED 

A Thesis Submitted to 

 the Faculty of the College of Health 

 Science 

in Partial Fulfillment 

of the Requirements 

 for the Degree of 

Masters of Science in 

Biomedical Sciences 

January 2018 

© 2018 Ayeda Ahmed. All Rights Reserved. 



ii  

COMMITTEE PAGE 
 

The members of the Committee approve the Thesis of Ayeda Abdulsalam Ahmed defended 

on 26/12/2017. 

 

 

 

 

Ahmed Mohamed Malki Mohamed Youssef 

Thesis/Dissertation Supervisor 
 

 

 

 
 

Dr. Nasser Moustafa Ragheb Rizk 

Committee Member 
 

 

 

 
 

Dr. Joel Malek 

Committee Member 

 

 

 

 

Ala-Eddin Al Moustafa 

Committee Member 

 

 

 

 

 
 

 

 

 

 

 

 

Approved: 
 

 

 

 

 
 

Asma Al-Thani, Dean, College of Health Science 



iii  

 

ABSTRACT 

 
AHMED, AYEDA,A., Masters of Science: 

January : 2018, Biomedical Sciences 

Title: Characterization of Genomic Alterations and TCRβ Repertoire of Tumor- Infiltrating 

Lymphocytes in Breast Cancer 

Supervisor of Thesis: Ahmed M. Youssef. 

 

Breast cancer still remains a major cause of morbidity and mortality among 

women in Qatar and worldwide. More recent studies indicate that the diversity and 

the composition of the entire set of antigen receptors within tumor-infiltrating 

lymphocytes (TILs) is strongly correlated with tumor prognosis and therapeutic 

response with breast cancer. Unfortunately, the relationship between somatic 

mutational load and TCR diversity of TILs across breast cancer still limited. For 

this purpose, first we characterized the somatic mutations of Formalin-Fixed 

Paraffin-Embedded breast cancer samples from 79 patients using NGS of a panel 

of cancer related genes. Second, we classified and identified the TCRß repertoire 

for these 11 samples using the ImmunoSEQ platform. Preliminary data 

demonstrated that the 11 patients had high diversity of TCRß-CDR3 within the 

tumors. However, there was no statistically significant association between the 

somatic mutational loads in the gene panels we sequenced and the number of 

productive TCRß-CDR3 rearrangements. 
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CHAPTER 1 : INTRODUCTION 

 
 

Breast cancer still remains a major cause of morbidity and mortality among 

women worldwide despite the favorable outcomes provided by early cancer 

detection and newer therapies (CDC, 2017) . In Qatar, according to the Qatar 

Cancer Society, breast cancer is the most common cancer among women with 

incidence rate of about 39% of all cancers in females. Furthermore, 3% of the 

diagnosed breast cancer cases are in the age group of 15-19 years (Qatar Cancer 

Society, 2015). 

 

Breast cancer disease is highly complex and heterogeneous, with significant 

genotypic and epigenetic diversity. Cancergenesis is a result of a multistep 

accumulation of genetic alterations such as mutations, rearrangements, and copy 

number alterations that can significantly affect disease progression (Koboldt et al., 

2012). From the clinical perspective, different schemes are used to classify breast 

cancer in order to select the most appropriate treatment. Traditionally, the major 

categorizations are based on the histological appearance, stage, and grade. 

Currently, breast cancer subtypes are classified into four groups based on gene 

expression profiles of hormone receptors (estrogen and progesterone), human 

epidermal growth factor receptor 2 (HER2) status and Ki67 index. The four 

subtypes are luminal A, luminal B, HER2 and Triple Negative (TN) (Cheang et al., 

2009; Eisenbeisz, 2016). 
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In the past few years, gene expression and proteomic platforms have been 

used in an effort to identify and confirm novel diagnostic markers of breast cancer 

and more importantly to evaluate disease development and treatment response 

(Criscitiello et al., 2014). However, the capacity of these methods is limited in 

predicting the length of disease-free survival. These methods showed that there are 

other factors that malignant cells require for their growth and proliferation that are 

not directly linked to changes in the genetic elements of the tumor (Criscitiello et 

al., 2014). To define other potential markers, several investigators have focused on 

the breast cancer microenvironment. Tumor microenvironment studies have shown 

that the presence of tumor-infiltrating lymphocytes (TILs) serves as a favorable 

marker of the disease. Thus, host immune response to the tumor plays a vital role 

in defining patient prognosis (Asano et al., 2016; Criscitiello et al., 2014). More 

recent clinical studies indicate that the diversity and the composition of the entire 

set of antigen receptors within TILs is strongly correlated with tumor prognosis and 

therapeutic response of a number of solid tumors, including breast cancer (Hadrup 

et al., 2013). Furthermore, many studies reported that patients with aggressive 

breast cancer subtypes have high level of TILs (Stanton & Disis, 2016). 

 

Presently, it is unclear why some patients have cancer with higher T cell 

infiltration and diversity than others, even within the same subtype. Some studies 

hypothesize that aggressive tumors have a high rate of genomic instability which 

might increase the chance of presenting mutated proteins at the cell surface of the 

cancer cells. This stimulates the immune response by increasing the level of T cell 

diversity within the tumor (Criscitiello et al., 2014; Sherene Loi, 2013). 



3  

 

Unfortunately, the relationship between somatic mutational load and TCR diversity 

of TILs across breast cancer subtypes remains largely unexplored. With the 

availability of next generation sequencing (NGS), it has become possible to 

sequence TCRβ-CDR3 and profile the TILs across patients with different range of 

mutational load. 

 

1.1 Hypothesis 

 
 

There is an association between tumor mutational load and T cell diversity 

within each breast cancer subtype. 

 

1.2 Research Aims and Objectives 

 
 

The aim of this study is to examine the association between somatic 

mutation load of and their corresponding to TCR β composition in tumor using the 

most advanced high throughput DNA sequencing technologies on Formalin-Fixed 

Paraffin-Embedded (FFPE) samples. 

 

Objective: 

 
 

 Characterize the somatic mutations of FFPE breast cancer samples from 79 

patients within each breast cancer subtype using next generation sequencing 

of a panel of breast cancer related genes. 

 Classify and identify the TCRβ repertoire for a set of these samples using 

the ImmunoSEQ platform at the survey level. 
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CHAPTER 2 : REVIEW OF THE LITERATURE 

 
 

2.1. Breast Cancer 

 
 

Breast cancer is a disease characterized by uncontrolled growth of 

abnormally dividing cells beyond their boundaries in the breast tissue. Breast 

cancer is classified into several forms and each type has its own distinct 

morphology, behavior and clinical characteristic. According to the World Health 

Organization (WHO), invasive (or infiltrating) ductal carcinoma (IDC) and lobular 

carcinoma (ILC) are the most common diagnosed breast cancer types among 

women at a rate of 70- 80% (Viale, 2012) . Breast cancer can occur at any age but 

typically older women especially at age 50 years and older are more likely to 

develop breast cancer disease (Bilimoria & Morrow, 1995; National cancer 

Institution, 2012). 

 

2.2. Breast Cancer Current Statistics 

 
 

Breast cancer is one of the most prevalent and deadly malignant diseases in 

women worldwide. The American Cancer Society's reported that in 2017, breast 

cancer in women ranked as the most common diagnosed cancer and as the second 

leading cause of cancer death after lung cancer (Figure 2.1). It is estimated that 

during 2017, 252,710 new breast cancer cases are expected to be diagnosed. This 

would account for about 30 % of all female cancers diagnose. Furthermore, it is 

expected that 40,610 would die of the breast cancer, representing 14% of all cancer 

cases. Since the last decade, the incidence rates were stable, while mortality trends 

declined significantly by 38%, likely due to both early diagnosis and improved 
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treatment efficacy. Breast cancer can also occur in men but is rare. It is about 100 

times less common among men compared to the women (American Cancer Society, 

2017). 

 

In Qatar, according to the Qatar Cancer Registry, breast cancer is continuing 

to be the most prevalent cancer among women, accounting for 39% of cancer cases 

in women. Furthermore, 3% of the diagnosed breast cancer are in the age group of 

15-19 years (Qatar Cancer Society, 2015). According to the arab countries registry 

between 2003-2007, Qatar ranked as one of the top countries for the incidence rate 

of breast cancer at 45.7 per 100,000 populations (after Bahrain and Kuwait 

respectively). 32% of the incidences were among the Qatari population and the 

remaining 68% were among non-Qatari patients (Al Bader et al., 2016). 
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Figure 2.1. Estimation of New Cancer Cases and Deaths in the United States 

of America by Sex – 2017. Breast cancer in women ranked as the most common 

diagnosed cancer and as the second leading cause of cancer death after lung cancer 

(American Cancer Society, 2017). 



7  

 

2.3. Risk Factors 

 
 

There are several important factors associated with increased risk of breast 
 

cancer (American Cancer Society, 2017). Simply being a woman is the most 

significant risk factor. This might be because of the activity of the female hormones 

estrogen and progesterone, which can promote breast cancer cell growth. Age is 

another crucial factor, where the chance of getting cancer is significantly increased 

with age. About 5% to 10% of breast cancer cases are assumed to be hereditary, 

inherited mutations in particular BRCA1, BRCA2, or other breast cancer 

susceptibility genes are associated with increased risk of breast cancer. Menstrual 

and reproductive history as well as dense breast tissue can also be associated with 

increased risk for breast cancer. Additionally, lifestyle risk factors like: lack of 

physical activity, poor diet, being overweight or obese, drinking alcohol and 

radiation to the chest are associated with incidences of breast cancer Breast Cancer 

Classification (American Cancer Society, 2017). 

 

2.4. Breast Cancer Classification 

 
 

Different schemes are used to classify breast cancer, each of these schemes 

use various principles and criteria to divide breast cancer into subclasses. The main 

categorizations are based on the histological appearance, stage, grade and receptor 

status. These classifications are periodically updated as cancer cell biology 

knowledge expands. The purpose of the classification is to help in selecting the 

most appropriate treatment. In fact, this disease is highly complex and 

heterogeneous and there is no single treatment for all the subclasses. Certain classes 
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of breast cancer are aggressive and life-threatening, and must be treated 

aggressively, while others are less aggressive and can be treated with less invasive 

treatments; such as lumpectomy. Selecting the best treatment is mainly based on 

the available evidence that is provided by the categorization (Eisenbeisz, 2016). 

 

2.4.1. Grade 
 

 

Grade is the description of the tumor based on how close cancer cells appear 

and their growth patterns compared to normal cells. It is an indicator of how rapidly 

the cancer cells are dividing and spreading. The grade scale system helps physicians 

to predict prognosis and develop a treatment plan. In general, a "well-differentiated" 
 

tumor indicates that the cells and tissue of the tumor are close in appearance to the 

normal cells and tissue. This type  of tumor tends to have  well-organized patterns 

and  slower  rate of growth.  While " undifferentiated  "  or "poorly differentiated" 
 

tumors have abnormal cell appearance and may grow aggressively in disorganized 
 

and irregular patterns. This method of classification depends on visual observation 
 

of breast  cancer  cells and tissue under a microscope  (National  Cancer  Institute, 
 

2013). 
 

 

According to the National Cancer Institute(NCI), most of the cancer cells 

are rated on a scale from 1 to 3. However, some types of cancers for instance breast 

and prostate cancers have their own grading systems. The most common grading 

system for the breast cancer is Nottingham (also called the Elston-Ellis modification 

of the Scarff-Bloom-Richardson grading system). This system grades tumors based 

on three features, which are tubule formation, nuclear grade and mitotic rate. Each 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044779&amp;version=Patient&amp;language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000681122&amp;version=Patient&amp;language=English
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feature gets a score from1 to 3, then their scores are summed, yielding a total score 

between 3 to 9 (National Cancer Institute, 2013). Three possible grades are listed 

in Table 2.1. 

 

 

 

 

 

 

 

Table 2.1. 

 
Breast Cancer Grading System 

 

Score Grade Description 

 

Score 3–5 

 

Grade 1 

Low grade or well 

 

differentiated 

 

 
Score 6–7 

 

 
Grade 2 

Intermediate grade or 

moderately 

differentiated 

 
Score 8–9 

 
Grade 3 

High grade or poorly 

 

differentiated 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000386205&amp;version=Patient&amp;language=English
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2.4.2. Stage 

 
 

Staging refers to how widespread and large the cancer is when it is first 

diagnosed. Knowing the stage helps physicians to determine how serious the cancer 

is, and how successful the treatment might be. This classification method  requires 

several examinations such as chest x-ray, CT scans, MRI, mammograms and lab 
 

tests (National Cancer Institute, 2015). 
 

 

The TNM system is the most widely used cancer staging system in hospitals 
 

and medical centers. This system is applicable to all forms of cancers, including 

breast cancer. In the TNM system: 

 

 The T refers to the size and extent of the of the breast tumor. 

 

 The N refers to spread of the cancer to nearby lymph nodes. 

 

 The M refers to whether the cancer has metastasized (spread beyond the 

breast to other parts of the body). 

 
Sometimes stage is expressed as a number on a scale of 0 to IV. As rule, the 

lower the value is, the less the cancer has spread, and the higher the value is, the 

more the cancer cells have spread into adjacent tissues and affected lymph nodes 

(National Cancer Institute, 2015). Stages number described in the Table 2.2. 
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Table 2.2. 

 
Stages of Breast Cancer 

 

Stage Description 

0 Cancer cells in situ, limited to inner lining surface of the 

 

organ and has not spread to nearby tissue. 

I, II, and 

 

III 

Cancer has grown in size and has spread to distant lymph 

 

nodes (except stage I). 

IV Cancer has metastasized and spread to distant parts of the 

 

body. 
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2.4.3. Histological Appearance 

 
 

Histological appearance is the primary method used for diagnosis and 

classification of cancer (Eisenbeisz, 2016). This method involves direct 

examination of cancer biopsy by a pathologist to determine the type of cancer 

whether is in situ or invasive. However, histological analysis does not always 

explain the differences in breast cancer (Makki, 2015). Currently the WHO 

classifies breast cancer into 20 major tumors and 18 minor subtypes. This 

classification has been adopted worldwide. The most common histological types of 

cancer include; Ductal Carcinoma in situ (DCIS) which is a cancer that is in the 

ductal system but not spread to the nearby tissues. IDC which originates is in the 

milk ducts attacks other surrounding tissues and can get to other parts of the body 

through the lymph nodes. Lobular Carcinoma in situ (LCIS) is another type but 

very rare. It is not easily detected because there is no formation of palpable mass. 

ILC originates from lobules, the milk-producing glands at the end of breast ducts. 

This type is considered the second common type of breast cancer consisting of 10% 

of cases (American Cancer Society, 2017; Viale, 2012). 
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2.4.4. Breast Cancer Hormones Status 

 
 

The most recent breast cancer classification is based mainly on gene 

expression profiles of hormone receptor (estrogen (ER) and progesterone (PR)) and 

HER2 status (Zhang et al., 2014). In the last decade, the high-throughput gene- 

expression platforms such as microarray-based gene-expression methods have been 

extensively applied for breast cancer studies to identify signatures associated with 

prognosis and response to therapy (Weigelt & Reis-Filho, 2009). The breast cancer 

molecular classification was established in 2000 when Perou and his group reported 

the gene expression profiles of 38 primary invasive breast cancer tissue by using 

complementary DNA microarrays. Their results exhibited marked variation 

between cancer tissues and they ended up classifying breast cancer into four 

molecular subtypes, each one has its own clinical characteristic (Perou et al., 2000; 

Weigelt & Reis-Filho, 2009) 

 

The four-intrinsic subtype are: 

 
 

1. Luminal A 

 

2. Luminal B 

 

3. HER2-enriched (HER2E) 

 

4. Triple negative (TN) 
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2.4.4.1. Luminal A 

 
 

Luminal A is the most prevalent subtype among women and comprise 50%- 

60% of all breast cancer cases (Yersal & Barutca, 2014). This subtype is defined 

as ER and/or PR positive and HER2 negative. It is also characterized by the high 

expression of luminal epithelial cytokeratins(CK) 8 and 18, and other luminal 

markers such as Estrogen Receptor 1(ESR-1), GATA-binding protein 3 (GATA3), 

Forkhead Box A1 Protein (FOXA1), X-Box Binding Protein 1 (XBP1). Also, 

Lumina A tumors exhibit a low expression of proliferation-related genes, such as 

Cyclin B1 (CCNB1), Proliferation-Related gene Ki-67 (MKI67) and MYB Proto- 

Oncogene Like 2 (MYBL2) gene (Koboldt et al., 2012; Zhang et al., 2014). 

 

Patients with Luminal A type have a good prognosis and are always 

subjected to endocrine therapy with tamoxifen, to inhibit the functions of ER. The 

therapeutic strategies of blocking the estrogen signaling pathway have been highly 

effective for ER+ subtypes and are currently used as the first-line clinical treatment 

option (Zhang et al., 2014). The relapse rate is significantly low compared to the 

other subtypes and recurrence commonly occurs to bone, whereas other organs such 

as liver, lung and central nervous system occur in less than 10% of patients (Yersal 

& Barutca, 2014) . 
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2.4.4.2. Luminal B 

 
 

The Luminal B subtype is not very common compared to Luminal A and 

accounts for 15%-20% of total diagnosed cancers. Like the Luminal A subtype, 

Luminal B is also characterized by the expression of ER, PR genes. In contrast to 

Luminal A, this subtype is associated with the higher expression of proliferation- 

related genes, such as CCNB1, MKI67 , MYBL2 and basal-like gene such as Human 

epidermal growth factor receptors 1 (HER1) & HER2. (Yersal & Barutca, 2014; 

Zhang et al., 2014). Patients with these subtypes have more aggressive tumor 

phenotype, higher histological grade, proliferative index, worse prognosis, higher 

recurrence rate and lower survival rates compared to luminal A subtype (Sotiriou 

& Pusztai, 2009; Zhang et al., 2014). In a clinical practice, Ki67 index is used as a 

potential marker to distinguish between Luminal subtypes, where it is highly 

expressed in the luminal B subtype (Cheang et al., 2009). As the Lumina B tumor 

is highly proliferative and expresses ER and some of basal-like gene patterns, the 

patients could be subjected to combined therapeutic strategy of chemotherapy and 

endocrine treatment. (Dai et al., 2015). 
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2.4.4.3. HER2E 

 
 

HER2E cancer accounts for 15-20% of breast cancer subtypes. This subtype 

is characterized by overexpression of HER2 and HER2-associated genes and 

negative expression for both ER and PR. In addition, HER2E tumor are associated 

with the higher expression of proliferation-related genes. Patients with HER2E 

tumor have high histological and nuclear grades. These tumors mostly display 

aggressive biological and clinical behavior (Yersal & Barutca, 2014). Patients 

diagnosed with this subtype can benefit from HER2 targeted therapy such as 

Transtuzumab. The targeted therapies for HER2 subtype have significantly 

improved overall survival and reduced the risk for recurrence (Petrelli et al., 2008). 

 

2.4.4.4. TN 

 
 

TN represents 10 % to 20 % of all diagnosed breast cancer. This type does 

not express ER, PR and HER2, hence referred to as triple-negative (Dillon et al., 

2016). However, TN tumors express high levels of basal myoepithelial markers, 

such as CK5, CK 14, CK 17. TN tumor are characterized with high histological and 

nuclear grade, high mitotic activity, lymphocytic infiltrate and high proliferative 

rate. Like HER2, TN tumors exhibit aggressive clinical behavior and very high 

tendency to metastasize to the brain and lung (Yersal & Barutca, 2014). Unlike 

other breast cancer subtypes, TN is very difficult to treat due to lack of therapeutic 

target receptors, thus leaving chemotherapeutic treatments the only option for 

systemic therapy of TN patients (Weisman et al., 2016). 



17  

 

2.5. Breast Cancer New Prognostic Markers 

 
 

Despite the favorable outcomes provided by earlier cancer detection and 

newer therapies, breast cancer still remains a major cause of morbidity and 

mortality among women worldwide. In the past few years, gene expression and 

proteomics platforms have been used in an effort to identify and confirm novel 

diagnostic markers of breast cancer and more precisely to evaluate disease 

development and response to treatment (Criscitiello et al., 2014; Qin & Ling, 2012). 

 

However, the capacity of these methods is limited in predicting the length 

of disease-free survival due to factors not directly linked to changes in genetic 

elements of tumors, which the malignant cells needed for the growth and 

proliferation. For example, the prognostic and predictive genetics signatures were 

mainly limited with TN and HER2E subtypes that are by nature highly proliferative 

and aggressive compared to luminal subtypes. To overcome this limitation, several 

investigators have focused on the breast cancer microenvironment to define other 

promising diagnostic markers. Recent evidence has demonstrated that the host 

immune response to tumor microenvironment plays a vital role in defining patient 

prognosis and their response to treatment. Later on, many clinical studies supported 

the concept that the presence of TILs within the tumor tissue indicates an antitumor 

cellular immune response, and the degree of infiltration has been strongly correlated 

with good tumor prognosis and therapeutic response(Asano et al., 2016; Criscitiello 

et al., 2014). 
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2.6. Immune System 

 
 

The immune system consists of two subsystems: innate and adaptive 

immunity (or acquired immune systems). Innate immune system is composed of 

physical epithelial barriers, chemicals and cells that protect the host against the 

invasion of pathogens by providing immediate, non-specific and non-memory 

response. Unlike the innate immune system, the adaptive immune system relies on 

specialized cells that are more specific for any individual foreign antigens and their 

effective responses occur only after several days of exposure to pathogens. Also, 

the adaptive response produces memory cells that persist in a dormant state for 

decades after initial contact, but they can rapidly re-express after subsequent 

exposure to the same target antigen (Janeway et al., 2001). Moreover, the most 

significant difference between the two systems is that all recognition mechanisms 

of the innate immune system are encoded in the genes of the host's germ-line. For 

instance, the innate immune cells rely on the recognition of only specific molecules 

and molecular patterns which are associated with entire classes of pathogens such 

as bacteria, viruses and fungi and absent from the host cells; therefore, it is a limited 

response.  On  the  other  hand,  the   adaptive   immune   system   can   

specifically recognize an almost infinite diversity of antigens by a process called 

somatic gene rearrangements of antigen-binding molecules, so each potential 

foreign antigen can be targeted specifically (Chaplin, 2010). The adaptive system 

not only works to defend the host against hordes of microorganisms, but also helps 

to eliminate defected and mutated cells from the body. Impaired adaptive immunity 
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leads to an increase in the susceptibility to infection, autoimmune diseases and 

even cancer (Janeway et al., 2001). 

 

2.7. Adaptive System 

 
 

The adaptive immune system is composed of two major response classes: 

humoral  immunity  and  cellular  immunity,  and  they   are   carried   out   by  

two distinct types of lymphocytes: B cells and T cells respectively. Each recognizes 

antigens through the antigen receptors on their surfaces; the B-cell receptor (BCR) 

on B cells and T-cell receptor (TCR) on T cells. Both T and B lymphocytes play 

central roles in the adaptive immune system but cell-mediated immunity plays a 

key role in transforming cell recognition and rejection (Janeway et al., 2001). 

Indeed, the maturation and activation processes in the adaptive immune system are 

highly complex. Briefly, both lymphocytes cells are generated in the bone marrow; 

only the B cell matures there whereas the T cell migrates to the thymes to mature 

(Janeway et al., 2001). 

 

There are two main phases for lymphocyte maturation: first, the 

lymphocytes programmed to recognize sufficient diversity of target antigens 

through a process called somatic DNA recombination. This is also known as VDJ 

recombination; as discussed in more detail in later sections. Second, lymphocytes 

with receptors which bind to self-antigens and react towards healthy self-tissue are 

removed during development by inducing apoptosis in the cell (Janeway et al., 

2001). After maturation, these cells enter the blood circulation, then the secondary 

lymphoid organs, such as lymph nodes and spleen where they localize and wait for 
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exposure to the antigen that they are pre- programmed to recognize. Localized cells 

are known as naïve lymphocytes. Antigenic activation of these cells requires 

interaction with antigen presenting cells (APCs) such as B lymphocytes, 

macrophages and dendritic cells (DCs). The main role of APC in this mechanism is 

taking up antigens from infected peripheral tissues into the lymph nodes for 

presentation and activation of the appropriate naïve lymphocyte. After exposure to 

antigen the selected lymphocytes with specific target receptors to the antigen are 

proliferated and mature into effector cells (Janeway et al., 2001). 

 

In humoral immunity, activated effector B cells secrete different types of 

antibody called immunoglobulins, which help in the elimination of extracellular 

microorganisms and prevent spread of their infections. Naïve B cells are triggered 

by the encounter with the direct antigens in the lymph nodes and usually require T 

helper cells to produce antibodies. These antibodies mainly circulate in the 

bloodstream and body fluids where they can act over long distances. The antibodies 

are specifically bind to antigens or toxins that stimulate their production then block 

their ability to bind to the host cell receptors (Janeway et al., 2001). 

 

In the cellular immunity, T lymphocytes are divided into:1) cytotoxic T cells 

(CD8), directly attack and kill infected cells, 2) helper T cell (CD4), help to activate 

cells in both humoral and cellular immune responses and 3) regulatory T cells 

(FOXP3), down-regulate immune responses. Activation of naïve T cells requires 

at least two independent signals: i) antigen specific signals and ii) co-stimulatory 

signals (Figure 2.2). The first signal is based on the interaction of TCR with antigen 

peptides presented by the major histocompatibility complex (MHC) on cell surface 
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of APC, either class I or class II molecules. Unlike BCR, TCRs do not bind directly 

to antigens; instead their antigen on APC must be processed to suitable peptides 

that bind to MHC (Janeway et al., 2001). 

 

The second signal is derived from the interaction of co-stimulatory receptors 

CD28 on T cell with B7-1 and B7-2 ligand on APC (signal 2), without second 

signals, T cells cannot be activated, but instead become tolerized or anergic (Iwai 

et al.,2017; MacLeod, 2015). The effecter T cells then migrate from lymphoid 

organs to sites of infection where they can act only locally on adjacent cells. Most 

importantly, once cytotoxic T cells activate, they will kill only the infected cell that 

bearers the exact antigens. Effecter cytotoxic T cells trigger apoptosis in the 

targeted infected cells either through secreting perforin and granzymes or 

displaying Fas ligand on their surface. On the other hand, effecter helper T cells 

secrete a variety of signal proteins called cytokines. These cytokines act as 

mediators by influencing the behavior of the numerous cell types that they help 

(Alberts et al., 2002). 

 

MHC proteins have an important role in the adaptive immune system. The 

function of MHC molecules is to display non-self-peptide antigens on the cell 

surface for recognition by the appropriate T cells. MHC class I molecules present 

peptides derived from intracellular/endogenous proteins to cytotoxic T cells, and 

they are located on the cell surface of all nucleated cells in the body. While MHC 

class II display peptides derived from extracellular/exogenous proteins to CD4+ T 

cells and they are found only on APCs (Janeway et al., 2001). 
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Figure 2.2. Activation of T Cells Requires Two Signals: Antigen Specific Signals 

and Co-stimulatory Signals. The first signal is based on the interaction of TCR with 

antigen peptides presented by the major histocompatibility complex (MHC) on cell 

surface of APC, either class I or class II molecules. The second signal is derived from 

the interaction of co-stimulatory receptors CD28 on T cell with B7-1 and B7-2 ligand 

on APC. Without second signals, T cells cannot be activated, but instead become 

tolerized or anergic (MacLeod, 2015). 

 

 

 

 

 

 

In this chapter, I will therefore only discuss concepts relevant to T cells and 

cancer since T cells play a key role in transforming cell recognition and rejection. 
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2.8. The Development of TCR Diversity 

 

2.8.1. V(D)J Recombination 

 
 

In the invertebrate immune system, the diversity of the T cell receptors is 

huge, which enables the immune system to provide broad protection against the 

vast diversity of nonself-antigens. The TCR protein is encoded by a unique protein- 

coding system of germline genes. The TCR is composed of two disulfide-linked 

polypeptide chains (alpha [] and beta [], or gamma [] and delta []). 

Approximately 95% of human T cells express α/β and only 5% of circulating T 

cells express γ/δ (Cruse & Lewis, 2010). Each chain is composed of constant (C) 

and variable (V) regions. The C-domain is proximal to the cell membrane and the 

V-domain is distal to the membrane (Figure 2.3). The recombinable genes which 

rearrange during T cell development and contribute to the great diversity of TCR 

fall into the V domain. Basically, the TCR  chain V-domain is encoded by three 

genes segments, the variable (V), diversity (D) and joining (J), while the TCR α 

chain V-domain is encoded by V and J genes segments, without D (Murphy, 2014). 
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Figure 2.3. The Basic Structure of Two Classes of TCR. Each T cells consist 

of two different polypeptide chains, both of which are heterodimer with constant 

(C) and variable (V) regions. The C-domain is anchor to the cell membrane and 

the V-domain is distal to the membrane (Murphy, 2014). 
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V(D)J recombination or somatic recombination is a process by which T cells 

randomly assemble different gene segments of V, D, and J in the  chain or V and 

J genes in the α chain, in order to generate unique antigen receptors. There are 

multiple copies of V, D, and J gene segments within each receptor gene locus 

bearing high sequence homology. For instance, the human TCR β-chain locus is 

located on chromosome 7 and contains 52 V gene, 2 D gene and 13 J gene segments, 

while the TCR α -chain locus is located on chromosome 14 and consists of ~70 V 

genes and 61 J genes (Murphy, 2014). In each recombination only one copy of 

V/(D) /J gene can take part by random selection. Initially one of the D segments is 

joined with one of the J segments, next is the assembly of the DJ region to one of 

V segments, yielding the final VDJ region that has a size of ~ 500 bp. Together, 

this process provides the basis for the TCR diversity (Murphy, 2014; Woodsworth 

et al., 2013). 

 

Furthermore, along with recombination, the diversity of TCR is 

significantly increased by the addition and deletion of a set of non-template 

nucleotides at the joints between the gene segments. This process is termed as 

junctional diversity. The added nucleotides are known as P-nucleotides and N- 

nucleotides. P nucleotides are so named because they make up palindromic 

sequences, which are added at the ends of the gene segments, and N nucleotides are 

so named because they are non-template encoded (Janeway et al., 2001; Saada et 

al., 2007). 
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Briefly, during junctional diversity (Figure 2.4), RAG enzyme cleaved 

coding segments to create hairpin structures at the end of gene segments. After the 

formation of the DNA hairpins, RAG catalyzes single-stranded cleavage at a 

random point within the coding sequences. This lead to the formation of a single- 

stranded tail from a few nucleotides of the coding sequence along with the 

complementary bases from the other DNA strand, thus generating the palindromic 

sequences. Then, random nucleotides are added by terminal deoxynucleotidyl 

transferase (TdT) enzyme to the ends of single -stranded gene segments. After the 

addition of the nucleotides, the two single-stranded ends pair over a short region. 

The unpaired nucleotides are removed by exonucleases and gaps are filled by repair 

enzymes, which help in creating coding joints between gene segments (Janeway et 

al., 2001; Saada et al., 2007). 

 

The two processes: V(D)J recombination and junctional diversity generate 

complementarity determining region 3 (CDR3), which is the main domain of the 

TCR that is in contact with peptide-MHC antigen and largely determine TCR 

specificity (Figure 2.5) (Saada et al., 2007; Woodsworth et al., 2013). It is estimated 

that the adaptive immune system of each person can generate approximately up to 

1016 distinct αβ pairs of TCR CDR3 (Robins et al., 2009). 
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Figure 2.4. Generation of Junctional Diversity steps on TCR (Janeway et al., 

2001). 
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2.8.2. The TCR Development in the Thymus 

 
 

It is good to point out that V(D)J recombination of TCR α and β chains does 

not happen in parallel. In fact during T cell maturation, TCR β chain gene segments 

rearrange first. Only when these rearrangement events yield a productive TCRβ 

chain, the cell will be able to produce a functional pre-T-cell receptor and blocks 

further gene rearrangement. Following a successful productive rearrangement, the 

TCR continues to rearrange its TCR α locus until a productive and useful TCR β/α 

is generated. If the TCR fails to synthesize productive rearrangement the T cell will 

die (Murphy, 2014). 

 

In addition to V(D)J recombination during TCR development, the β chain 

of TCR exhibits allelic exclusion. Allelic exclusion is a regulatory mechanism 

which states that only one of the two alleles of the β chain loci is rearranged and 

expressed in the T cell, thus ensuring that a given T cell will make TCR molecules 

with only a single specificity (Murphy, 2014). In the case of the α chain, allelic 

exclusion may not always be the rule; rearrangement on both alleles is very 

common and 20-30% of mature T cells could express two productive Vα-Jα 

rearrangements on the cell surface. However, the α chains of both rearrangement 

are regulated by post-translational events (Rybakin et al., 2014). Based on this fact, 

studying the diversity and the clonotype aspects of T cell receptors rely on 

sequencing the β chains not the α. Since each T cell only expresses single β chain 

rearrangement on its surface, the number of β chain sequences is a reflection of the 

number of TCR clonotypes present in a sample (Woodsworth et al., 2013). 
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Figure 2.5. The Interaction of TCR and Antigen Peptide. A) The T-cell receptor 

(TCR) encounter with antigen presenting cell (APC) that presents peptide antigen 

by MHC on its cell surface. B) Complementarity determining region 3 (CDR3) is 

the main domain that directly contacts with peptide-MHC. CDR3 region is unique 

to each TCR and largely determine TCR specificity to peptide antigen. C) 

Representation of TCR-β V(D) J gene recombination. In each recombination only 

one copy of each different gene segments of V, D, and J in the  chain can take part 

in the process by random selection, resulting in TCR diversity (Woodsworth et al., 

2013). 
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2.9. The Concept of Tumor Immune Surveillance 

 
 

The link between the immune system and cancer has been under 

investigation for many years and is still ongoing. Paul Ehrlich in 1909 first 

postulated the idea that nascent transformed cells spontaneously arise in our bodies 

and that the immune response could effectively eradicate them before they are 

manifested clinically (R. Kim et al., 2007). However, this idea was not vigorously 

pursued as at that time the field of immunology was still immature. In the mid-20th 

century, 50 years later, interest in this area was renewed by Medawar and his 

colleagues who clarified the significant role of cellular components of the immune 

system in recognizing and mediating allograft rejection. Their experiments showed 

strong immune-mediated rejection of transplanted tumors derived from noninbred 

strains of mice. However, the results were used to argue for the existence of a tumor 

specific immunity, rather than that the tumor was seen simply as a foreign graft 

(Dunn et al., 2002; Smyth & Hayakawa, 2004). 

 

Soon after, with the wide availability of inbred strains of mice, it was 

possible to address whether tumors arising in mice were immunologically 

distinguishable from normal cells in the same syngeneic mice. The results showed 

that the mice were able to provoke their immune system and prevent the outgrowth 

of syngeneic tumors induced by chemical carcinogens or virus. This work 

formulated the fundamental principle of cancer immune surveillance, which is that 

immune cells would recognize the presence of transformed tissue in the body if 

tumor cells express distinctive recognition structures on the surface of cells, as was 
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postulated by Macfarlane Burnet and Lewis Thomas in 1957. At the core of their 

hypothesis was the discovery of the existence of tumor specific antigens. 

Furthermore, they proposed the idea that lymphocytes were mainly responsible for 

the recognition and elimination of genetically transformed cells (Dunn et al., 2002; 

Smyth & Hayakawa, 2004). 

 

Years later, a large number of experiments with mouse models harboring 

mutations in one or several immune response genes have been performed to 

understand the mechanism of tumor immune surveillance. The accumulated 

evidence supports that immune surveillance of cancer was dependent on 

lymphocytes cells. The relative importance of lymphocytes derived from the use 

of mouse models lacking the recombination activating genes 1 (Rag 1) or Rag 2. 

Those genes encode proteins that are involved in the initiation of V(D)J 

recombination during B and T cell development. The loss of Rag genes function in 

mouse models results in absence of mature B and T cells. In experiments using both 

wild type mice and mouse models exposed to chemical carcinogens, the frequency 

of tumor formation and the kinetics of tumor growth were measured. The Rag 

knockout mice failed to prevent the formation of cancer. They formed tumors 

earlier and with greater frequency compared to wild type mice that had the same 

genetic background (R. Kim et al., 2007). 

 

Further analysis has underscored a central role of T lymphocytes in the 

antitumor immune response by studying mice that lacked T cells. These 

experimental mice showed rapid formation of large tumors compared to wild-type 

strains (R. Kim et al., 2007). Other studies have reached similar conclusion using 
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mice strains lacking IFNγ, interleukin-12 (IL-12), components of the MHC class I 

antigen processing and presentation pathways, CD8+ T cells, perforin or granzymes 

and Fas. All these are considered important components of the cell mediated 

mechanism of tumor recognition and elimination (Dranoff, 2011). These findings 

indicate a distinct contribution of T cells in the regulation of tumor growth, and 

inhibition of initial tumor (Dranoff, 2011; R. Kim et al., 2007). 

 

Recently, A large body of evidence from clinical studies and mouse models 

supported that the immune system plays a dual role in cancer. It can participate 

both i) in tumor elimination and control by destroying cancer cells or inhibiting 

their outgrowth (via the actions of the adaptive immune system) or ii) in tumor 

development by establishing conditions within the tumor microenvironment that 

facilitate tumor cell survival, outgrowth and spread in the host (via chronic 

inflammation by the innate immune system). The dual role of the immune system 

in cancer is known as cancer immunoediting (Criscitiello et al., 2014). 

 

Immunoediting represents a contemporary view of the relationship between 

the immune system and the tumor. It defines a complex process that leads to the 

selection of tumors that can evade the immune system as the immune system edits 

the tumors to kill those that it can recognize. Immunoediting can be divided into 

three phases: elimination, equilibrium, and escape. The elimination phase 

represents the classical concept of cancer immunosurveillance, equilibrium is when 

tumor cells are held in control but are not eradicated by the immune system. The 

escape phase refers to the final stage when immune cells fail to restrict tumor 

outgrowth and the tumor becomes clinically detectable. Studies report that even 
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with advance stages of cancer the immune can directly or indirectly help in defining 

tumor prognosis and response to treatment (Dushyanthen et al., 2015). In summary, 

the data obtained from both mouse and human studies provided strong evidence of 

the complex role of the immune system in tumor initiation, progression, and 

inhibition. 

 

2.10. TIL 

 
 

In clinical practice, the presence of T cells in tumors and their potential 

impact have been studied over the past years. Studies provide compiling evidence 

for a positive correlation between the presence of high density of T cells at the 

tumor site and improved patient overall survival (OS) (Hadrup et al., 2013). Most 

of the convincing evidence originates from studying patients with cutaneous 

melanomas. TIL patterns were classified into three categories as brisk, non-brisk 

and absent according to criteria suggested by Clark et al. and Elder et al. "Brisk" 

was defined as the presence or infiltration of lymphocytes within tumor, the "non- 

brisk" category is when lymphocytes are present in one or more focal location of 

the tumor, and "absent" are cases in which no lymphocytes were present in the 

tumor. Early data proposed that a brisk TIL in melanoma lesions was a positive 

prognostic factor (Hadrup et al., 2013; Mihm et al., 2015). In cohort study, of 5- 

10 year follow-ups for more than 500 patients with melanoma, the results indicated 

that patients in the brisk TIL category had highly significant survival advantage 

compared to patients in non-brisk and absent TIL groups. The result showed that 

the brisk TIL group tended to live 1-1.5 to 3 times longer than those with in the 

absent group and non-brisk patients had intermediate survival (Dunn et al., 2002). 
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Similar methodological approaches for evaluating TIL have been used in 

several other solid tumor studies. Same positive correlation between the presence 

of TILs and improved patient survival have been found in breast, ovarian, bladder, 

prostate, colon and other cancers. This data suggested the use of TIL as a diagnostic 

marker in routine clinical practice for the predication of patient survival outcome 

(Hadrup et al., 2013). 

 

2.11. Tumor Mutation Burden and TIL 

 
 

At present, there is limited knowledge as to why some patients have cancer 

with heavy T cell infiltration than others, even within patients that have similar 

cancer  subtypes.   Some  studies  report   that  tumorigenesis   can   induce T-cell- 
 

mediated immune response against malignant cells because the genetic alterations 

in the tumor lead to profound changes in the cells. The genetic alterations can either 

lead to the presentation of new antigens known as tumor-specific antigens (TSA), 

antigens only expressed on tumor cells. Or they can cause change in gene 

expression level on the cell surface known as tumor-associated antigens (TAA), 

antigens expressed on both normal and tumor cells but the quantity is significantly 

higher in tumor cells. As suggested these tumor antigens can trigger the immune 

system to recognize and destroy cancer cells (Escors & David, 2014). 

 

Several studies elucidated that not all intracellular foreign antigens will have 

a chance to be recognized by CD8 T cells. Studies clarified that for a mutation to 

give rise to a foreign antigen (called neoantigens; an antigens that is recognized 
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with high specificity by patient T cells), three criteria must be met: a) the mutated 

protein must be processed and presented as a peptide; derived from the intracellular 

proteolysis machinery ii) the mutant peptide must be loaded with high affinity on 

MHC class I molecules on the surface of cancer cells iii) the patient’s T cells 

repertoire must contain a TCR with an optimal binding affinity and specificity for 

the mutant epitope (Martin et al., 2016). 

 

The vaccine studies are the most appropriate examples for the effect of these 

restrictive criteria to the immune response. Not all viral proteins given in a vaccine 

can be naturally processed, presented on MHC class I, or/ and recognized by CD8 

T cells (Martin et al., 2016). For instance, in one study that focused on influenza A 

virus epitopes, in total of 180 peptides used in this experiment, predicted from 

protein sequence of several H1N1 viruses, only 120 (66.6%) were found to be 

binding to the MHC molecule, of those only 13 (7.2 %) were verified as actual 

strong CD8 cytotoxicity epitopes (Lundegaard et al., 2010). Indeed, this data 

illustrated that only a small proportion of mutations can become neoantigens and a 

small subset of those can become strong CD8 cytotoxicity epitopes. 

 

Furthermore, many studies underscore the significant role of mutational 

load in increased T cell infiltration and diversity in human cancer. The Cancer 

Genome Atlas (TCGA); which is an important database created by both National 

Cancer Institute (NCI) and the National Human Genome Research Institute 

(NHGRI), contain a comprehensive catalog of somatic tumor mutations of 33 types 

of cancers identified by deep sequencing. The TCGA data has revealed that human 

tumors are heterogeneous and the spectrum of somatic mutations are extremely 
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variable within and across tumor types. In addition, the analysis of cancers genomes 

has highlighted the positive association between total tumor mutational load or 

neoantigen burdens with increased cytotoxic T cell infiltration within samples 

(Brown et al., 2014; Roszik et al., 2016). 

 

2.12. Tumor Mutation Burden and TCR Diversity 

 
 

It has been reported that the diversity of T cell receptor (TCR) repertoire 

within the TIL is a fundamental property of an  effective  immune  defense  

system and is closely related to the capacity of T cells to recognize cancer antigens 

(Li et al., 2016). Several studies proposed that neoantigens derived from somatic 

mutations might shape and modulate the diversity of infiltrating T cells in human 

cancer (Savage et al., 2014). Recently, with the availability of high throughput 

approaches, it became possible to address this issue. One important study used deep 

sequencing data to analyze the TCR repertoire of the tumor microenvironment in 

different types of tumors. This study reported that tumors that showed high levels 

of T cell infiltration had more TCR reads compared to tumors that had low TIL 

infiltration. As each T cell clone possesses a unique TCR, the study confirmed 

positive correlation between somatic mutational load and T cell clonotype diversity 

(Li et al., 2016). 



37  

 

2.13. Breast Cancer and TIL 

 
 

Breast cancer has not traditionally been considered a typical immunogenic 

tumor, perhaps owing to its low mutational rate when compared to melanomas and 

renal cell carcinomas. However, TIL is observed in breast cancer and has been 

reported to be a good prognosis feature for subsets of the disease (Criscitiello et al., 

2014; Dushyanthen et al., 2015). Clinical trials reported that TIL located in the 

surrounding stroma contributes to treatment efficacy and survival rate in all 

subtypes of breast cancer. Higher TIL counts are significantly observed with ER 

negative, larger tumors, higher histologic grade, high HER2 amplification and more 

involved lymph-nodes tumors. All these are mostly feature of HER2 and TN 

subtypes (S. Loi et al., 2014). 

 

Notably, a lot of observational studies reported that TN patients are more 

likely to have tumors with >50% lymphocytic infiltrate, which is called lymphocyte 

predominant breast cancer (LPBC). Every 10 % increase in TIL was associated with 

increased survival benefit in LPBC patients. However, HER2 patients mostly had 

similar TIL infiltration as TN patients but have not shown the same survival benefits 

(Stanton & Disis, 2016). 

 

Some studies have attempted to understand why TN and HER2 patients 

have high TIL infiltration. These studies suggested this might be because both of 

TN and HER2+ subtypes exhibit high proliferation rates and high genomic 

instability compared to luminal breast cancer subsets. Genomic instability, as 

suggested by the available data, can promote antitumor immune responses through 
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inducing and presenting large number of tumor antigens and therefore promotes 

increased level of T cells infiltration within the tumor (Criscitiello et al., 2014; 

Sherene Loi, 2013). 

 

In addition, the high throughput sequencing data provides a deeper 

understanding of tumor molecular biology for each breast cancer subtypes. It has 

been observed that TN patients had the highest mutation rates among all the breast 

cancer subtypes, whereas luminal subsets had the lowest mutation rates (Wang et 

al., 2017). The TCGA breast cancer dataset that consists of 762 invasive breast 

cancers confirmed that ER negative subtypes have a higher spectrum of mutations 

compared to the ER positive samples (Haricharan et al., 2014). Unfortunately, the 

relationship between the load of somatic mutation and TCR diversity of infiltrating 

T lymphocytes across breast cancer subtypes remains limited. 

 

2.14. Approaches for TILs Evaluation in the Breast Cancer 

 
 

Recently TIL has emerged in clinical practice as a predictive and prognostic 

biomarker of long term breast cancer disease control. In December 2013, a group 

of breast cancer researchers from around the world discussed the important need to 

consider methodological and criteria for evaluating and scoring the degree of 

lymphocytic infiltration. The International TILs Group recommended using 

hematoxylin and eosin (H&E)- stained slides of tumor sections as a standard 

method. Scoring the percentage of lymphocytes would be done by selecting areas 

with average density of stromal lymphocytes (Figure 2.6) (Salgado et al., 2015). 

This semiquantitive method appears to be sufficient for pathologist-based 
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assessment. However, this method is limited in providing detailed information 

about the immune subpopulations and cannot discriminate between TIL subsets. 

Another major issue with this method is the heterogeneity of lymphocyte 

distributions within some tumors as this might yield results that are not 

representative of the entire tumor (Lee et al., 2016; Salgado et al., 2015) . 

 

Immunohistochemistry (IHC) assay is another method utilized in clinical 

practice and research studies for quantification of T cell population. This method is 

dependent on using antibodies against human CD3, CD4, and CD8 on FFPE tissue. 

Then the stained section is scored and evaluated either by automated digital image 

analysis or by visual scoring of a pathologist (Metzger et al., 2012; Rathore et al., 

2014). 
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Figure 2.6. Standard Method for Tumor-Infiltrating Lymphocytes (TILs) 

Evaluation of the Breast Cancer (Salgado et al., 2015). 
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2.15. Methodologies for TCR Repertoire Analysis 

 
 

Due to the importance of TCR repertoire diversity in understanding the 

adaptive immune system, new molecular platforms have been developed to monitor 

the TCR within cancer and other immunological diseases. These new approaches 

enabled deeper analyses of the degree of heterogeneity of T lymphocyte in the 

specimens. Before the emergence the high throughput sequencing, several low- 

throughput techniques had been used to assess the diversity of TCR repertoire. The 

most important methods were sanger sequencing and gel electrophoresis based 

methods known as immunoscope or spectratyping (Ciupe et al., 2013; Dziubianau 

et al., 2013). 

 

Sanger sequencing was used to read nucleotide sequences of the 

rearranged DNA but it was labor-intensive and generated limited data the TCR 

repertoire (Ciupe et al., 2013; Dziubianau et al., 2013). Spectratyping approach 

was also used for analyzing the diversity and the spread of clonalities in the 

samples. This method depends on the principle that each of T-cell clone have 

particular sequences or lengths of CDR3 products. The spectratyping focused on 

generating information about the sizes of CDR3 in T lymphocytes and their pattern 

of distribution in the specimen (Ciupe et al., 2013). 
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Recently, next-generation sequencing (NGS) technologies have provided 

high resolution analysis of numerous areas of biology and medicine. Because of the 

high throughput nature of these technologies they have provided deep insights into 

properties and behaviors of the adaptive immune system. These methods are able 

to profile, monitor lymphocytes and capture accurate quantitative measurements of 

TCR sequences in the sample from the first time (Dziubianau et al., 2013). 
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CHAPTER 3 : MATERIALS AND METHODS 

 
 

3.1. Materials and Reagents 

 
 

Table 3.1-3.3 contains a list of all materials and resources used in the 

project. 
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Table 3.1. 

 

List of Reagents 

 

Item Company Part Number 

 

Qubit® dsDNA BR Assay Kits 

Life 

 

Technologies 

 

Q32850 

 
ImmunoSEQ hsTCRB KIT 

Adaptive 

 

Biotechnologies 

 
ISK10001 

Agilent High Sensitivity DNA 

 

Kit 

Agilent 

 

Technologies 

 
5067-4626 

 
Aglilent DNA 1000 Kit 

Agilent 

 

Technologies 

 
5067-1504 

 
Agencourt AMPure XP 

BECKMAN 

 

COULTER 

 
A63881 

MiSeq Reagent Kit v2 (300 

 

Cycles) 

 
Illumina 

 
MS-102-2002 

PhiX Control v3 Illumina FC-110-3001 

MiSeq Reagent Kit v3 (150 

 

cycle) 

 
Illumina 

 
MS-102-3001 

KAPA Library Quantification 

 

Kit Illumina® platforms 

 
Kapa Biosystems 

 
KK4824 

 
Qubit® dsDNA HS Assay Kits 

Life 

 
Technologies 

 
Q32854 
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SMRTbell Damage repair kit 

Pacific 

 

Biosciences 

 

100-465-900 

QIAseq DNA QuantiMIZE 

 

Assay KiT 

 
QIAGEN 

 
333414 

GeneRead DNAseq Targeted 

Panels V2 (Human Breast 

Cancer Panel) 

 

 
QIAGEN 

 

 
181900 

GeneRead DNAseq Panel 

 

PCR Kit V2 (96) 

 
QIAGEN 

 
181942 

DNQC-100Y-R GeneRead 

TM DNA Library I Core Kit( 

12) 

 

 
QIAGEN 

 

 
180432 

GeneRead TM Adapter I Set 

 

12-plex(72) 

 
QIAGEN 

 
180984 

GeneRead TM DNA Librart I 

 

Amp Kit (100) 

 
QIAGEN 

 
180455 

GeneRead TM Size Selection 

 

Kit (50) 

 
QIAGEN 

 
180514 

QIAquick R PCR Purification 

 

Kit (50) 

 
QIAGEN 

 
28104 

QIAGEN Multiplex PCR plus 

KIT 

 
QIAGEN 

 
206152 
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Table 3.2. 

 
 

List of Instruments 
 

Item Company Part Number 

2100 Bioanalyzer system Agilent G2943CA 

Mi-seq Systems Illumina SY-411-9001DOC 

7500 Fast Real-Time PCR 

 

System, laptop 

Applied 

 

Biosystems 

 
4351106 

Veriti™ 96-Well Thermal 

 

Cycler 

Applied 

 

Biosystems 

 
4375786 

 
Qubit® 2.0 Fluorometer 

Life 

 

Technologies 

 
Q32866 

 

 

 
 

Table 3.3. 

 
 

List of Software 
 

Item Company 

Immunoseq analyzer 3.0 Adaptive biotechnologies 

Ingenuity Variant Analysis QIAGEN 

Biomedical Genomics Workbench version 4 QIAGEN 

Rstudio V.3.3.2. Rstudio 

Mutagen NCBI 
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3.2. Study Design 
 
 

 

Figure 3.1. Study Design Workflow. The workflow illustrates the steps of somatic 

mutation identification and TCRB repertoir identification. First, somatic mutations 

were identified from FFPE breast cancer clinical biopsies from 79 patients. Based 

on the results of the somatic mutational load analysis, 11 patients were selected for 

the immune analysis. 
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3.3. Methods 

 

3.3.1. Tumor Sample Collection 

 
 

For this study, we included a total of 182 breast cancer samples provided 

by Hamad Medical Corporation (HMC) collaborators. This retrospective study was 

approved by the Medical Research Center institutional review board of HMC with 

a waiver of the informed consent requirements. All the FFPE biopsies were 

obtained from patients with no history of any cancer therapy. These clinical samples 

were collected between 2004 and 2012. Sample selection was based on the high 

quantification level of lymphocytes in the tumor tissue. Lymphocyte quantification 

was determined by the evaluation of hematoxylin and eosin (H&E) stained tissue 

slides, which is the standard method at HMC. The molecular subtypes of breast 

cancer have been determined based on expression level of ER, PR, HER2, and Ki- 

67, as follows (Table 3.4): 
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Table 3.4. 

 
Molecular Characteristics of Breast Cancer 

 

Molecular 

Subtypes 

Luminal A Luminal B HER2E TN 

 

 
Characteristics 

ER+ 

PR+ 

HER2- 

Ki-67 -Low 

ER+ 

PR+ 

HER2 +/- 

 
Ki-67 -High 

ER- 

 
PR- 

HER2 + 

ER- 

 
PR- 

HER2 - 

 

 

 

 

 

 

3.3.2. Macrodissection of Tissue Samples 

 
 

All FFPE samples were manually macrodissected according to specific 

instructions of the pathologists, to ensure the presence of maximum cancer cells in 

the study. Briefly, first the pathologist reviewed the H&E stained slides of FFPE 

using the light microscope to select and mark areas of cancer cells for dissection. 

Next, the laboratory technician used these marked H&E slides as guide to dissect 

FFPE blocks. Furthermore, the exact areas when the FFPE block was taken from 

in the tumor (acinar, lobular, ductal..etc) were not provided to our study. 
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3.3.3. DNA Extraction and Quantification 

 
 

DNA and RNA were extracted from dissected FFPE using the AllPrep 

DNA/RNA FFPE Kit (Qiagen, USA) according to the manufacturer’s instructions. 

DNA concentrations were determined by Qubit 2.0 Fluorometer dsDNA HS assay 

kit (lifeTechnologies, USA). Because the genomic DNA (gDNA) extracted from 

FFPE could been have damaged and fragmented as a result of the fixation and 

storage conditions, the DNA was qualified and quantified using the QIAseqTM DNA 

QuantiMIZE assay (Qiagen, USA). This assay utilizes a qPCR-based approach to 

calculate the amount of amplifiable DNA in each sample. Following the 

manufacture recommended protocol, 2 PCR components were prepared to amplify 

more than 20 genomic loci distributed across the human genome. The first mix was 

SYBR Green PCR master mix with primer assay 100 and the second mix was SYBR 

Green PCR master mix with primer assay 200, which generate 100 and 200 bp 

amplicons respectively. 4 ul of each gDNA sample along with the control sample 

were interrogated by 6 reactions; 3 reactions using the 100 assay and 3 using the 

200 assay. After the qPCR run was performed, the CT values of both assays were 

exported from the ABI 7500 real –time PCR instrument to an Excel data analysis 

sheet. This Excel sheet was provided by the manufacture to assist in calculating the 

integrity of the amplifiable nucleic acid in each sample. RNA samples were stored 

in -80C for future studies, and were not used in this project. 
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3.3.4. Breast Cancer Target Enrichment 

 
 

GeneRead DNAseq Targeted Panels V2; Human Breast Cancer Panel 

(Qiagen, USA) in combination with GeneRead DNAseq Panel PCR Kit V2 

(Qiagen, USA) were used to perform target enrichment by multiplex PCR. The 

breast cancer panel consists of four primer pools yielding 2,915 amplicons. These 

amplicons cover mutational hotspot regions located in 46 genes, which are known 

to be related to breast cancer. This genes list in Table 3.5. Briefly, gDNA samples 

were amplified using PCR reagents with 4 primer pool mixes (each primer pool in 

a separate well), and PCR was performed in a standard thermocycler following the 

protocol recommendation and the number of cycles calculated by QuantiMIZE 

analysis. 

 

After the completion of the 4 PCR reactions, the products for each sample 

were combined into one 1.5ml LoBind tube and the enriched DNA was purified 

using Agencourt® AMPure® XP beads (Beckman Coulter, USA). This step helps 

exclude large DNA fragments that could contaminate downstream steps. The 

concentration and the size of the purified amplicons were determined using Qubit 

2.0 Fluorometer dsDNA BR assay kit (lifeTechnologies, USA) and Agilent 

BioAnalyzer 2100 High-Sensitivity DNA kit (Agilent Technologies, USA). 
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Table 3.5. 

 
 

Human Breast Cancer Genes Panel (QIAGEN) 

 

 Genes 

ACVR1B KMT2C 

AKT1 MAP2K4 

ATM MAP3K1 

BAP1 MDM2 

BRCA1 MUC16 

BRCA2 MYC 

CBFB NCOR1 

CDH1 NEK2 

CDKN2A PBRM1 

CISD3 PCGF2 

EGFR PHF7 

EP300 PIK3CA 

ERBB2 PIK3R1 

ERBB3 PPM1L 

ESR1 PTEN 

EXOC2 PTGFR 

EXT2 RB1 

FBXO32 RET 

FGFR1 SEPT9 

FGFR2 TP53 

GATA3 TRAF5 

IRAK4 WEE1 

ITCH ZBED4 
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3.3.5. Library Preparation and Sequencing 

 
 

A total amount of 80 -160 ng of purified enriched DNA was used as template 

to generate NGS libraries. The NGS libraries were prepared using the DNQC- 

100Y-R GeneRead TM DNA Library I Core Kit( 12) (Qiagen, USA) and GeneRead 

TM Adapter I Set 12-plex(72) (Qiagen, USA). All library preparation steps; End 

repair, A-tail, adapter ligation, size selection and PCR amplification were 

performed according to the manufacturer’s protocol. The size of the final PCR 

products was analyzed using Agilent BioAnalyzer 2100 with 1000 DNA kit 

(Agilent Technologies, USA). 

 

To avoid over-clustering during sequencing, an accurate concentration of 

the libraries were estimated using Qubit and KAPA Library Quantification Kits for 

® 

Illumina   platforms (Kapa Biosystems,  USA). The quantified samples  were then 
 

normalized to 2 nM to ensure equal representation of each library within the pool. 

After normalization, each 12 libraries were pooled together and spiked with 5% of 

PhiX control. Finally, using MiSeq Reagent Kit v2, 300 cycle, a paired-end 260 bp 

sequencing run of each pool was carried out on the MiSeq instrument (Illumina, 

USA). 
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3.3.6. DNA Damage Repair 

 
 

SMRTbell Damage repair kit (Pacific Biosciences, USA) was used to 

perform DNA damage repair for 20 samples, thus to ensure good quality VDJ 

sequencing results from FFPE samples. According to the kit guidelines, up to 2 ug 

of gDNA were used. Repaired samples were then purified using Agencourt® 

AMPure® XP beads (Beckman Coulter, USA). 

 

3.3.7. TCR β CDR3 Amplification and Sequencing 

 
 

The CDR3 region of TCRβ was amplified and sequenced for 12 samples 

using the ImmunoSEQ profiling system at the survey level (Adaptive 

Biotechnologies, USA). This assay utilized a two-step PCR reaction to amplify the 

TCRβ immune repertoire. For the survey level means, replicate reactions were 

required for each sample. Briefly, total of 150 ng of purified damage repaired 

gDNA was used as template. Typically, this concentration will yield the targeted 

number of T cells (~ 4,000- 30,000 T cells) for non-lymphoid tissue. 

 

For the first round of PCR, DNA was amplified using the QIAGEN 

Multiplex PCR plus KIT (Qiagen, USA) with mix of multiplexed V-and J gene 

primers. The forward primers annealed to the(V) region and the reverse primers 

annealed to the junction (J) region of TCRβ as provided by ImmunoSEQ hsTCRB 

KIT (Adaptive Biotechnologies, USA). The reaction cycling conditions were: 95°C 

15 min, 30 cycles of [30s at 95°C, 90s at 62°C, and 90s at 72°C], plus a final 

extension of 3 min at 72°C. After amplification, the PCR products were purified 

using immunoSeq PCR Cleanup reagent following the manufacturer protocol. For 
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quality control, the samples were run on Agilent BioAnalyzer 2100 with 1000 DNA 

kit (Agilent Technologies, USA). 

 

For the second round of PCR, Illumina adapters and unique DNA barcodes 

were introduced to each PCR replicate. Briefly, 2 ul of each purified first PCR 

product was mixed into a multiplex PCR reaction with unique barcodes supplied by 

ImmunoSEQ hsTCRB KIT. The thermocycling conditions consisted of: an initial 

denaturation step at 95°C for 15 min followed by 7cycles of [30s at 94°C, 40s at 

68°C and 1 min at 72 °C], and the final extension of 10 min at 72 °C. The second 

PCR products were purified according to the protocol recommendations. In this 

step, each replicate samples has become uniquely identifiable by the additional of 

barcodes. 

 

Following the two step PCR reactions, equal volumes of each 14-barcoded 

sample [including positive and negative controls], were pooled together in one tube 

without normalization. In total we had 2 pooled samples in this study each 

containing  14  barcodes.  The  final  concentration  of  the  pooled  samples  was 

® 

quantified  using  KAPA Library  Quantification  Kits  for  the Illumina  platforms 
 

(Kapa Biosystems, USA). Following quantification, the pooled immunoSEQ 

libraries were spiked with 5% PhiX control and sequenced on the MiSeq platform 

using MiSeq Reagent Kit v3, 150-cycle (Illumina, USA) as recommended by 

Adaptive Biotechnologies. 
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3.3.8. Data Analysis 

 
3.3.8.1. Somatic Mutation Analysis 

 
 

The output raw data (.fastq files) from the MiSeq instrument were analyzed 

using Biomedical Genomics Workbench V 4 (CLC Bio, QIAGEN) following 

QIAGEN GeneRead Panel Analysis workflow, which was designed for the 

GeneRead DNAseq Targeted Panel users. The workflow starts with mapping 

sequencing data to human genome reference (hg19). A local realignment was 

performed to improve the quality of variant detection. The variants were directly 

called after trimming sequencing primers and dimers. All reads that non- 

specifically mapped or mapped outside of the targeted regions were excluded. 

Reads that aligned within the targeted regions were annotated with gene names, 

amino acid changes, exon numbers and chromosomal numbers. These annotations 

were obtained from different databases like, ClinVar dbSNP, HapMap, Cosmic and 

1000 Genomes project. 

 

Additional filtering steps were performed to remove variants present in the 

human reference and reported in dbSNP, 1000 Genomes Project, HapMap, Exome 

Sequencing Projects and Exome Aggregation Consortium (ExAC) databases. Also, 

variants that were present in more than 3% of the studied population were excluded 

as they could be due to sequencing artifacts or as-yet undiscovered common 

variants. For the remaining variants, the selection parameters for candidate variants 

were Quality >=50, Allele fraction > 2, Read depth >= 30. The final list only 

included the variants that changed native protein function as predicted by SIFT and 

PolyPhen-2 Functional Predictions. We excluded variant with allele fraction < 2 
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because the NGS kit not optimize to detect variants with low allele fraction from 

FFPE samples. The last filtering steps were done through Ingenuity Variant 

Analysis (QIAGEN). Finally, the somatic mutation data were summarized and 

plotted using R Program version 3.3.2. 

 

3.3.8.2. Derivation of Breast Cancer Mutational Signatures 

 
 

To identify the most likely mutagenic processes underling somatic 

mutations of our breast cancer samples in Qatar, the mutational profile was 

analyzed for the 79 patients using an online freely available computational 

framework MutaGene; https://www.ncbi.nlm.nih.gov/research/mutagene/. To start 

this analysis, we uploaded 79 VCF files of filtered germline variants to the 

MutaGene system. 

 

Briefly, MutaGene reported the mutational profile according to six base 

substitutions which are: CA, CG, CT, TA, TC and TG; all 

substitutions are referred to by the pyrimidine of the mutated Watson–Crick base 

pair. Further, each of these substitutions represent information of the neighboring 

nucleotides in 5' (C, A, G, and T) and 3' (C, A, G, and T) directions from the mutated 

base, so under each of 6 mutation types there are 16 possible 5’3’ sequence contexts, 

this mades up in total 96 context-dependent mutation types. The given set of 

mutations for each patient were displayed as histogram on the basis of the 

trinucleotide frequency across the GRCh37 (hg19) reference human genome; 

regardless of their genomic locations; this represents each patient’s mutational 

fingerprint. 

https://www.ncbi.nlm.nih.gov/research/mutagene/
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Then, these fingerprints were annotated into mutational signatures and 

mutagenic components using the MutaGene database to identify the most likely 

mutagenic processes that may have lead to somatic mutational profiles of each of 

the breast cancer patients. The MutaGene database includes mutational profiles for 

more than 9000 genomes and exomes from 37 different cancer types. 

 

3.3.8.3. TCR  Repertoire Analysis 

 

Raw data (.fastq files) from the MiSeq instrument were transferred to 

Adaptive Biotechnology. The sequencing data for each sample was processed and 

uploaded to the ImmunoSEQ Analyzer web-based analysis tool. Data processing 

steps included annotation, TCRB quantification and clonality assessment. Only 

samples with at least 10X amplification factor and high quality sequence data were 

included in the study. The analysis pipeline is designed to count both productive 

and nonproductive TCR rearrangements. Non-productive templates contain stop 

codons or frameshifts that are unlikely to produce a functional protein receptor. In 

this study, only the productive TCR rearrangements were reported in this study. 
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CHAPTER 4 : RESULTS 

 
 

4.1. FFPE Clinical Samples 

 
 

FFPE samples are routine diagnostic specimens used in HMC. The 

pathological laboratories in HMC use standard protocols for the fixation process 

and subtyping of breast cancer. The molecular characterization of the breast cancer 

patients are listed in Table 4.1. Most of the provided samples were of the luminal 

A subtypes, which is the most prevalent subtype in women in Qatar and worldwide. 

The FFPE samples were isolated from primary breast cancer tissues without lymph 

nodes and archived up to 144 months before the study started. The process of the 

sample collection starting from the surgery through fixation were not provided. 

Additionally, information related to patients age, lymph node status, tumor stage 

and size were not available for this project. 
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Table 4.1. 

 
 

Moleculer Subtypes of Breast Cancer Patients Included in this Study 

 

Breast cancer subtypes Number of sample 

Luminal A 108 

TN 30 

Luminal B 23 

HER2 21 

Total 182 
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4.2. DNA Quality and Quantity from FFPE 

 
 

The NGS workflows are highly sensitive to quality and quantity of the input 

nucleic acid. The integrity of the extracted gDNA was measured by QIAseqTM DNA 

QuantiMIZE assays to ensure that the fragmented DNA samples yielded enough 

material to preform NGS library preparation. In general, the quality and quantity of 

the FFPE extracted gDNA were barely suitable for the downstream analysis. 46 out 

of 182 samples failed quality check and were excluded from further analysis. For 

the remaining 136 samples, 2 to 6 PCR additional cycles were needed depending 

on the assays quality scores for each sample. The additional cycles were 

recommended by the assay to compensate for the differences in gDNA quantity 

during the enrichment steps. Because of budget limitations, only 79 FFPE samples 

were used for breast cancer somatic mutations detection. Table 4.2 summarizes the 

number of samples in each breast cancer subtypes and its status in this study. 
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Table 4.2. 

 
 

Overview of the Number of Each Breast Cancer Subtypes That Passed QC, 

Failed QC and Included in the Study 

Subtypes Passed QC Failed QC Included in the 

 

study 

Luminal A 84 24 31 

Luminal B 18 5 16 

HER2E 18 3 16 

TN 16 14 16 

Total 136 46 79 
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4.3. Target Enrichment and Library Construction for NGS 

 
 

The 2100 Bioanalyzer instrument was used to check fragment size after the 

target enrichment and library NGS construction processes. As shown in the Figure 

4.1-A & B, single peaks around 280 bp represent the size of amplicons as described 

in the manufacturer protocol. The Bioanalyzer results also show that the NGS 

libraries are clean, and do not contain adapter dimer, which it present should be 120 

bp peak. To avoid over-clustering the MiSeq flow cell, NGS libraries were 

quantified by qPCR and fluorometric quantification method. The results from both 

approaches gave similar measurement of the DNA concentration for each sample. 

This data was used in the preparation of the final sequence loading concentration of 

2 nM. As a result, the MiSeq sequences generated maximum cluster density, with 

high Q30 scores as shown in Figure 4.2-A, indicating high read quality. 
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Figure 4.1. Agilent 2100 BioAnalyzer Results of Final NGS Libraries. A) 

Bioanalyzer image of 12 different libraries with ladder. Single band around 280 bp 

obsorved from each library as protcol recommended. B) Library product of sample 

PCR-8 shown as an example, peak size: 285 bp, concentration: 16.19 ng and 

molority: 86.2 nM. 
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Figure 4.2. MiSeq Run Summary Report. A) Shreenshoot of MiSeq run summary 

report of one of 300bp paired-end runs for targeted breast cancer. Cluster Density: 

914 k/mm2), Reads (M)= 17.67.48, Reads PF (M)= 16.48, Read 1 Q30 = 90.1 and 

Read 2 Q30 = 95. B) MiSeq summary report of one of the 150 bp single- end runs 

for TCR β-CDR3 sequencing. Cluster Density=956 k/mm2, Reads (M)=23.84, 

Reads PF (M)=23.06 and Read 1 Q30 = 90.3. (M=Million). 

A 

B 
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4.4. Breast Cancer Somatic Mutations 

 
 

2,813 somatic mutations were identified from all of the 79 samples compiled 

in 46 genes. Using SIFT and PolyPhen, 1,557 were predicted to affect protein 

sequence; 588 were in Luminal A, 341 in Luminal B, 402 in TN and 226 in HER2. 

Only the variants that affect the protein sequence were included for further 

downstream analysis. Out of the 1,557 variants, 1378 variants were single 

nucleotide variants (SNVs) and 179 were dinucleotide variants. The translational 

impacts of these variants were as following: 1,372 missense, 177 in-frame, 5 

frameshift, 3 stop codon. 

 

Overall, 21 of the 46 genes tested were mutated in more than 10% of cases 

(Figure 4.3-A). MUC16 was the most common altered gene identified. Variants in 

MUC16 were present in 98.7% of patients, followed by KMT2C, TP53, ZEBED4 

and ERBB2 which were present in 41%, 39.2%, 22.8% and 22.8% of patients, 

respectively. 

 

The first four most frequently mutated genes in each molecular subtype are 

listed in Table 4.3. Among the 46 breast cancer genes studied. MUC16, TP53, 

KMT2C are the most frequent to contain mutations in all of the subtypes. ERBB2 

and RET mutations were enriched in Luminal A and Luminal B respectively, where 

each was present in >37 % of the patients. 

 

Figure 4.3-B shows in detail the mutational frequency of the genes in each 

of breast cancer subtypes. HER2E samples harbored the least number of mutated 

genes compared to other subtypes, 54 % (24/46) of the breast cancer genes were 
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mutated in this group. Also, as shown in Figure 4.3-A &B no mutation was detected 

in MYC, PTEN CBFB and PHF7 genes in any of the subtypes. 

 

 

 

 

 

 

 
 

Table 4.3. 

 
 

The Four Most Frequently Mutated Genes in Each Molecular 
 

Luminal A Luminal B HER2E TN 

(N=31) (N=16) (N=16) (N=16) 

Mutated 

 

genes 

Frequency 

 

(%) 

Mutated 

 

genes 

Frequency 

 

(%) 

Mutated 

 

genes 

Frequency 

 

(%) 

Mutated 

 

genes 

Frequency 

 

(%) 

MUC16 96.7% MUC16 100% MUC16 100% MUC16 100% 

KMT2C 38.7% KMT2C 50% TP53 62.5% KMT2C 43.7% 

ERBB2 35.4% RET 37.5% KMT2C 31.25% TP53 37.5% 

TP53 32.2% TP53 31.25% FGFR1 18.75% FGFR1 37.5% 
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Figure 4.3. Spectrum of Mutations of 46 Genes Among 79 Patients. A) squares 

represent the number of patients with mutations per gene. MUC16 present in 78 

patients and only split into 2 lines (for the figure resolution) B) The mutational 

frequency in all of 79 patients per gene in each of the four molecular breast cancer 

subtypes: Lumnal A (n=31), Luminal B (n=16), HER2E (n=16) and TN (n=16). 
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4.5. Gene Mutation Frequency Per Patient 

 
 

The number of altered genes in each patient is detailed in Figure 4.4. The 

results showed that 67% (53/79) of breast cancer patients in this study had at least 

>=3 mutated genes. Most notably, 8 patients have high rate of genes alterations 

(>10 genes). Interestingly, only one patient (LA9) in Luminal A subtypes, did not 

show any mutated genes. 

 

. 
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Figure 4.4. Gene Mutation for Each Patient in the Four Molecular Subtypes. 

Lumnal A (n=31), Luminal B (n=16), HER2E (n=16) and TN (n=16). X-axis 

represent 79 paients , Y-axis represent 46 genes. 
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4.6. Total Mutational Load 

 
 

To test the hypothesis that higher mutational load will increase the 

likelihood of creating more neoantigens and this will lead to increased T cell 

quantity and diversity within the tumor microenvironment, the total number of 

mutations (variants) present in specimens of each subtypes were analyzed. Most 

notably, no specific patterns were observed in any subtypes as some studies 

reported with ER negatives (Haricharan et al., 2014). There were marked 

differences in mutational burden among patients. The median mutational load was 

TN:11, Luminal B: 9, Luminal A:9, HER2E:7 (Figure 4.5). 

 

Regardless of the tumor subtypes, we selected 20 samples for further 

immune analysis. Three criteria were considered when the samples were selected. 

There are: the mutational load, QC call score (obtained from QIAseqTM DNA 

QuantiMIZE assay which indicated the degree of DNA fragmentation) and the 

amount of gDNA left. 



72  

 

 
 

Figure 4.5. Somatic Mutaional Load in Each Patients of the Four Molecular 

Subtypes. Luminal A (n=31), Luminal B (n=16), HER2E (n=16) and TN (n=16). 

The identified 1,557 variants were distributed by patient. 
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4.7. Mutational Signatures 

 
 

All cancers are caused by somatically acquired mutations. In some cancer 

types, a proportion of somatic mutations are known to be generated by defects in 

the DNA repair process or due to exposure to certain carcengenesis; such as tobacco 

or ultraviolet light. These mutagenic processes have been previously reported and 

often produce distinctive mutational patterns in the cancer tissue (Alexandrov et al., 

2013). In this study, the somatic mutational profile for each patient is analyzed 

using MutaGene to examine the most likely mutagenic signature behind the 

mutational pattern in each subtype (APPENDIX: B). 

 

Most remarkably, no specific trends were observed in any of the subtypes. 

Most patients displayed large peaks under the substitution mutations CT and 

TC classes, which corresponded to UV radiation or unknown etiology (Figure 

4.6-A). Also, the results showed that in 13 patients the deamination of 

methylcytosine was largely responsible for more than 55% of the patient’s 

mutations (Figure 4.6-B). Tobacco or aflatoxin were other common mutagenics 

observed in 65 patients and contributed to 5% to 21% (mean 11%) of total patient 

mutations. AID/APOBEC contributed to the mutation burden in 32 patients by 5% 

to 18% (mean 7%). 



74  

 
 

Figure 4.6. Contribution of Mutational Signatures to Mutational Profile of the 

four molecular breast cancer subtypes. A) The four patients shown as an example 

from each subtype, no specific trends were observed and most of the patients 

displayed large peaks under the substitution mutations CT. B) LB-16 shown as 

example out of 13 patients of the studied patients displayed that deamination of 

methylcytosine was largely responsible for more than 55% of the patient’s 

mutations. 

 

 
A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
B 
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4.8. Quality Control of TCR β CDR3 Library and Sequencing 

 
 

Prior to sequencing, DNA damage repair kit was used for the selected 20 

samples to improve the FFPE gDNA by repair any nicks on the DNA strands and 

fill in any gaps. Only 12 samples had sufficient starting input to be used for the 

ImmunoSEQ profiling assay at the survey level, listed in Table 4.4. Those samples 

had different spectrum of mutational load; some with low mutation and some with 

high mutational burden. Figure 4.7-A & B shows the TCR β-CDR3 amplification 

product in both the first and second PCR steps. The first PCR yielded a peak around 

200 bp in size. After the addition of the NGS adapters and DNA barcodes during 

the second PCR, the final product at approximately 400 bp (as recommended by 

Adaptive Biotechnologies). Good quality immunoSEQ sequencing data was 

generated from the MiSeq instrument as shown in the run summary in  Figure 4.2- 

B. Using The immunoSEQ analyzer, 11 of the samples passed the coverage and 

read quality thresholds required. The sample that did not pass the quality thresholds 

was excluded from further analysis. 
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Table 4.4. 

 
 

Selected Samples for ImmunoSEQ Profiling Assay at the Survey Level and their 

Mutational Load 

Patient ID Mutational Load 

LB-13 3 

TN-12 3 

TN-13 3 

HER2-7 4 

HER2-9 4 

HER2-16 6 

TN-1 13 

TN-15 16 

LB-14 25 

HER2-15 28 

HER2-6 47 

LB-7 146 
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Figure 4.7. Quality Check of TCR β-CDR3 Library from Both 1st and 2nd PCR 

Steps. A) 1st PCR: product of amplifying CDR3 region exhibited a band at 

approximately 200 bp. B) 2nd PCR: final product after introducing NGS adapters 

and DNA barcodes yelided one band of approximately 400 bp. 

A B 
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4.9. TCRβ Rearrangement and Diversity 

 
 

The total number of TCRβ rearrangements detected from the 11 samples 

was 22,960. 18533 of them were productive rearrangements that are in-frame and 

do not contain a stop codon. Of the productive rearrangements, the total number of 

unique TCRβ-CDR3 reads identified was 16570, distributed between 411 to 3206 

per patient (median 1629). Most of Productive TCR-CDR3 numbers obtained from 

each sample were unique reads, indicating samples have high diversity level of 

TCRβ-CDR3 within tumor tissue studied (Figure 4.8). 

 

Furthermore, the diversity of T clones in each sample was assessed. The 

score of the clonality was calculated based on the Shannon diversity index. The 

value of clonality was ranged from 0 to 1. Values close to 1 represent monoclonal 

distribution and values close to 0 represent polyclonal distribution. Using this 

metric, clonality of the TCRβ repertoires of the 11 tumor tissues ranged from 0.0032 

to 0.0243 (median 0.0095). These results indicate that the TCRβ-CDR3 in these 

patient's  tumors were more polyclonal  compared to the median clonality  of    the 

ImmunoSEQ hsTCRB assay (Adaptive Biotechnologies,  USA)  of an adult T-cell 
 

repertoire in blood which is about 0.075. 

 
 

Figure 4.9 shows the total count of unique TCRB-CDR3 and their level of 

diversity for each patient. Overall, HER2-16 and HER2-9 patients had the most 

abundant unique TCRB CDR3 rearrangements. Patient TN-15 with 16 mutational 

loads had the lowest total diversity of the TCR repertoire in the group; with only 

411 unique CDR3. Remarkably, patients carrying only three somatic mutation had 
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> 1000 unique TCRβ sequence, while in other samples that had only one or three 

extra mutations, the diversity of TCR almost doubled (see patients HER2-16 and 

HER2-9). On the other hand, patients HER2-15 and HER2-6 with high mutational 

load, did not exhibit a remarkable increase in TCR diversity. 

 

 

 

 

 

 

 

Figure 4.8. Number of Productive and Unique TCRβ-CDR3 in Each Sample. 

Most of Productive TCR-CDR3 numbers were unique reads, indicating high 

diversity level of TCRβ-CDR3 within tumor tissue studied. 
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Figure 4.9. TCRB CDR3 Diversity of 11 Patients. The red bar represent the total 

count of unique TCRβ-CDR3 rearrangements for each patient. Blue line represents 

the value of clonality, which ranges from 0 (polyclonal distribution) to 1 

(monoclonal distribution). The somatic mutational load of each patient stated next 

to the patient ID in the brackets. 
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4.10. Association of Mutational Load with TCRβ-CDR3 Diversity 

 
 

The association between the mutational load and the clinical outcome in 

several cancers, including the breast have been previously reported (Haricharan et 

al., 2014), but there have been few reports on the effect of mutational load on TCRβ 

diversity in breast cancer and clonality level . In the study, association between T 

cell diversity and load of mutation were first tested (Figure 4.10-A). According to 

the p-value =0.61 the correlation between mutational load and the number of 

productive unique TCRβ-CDR3 in the studied patient is not statistically significant. 

Additionally, there was no significant relationship between the load of mutation and 

clonal diversity p = 0.43 (Figure 4.10 -B). 
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Figure 4.10. Assocation Betweern Mutational Load and TCR β Diversity 

Within Tumor Tissues Studied. A) The patients exhibited no signifigant 

assocation between mutational load and the number of productive TCRβ-CDR3 

rearrangements (r = -0.172, p = 0.61). B) No significat relationship was displayed 

between mutaional load and clonal frequency (r = -0.2, p = 0.43). 
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CHAPTER 5 : DISCUSSION 

 
 

5.1 Discussion 

 
 

The relationship between the immune system and cancer has occupied the 

research community for many years now. The critical function of the TCR in the 

recognition of cancer cells has been well explained. The role of T cell in the 

inhibition of tumor formation and progression is also demonstrated in many studies 

(Dranoff, 2011; R. Kim et al., 2007). Additionally clinical studies of solid tumors 

including, breast cancer, confirmed the positive correlation between the presence 

of TILs and improved patient survival (Hadrup et al., 2013). However, there is 

limited knowledge about why some patients have increased TIL infiltration and 

diversity than others even within the same cancer subtypes. 

 

A large number of studies have attempted to understand the mechanisms 

that are involved in regulating T cell infiltration and their clonal diversity within 

the tumor microenvironment. Such studies suggested that the high level of genomic 

instability in cancer cells might promote antitumor immune responses and increase 

the level of TILs through inducing and presenting a large number of tumor antigens 

(Criscitiello et al., 2014; Sherene Loi, 2013). The TCGA has also reported evidence 

showing a correlation between mutation burdens or neoantigen load with increased 

T cell infiltration within tumors (Brown et al., 2014; Roszik et al., 2016). 

Unfortunately, these relationships across breast cancers subtypes remains limited. 
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The traditional approaches of TIL characterization such as H&E staining 

and IHC are limited to providing qualitative measurements of TILs and cannot 

address the heterogeneity of the TCR diversity within a tumor. With the availability 

of NGS based methods, it has become possible to analyze T cell infiltration at the 

genetic level by sequencing the TCR rearrangements. This method provides deeper 

understanding of the complex relationship between somatic mutations and the 

diversity of TCRs within a tumor. Hence in this study we characterized somatic 

mutations of 79 FFPE breast cancer samples from patients within each breast cancer 

subtype using NGS sequencing of a panel of breast cancer associated genes. To 

understand the relationship between mutational load and T cell diversity, we 

sequenced TCRβ-CDR3 for 11 patients with different levels of mutational load. 

 

In general, archived FFPE tissue is a highly valuable source of DNA, RNA 

and protein for molecular analysis of cancer. Hospitals are routinely creating several 

FFPE blocks from cancer patient biopsies and preserving for decades (Al-Attas et 

al., 2016). However, the biological material in FFPE could be degraded due to the 

process of fixation and embedding as well as the storage period and conditions. 

These factors might limit the FFPE usefulness in molecular studies. FFPE samples 

are mostly used as a reasonably reliable material in identifying cancer somatic 

mutations through targeted NGS approaches. However, the heavily degradation of 

isolated DNA could have negative impact on the results if not take into 

consideration prior to the sequencing process (De Leng et al., 2016). 
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In light of the negative impact of FFPE on the gDNA, we took several 

precautions to ensure producing high quality results from the NGS workflow, 

especially because our FFPE samples aged 4 to 13 years and were stored at room 

temperature. For example, the DNA extraction kit that we used (AllPreppa 

DNA/RNA FFPE Kit) helps in reversing formaldehyde modification that were 

induced during fixation process. Also important was selecting suitable samples for 

targeted NGS sequencing with good gDNA using the QIAseqTM DNA QuantiMIZE 

assay. For the downstream process, the QIAGEN GeneReader NGS workflows 

compatible with FFPE material were used for the enrichment of 2915 amplicons of 

breast cancer genes, library preparation and somatic mutation analysis. These steps 

ensured that the selected 79 out 136 yielded high quality sequencing results and 

amplicons coverage. Moreover, along with these steps for reduce false positive 

results we only were called variants with high quality reads, deep depth and Allele 

fraction > 2. 

 

The second objective of our study; the assessment of the TCRβ repertoires 

from long period archived FFPE specimen, was much more challenging. The 

available protocols for sequencing TCRβ- CDR3 from non-lymphoid tissue 

required high quality and quantity of gDNA. None of these protocols supported 

FFPE samples as input material. The justification that the gDNA in FFPE could be 

highly damaged and fragmented and thus may compromise the results of TCRβ- 

CDR3 identification. 

 

The main issue in the use of damaged gDNA is that damaged bases could 

interfere with the DNA polymerase function that is to synthesize complementary 
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DNA strand from the damaged template during the PCR reaction. Furthermore, 

increased damage may artificially increase the number of TCRB clones that are 

reported. The DNA damage can lead to misincorporation, transient stalling and 

termination of DNA polymerization (Clark et al., 2011). To avoid these negative 

effects, several studies started to use the SMRTbell Damage repair kit to identify 

and fix DNA damage before high-throughput sequencing (Clark et al., 2011; K. E. 

Kim et al., 2014; Kong et al., 2017). Mostly these studied used the SMRTbell 

Damage repair kit to treat high molecular weight gDNA for denovo genome 

assembly application. 

 

In accordance with these observations, we decided to use the SMRTbell 

Damage repair kit in our study to compensate for the poor gDNA quality from FFPE 

prior to immune sequencing. Before using the kit, we selected 20 FFPE samples 

with good gDNA quality. After treatment only 12 sample had sufficient starting 

material to proceed with immune sequencing. Based on ImmunoSEQ Analyzer 

web-based analysis for TCR beta database, we were successfully able to sequence 

11 samples with good quality sequencing reads and output data. 

 

For the data analysis, the ideal method for identification of somatic 

mutations in tumor is done by comparing the genomes of the tumor to the normal 

tissue derived from the same patient. In our case, the matched normal tissues were 

not available, so we relied on five publicly available databases to identify potential 

cancer somatic variants. This method is considered by several studies as an 

alternative pipeline for cancer variant identification whenever normal sample from 

the same patient is absent (Kalatskaya et al., 2017; Liu et al., 2015). Software such 
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as Biomedical Genomics workbench (CLC Bio, Qiagen) provides such a tool for 

these unpaired tissue samples. It incorporates the publicly available databases 

[dbSNP, 1000 Genomes Project, HapMap, Exome sequencing Projects and ExAC 

databases] that are rich with common germline variants, some of these databases 

included variants from Arab population (Koshy et al., 2017) . Furthermore, we also 

considered the variants that were present in more than 3% of our study as common 

variants in the population according to the definition of genetic polymorphism of 

the common allele or sequencing artifact as common results of PCR duplicates of 

NGS pipelines issues (Ebbert et al., 2016; Keats & Sherman, 2013). 

 

In the breast cancer gene panels sequenced in this study, we evaluated the 

frequency of somatic mutations as well as the mutational load in 79 breast cancer 

patients. The most common genetic alteration identified in all of the subtypes was 

the MUC16 gene also known as the CA125 gene, present in 98.7% of all patients. 

MUC16 encodes proteins that paly an essential role in forming the protective 

mucous barrier. The products of the MUC16 gene is mostly used as a marker for 

ovarian cancer, with higher expression levels correlated with poorer outcomes 

(NCBI, 2017). Similar findings has been reported in several other studies; the 

COSMIC database classified MUC16 gene as one of the top frequently mutated 

genes in general cancers (Tan et al., 2015). Moreover, a meta-analysis study 

generated from a total of 602 breast cancer samples the MUC16 was reported to be 

one of most frequently mutated genes in breast cancer but its mutational frequency 

ranged only between 4% to 14% across molecular subtypes (Cornen et al., 2014). 

The possible explanation for our observation of higher than usual mutational 
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frequency is because MUC16 gene is the largest gene in the whole panel we 

sequenced, therefore more likely to have a mutation compared to rest of the genes 

in the panel. 

 

Our result showed that TP53 was also largely mutated in the breast cancer 

patients, this is in agreement with previous studies (Cornen et al., 2014; Liu et al., 

2015; Tan et al., 2015). In addition, our data demonstrated that the mutational genes 

frequency were almost similar across subtypes. For example, MUC16, KMT2C and 

TP53 were at the top of the list in terms of most frequently mutated genes across all 

molecular subtype, in addition the frequency of mutation on other genes were 

almost alike. Furthermore among our small sample size (79 patients) no mutation 

was detected in MYC, PTEN, CBFB and PHF7 genes. Those genes also were not 

included in both lists of commonly mutated genes in general cancer of COSMIC 

databases and in breast cancer meta-analysis study that included huge number of 

patients in their analysis (Cornen et al., 2014; Tan et al., 2015). 

 

In one of most comprehensive molecular studies done in breast cancer, 

somatic mutations of primary tumors were identified in 825 people using exome 

the sequencing approach (Koboldt et al., 2012). The study data exhibited that TP53 

was highly mutated in breast cancer, present in 37 % of the total patients. The 

aggressive clinical and biological types had higher TP53 alteration ratios; 80% and 

72 % in TN, HER2 respectively, followed by 29% and 12 % in Luminal B and 

Luminal A respectively. On our results also showed that the TN group also had the 

highest mutational frequency in TP53 compared to other breast cancer groups. The 

TP53 gene was mutated in 62.5%, 37.5%, 32.2% and 31.25% in TN, HER2E, 
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Luminal A and Luminal B patients respectively. Taken together, with the absence 

of normal tissue pairs, our results revealed that mutations commonly found in breast 

cancer were at frequencies similar to those previously reported in other breast 

cancer molecular subtypes, thus indicating that FFPE mutational profiles are 

reliable and gDNAs extracted from FFPE samples were not significantly damaged. 

Furthermore. The results demonstrated the reliability of using QIAGEN 

GeneReader NGS workflows for breast cancer panel on FFPE samples. 

 

In regards of mutational load, unlike the TCGA data set, that included 762 

invasive breast cancer and showed significant correlation between ER negative 

subtypes and high somatic mutational burden (Haricharan et al., 2014), we 

identified no specific patterns of mutational load among any breast cancer groups. 

Mutational loads ranged from high to low in each subtype. These differences may 

be attributed to the fact that we were restricted to 46 genes while the TCGA data 

study used exome sequencing to cover all possible somatic mutations. In addition, 

we were so conservative when we called patient variants, thus may have lost some 

important variants in each subtype. 

 

According to Alexandrov et al. there are ~30 genome wide mutational 

signatures across human cancers (Figure 5.1). Some of these signatures are very 

common and almost present in every cancer type, while others are rare and only 

found in specific types of cancers. C> T substitutions are frequently present in every 

identified mutational signature. Aetiologies of some signatures are associated with 

defective DNA mismatch repair or known mutagenic exposures, while others still 

remain unknown (COSMIC, 2017). In breast cancer disease, there are several 
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signatures that contribute to the somatic mutations. For example, signatures 8, 

17, 18 and 30 have unknown aetiology, signatures 6, 20 and 26 are associated 

with defective DNA mismatch repair. Signatures 2 and 13 has been attributed to 

activity of the AID/APOBEC. Previous studies reported that deamination of 5- 

methylcytosines, an endogenous mutational process, modifies CpG sequence and 

occurs so frequently throughout evolution. This mutagenic process has been 

observed in all cancer types and samples (COSMIC, 2017; Nik-Zainal et al., 2016). 

In our samples, the mutational signatures were mostly attributed to unknown 

atetiology. Moreover, UV radiation, tobacco, aflatoxin and AID/APOBEC were the 

main underling somatic mutational profiles identified in our samples. 13 of our 

patients showed that deamination of 5-methylcytosines was behind > 55 % of the 

mutation pattern profiles. As been well known that formalin fixation process causes 

random artificial C > T mutation on FFPE samples (Munchel et al., 2015). This 

raise an important point for the possibilities of that mutational profiles for 13 

patients affected from the fixation issue. 
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Figure 5.1. Patterns of Mutational Signatures Found in Human Cancer.X-axis 

displayed the 96 substitution classfications of mutational type difined by clasess 

and sequence context of the neighboring nucleotides in 5' and 3' directions from the 

mutated base. Y-axis represent the percentage of mutations attributed to specific 

mutational type (COSMIC, 2017). 
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In the present study, we demonstrated the possibility of using archived 

FFPE to evaluate and characterize TCR-CDR3 in the tumor microenvironment of 

several patients. Our data showed high diversity level of the TCRβ repertoire within 

each tumor. However, because of our limited sample size we failed to identify 

statistically significant relationship between somatic mutational load in the 

sequenced breast cancer genes and the diversity level of the TCRβ repertoire. 

 

Other studies had extracted TCR sequences from 9142 RNA-seq samples 

across 29 cancer types including breast cancer. The study found that breast cancer 

samples displayed positive association between diversity of T cell clonotypes and 

somatic mutational load (Li et al., 2016). In addition, a study in breast cancer 

confirmed correlation between the composition of the TCR repertoire in tumors 

with somatic mutation patterns by assessing multiple regions of the tumors from 5 

patients (Kato et al., 2017) . In our study, further effort is needed by increasing the 

number of samples to improve the statistical power of the relationship between 

mutational load and T-cell clonal diversity in the breast cancer. 
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5.2 Limitations and Prospective 

 
 

There are several limitations in our study. First, sample size was small and 

this provided insufficient power for statistical test of association between the T cell 

diversity with the mutational load. Second, absence of paired normal tissue for each 

sample lead us to only rely on publicly available databases and stringent cut-off 

values for somatic variants. This may have led to excluding some important variants 

in our patients. Third, sample selection was based on the presence of high 

quantification level of lymphocytes in the tumor tissue and thus might have led to 

masking the real differences in diversity of TCR across 11 sequenced samples. 

Finally, the exact areas when the FFPE block was taken from in the tumor were not 

provided. As breast cancer known to be heterogeneous and TCR diversity is 

reported to change accordingly. This may have introduced some kind of sampling 

bias if selection was solely based on TIL infiltration without stander criteria being 

applied consistently on all the samples. 
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5.3 Future Direction 

 
 

 Recently, Qiagen released advance digital DNA sequencing approach for 

use with FFPE samples. This technology depends on sequencing unique 

molecular indices (UMI) to allow deeper sequencing of PCR products and 

detects low-frequency variants with high confidence. Using a breast cancer 

panel of these technology would help to remove PCR duplicates and 

minimizes PCR amplification error. 

 Sequencing TCRβ-CDR3 for more patients with different range of 

mutational load will helps on improve the statistical power of the association 

between mutational load and the TCRβ repertoire. 

 Assessment of somatic mutational load and TCR from multiple regions in 

breast cancer of each samples would provide deeper understanding of the 

heterogeneity of TCRβ repertoire within patient samples and across other 

patients. Also, it would minimize sampling bias. 

 Characterization of TCR-CDR3 from FFPE samples were successfully 

evaluated in this present study. Thus, should provide frame-work for 

analysis of large-scale of FFPE samples in Qatar in the future. 
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CHAPTER 6 : CONCLUSION AND RECOMMENDATION 

 
 

In this study, we demonstrated that gDNA from FFPE samples could be 

used as a resource to identify somatic mutations of breast cancer using NGS based 

methods. Moreover, in the present study we also showed that the TCRβ repertoire 

could successfully be evaluated from the FFPE samples. However, the use of FFPE 

samples presents challenges in sample processing and correcting for false positive 

variant calls. These challenges are caused by formalin fixation process and storage 

period and conditions. These factors mostly introduce C>T artifact mutations and 

should be taken into account during analysis. Current studies in cancer are mostly 

using NGS high throughput technology to detect low allele frequency somatic 

variants. As the mutational signature studies showed there are many mutagenic 

processes that cause C>T mutation in human cancer genomes (Alexandrov et al., 

2013; COSMIC, 2017), this limits the FFPE usefulness in low allele frequency 

molecular genetic analysis. This raises an important need for pathological 

laboratories in Qatar to change the collection and storage process of cancer samples 

from FFPE to frozen biospecimens. Frozen tissue storage method has already been 

initiated in pathology departments and biobanks in United Kingdom since the last 

few years (Shabihkhani et al., 2014). 
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Appendix C: Abstract in Arabic 
 

 
 

 اتيب- ءات اتيخال بالتقستم ةموعجمو يدثلا انطرس طامنأ  من كلل  ةينيجلات ارتغيلل ةيلتسلسلا ةكيبرتلا ةفرمع

 مرولل هللتسملا ةويافمللا ايالخلل

 ضرم :همدقملا قطر يف ءسانال ىدل لوفاهل هببسملاو شرهتنمال  ةثيبالخ ضارملأا رثكأ نم وه يدثال نرطاس

 .لمعالا حاءنأ يعمج يوف ىلا نإف ددصال اذه يف.جالعلل هبتتجاسإ و ريضمال ةلاح نتحس دجوو نيب ةيوق ةعالق جودو ىلإ يلثدا نالسرط هيثدحال تاساردلا نم لعديدا ريتش

 ةينيالج ترايغتال ءبع توىمس ةعالق ةقيقح  نلآا ترايغتلل ةيلسلستال ةصفرو لورما جينس يف  ةيوافميللا تاء ليااخ تليااخ تلابقتمس ةعومجم عونت يادةز و

 عم تبلثاا نيفاربال تنايع امدختبس هاطمنأ لفتخمب يدثال نرطاسب ةيبكرتال ددناح لاوأ  ةسادرال ذهه يف لكذ لأج نم .ةتملكم ريغو حدودهم ةيوفاميللا يلثدا نرطاسل

 اضيمر 79 ل هابئعو ةينيالج تاء نيالمورفال

 )FFPE) هايعل طلقيو ةسجنلاا نمضتت التي وقد .تم ذلك من خالل استخدام  NGS مجموعه واستهداف

 ةيبكرتال ديدحتو فيينصت لخال نم لكذب نامق. ديثال نرطاس ةسجنإ صحفل  ةفتلخم اءبعأ ىوتمس نملويح همنم  اضيرم 11 يارتاخ مت لكذ عدب يدثال نلسرطااب

 تالبقتسمل ةنيالج ةيلسلستال ةينيالج ترايغتال ءبع يف ةياوفميللا تاء ليااخ دجواتو عونت ةبنس يالع عونت هميدل ناك اضيمر 11 نأ جئتانال ةقعلتمال تنايالج نم

 عفاتار نيب ةعالق ناكه نكت   لم لك،ذ معو .رملوا جيسن يف ايتب- ءات تليااخ نم ترهأظ :ةجنتيلا. تايب- تاء تايخال

 ةقعلتملا و فههدتسمال .ىضرمال تنايع يف هاعونتو اتيب- ءات ةيفاومللا ايخال ددعو يدثلا نلسرطااب


