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Abstract
Purpose  Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. 
Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replace-
ment, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The 
aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete 
status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three 
previous studies.
Methods  The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy 
controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 
male Russian endurance athletes was determined using gas analysis system.
Results  The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, 
P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. 
The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed 
significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58–2.45; 
P = 1.7 × 10–9). Furthermore, the HFE G allele was associated with high V ̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 
66.3 (7.8) ml/min/kg; P = 0.036].
Conclusions  We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, 
regardless ethnicities and aerobic capacity in Russian athletes.
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Introduction

Iron is an important component of the oxygen-binding pro-
teins, such as hemoglobin and myoglobin. Whereas hemo-
globin transports oxygen (via erythrocytes), myoglobin’s 
function is to store oxygen in working skeletal muscles and 
to facilitate its transport to mitochondria. Approximately 
65% of iron is stored in hemoglobin (Wallace 2016), thus 
there is a positive correlation between serum iron con-
centrations and hemoglobin (Ofojekwu et al. 2013; Baart 
et al. 2018). Iron can affect many physiological processes, 
and its deficiency is associated with fatigue, anemia, and 
decreased exercise performance (DellaValle 2013; Abba-
spour et al. 2014). There is a balance between iron loss, 
iron absorption, and iron storage to maintain iron home-
ostasis (DellaValle 2013; Wallace 2016; Rubeor et  al. 
2018). Endurance athletes have an increased risk for iron 
loss because of the insufficient dietary intake and training 
intensity, which leads to increased risk for suboptimal iron 
status (Hinton 2014).

Serum iron measures and hematological parameters 
have significant heritability components. The heritability 
estimates are 23% for iron, 29–37% for ferritin, and 28% 
for transferrin saturation (Njajou et al. 2006; McLaren 
et al. 2010), and 84% for hemoglobin (Evans et al. 1999). 
Genetic variation plays a significant role in interindividual 
differences in serum iron parameters. More specifically, 
previous studies have suggested that the missense muta-
tions of the hemochromatosis (HFE) gene are associated 
with iron indexes (Burt et al. 1998; Wallace 2016). The 
proportion of variance explained by HFE gene mutations 
was reported to be 2.1% for serum iron level, 5.6% for 
ferritin, and 3.5% for transferrin saturation (Njajou et al. 
2006).

The HFE gene (full name—homeostatic iron regulator) is 
a protein coding gene located on chromosome 6. The protein 
regulates iron absorption by regulating the interaction of the 
transferrin receptor with transferrin. The HFE protein inter-
acts with TFRC, the transferrin receptor, so its primary mode 
of action is through regulation of the iron storage hormone 
hepcidin. Individuals with one (C/G or H63D genotype) or 
two (G/G or D63D genotype) missense mutations of the 
H63D (also known as His63Asp or rs1799945 C/G) poly-
morphism, show higher circulating iron concentrations than 
people without mutations (Burt et al. 1998). In the H63D 
carrier group, a positive correlation between iron and hemo-
globin was noted (Barbara et al. 2016). The H63D mutation 
is commonly found in European (17%) and American (12%) 
populations, and is rarer in East Asian (3%), South Asian 
(7%), and African (1%) populations.

The H63D mutation accounts for a mild form of heredi-
tary hemochromatosis (HH), a condition with increased 

intestinal iron absorption which may lead to liver fibrosis 
and cirrhosis, hepatocellular carcinoma, diabetes melli-
tus, cardiomyopathy, and hypogonadotropic hypogonadism 
(Wallace 2016). Given the importance of iron and hemo-
globin in athletic performance, one might suggest that the 
HFE gene H63D may give some advantage in endurance 
sports. Indeed, Deugnier et al. (2002) have identified an 
increased frequency of the G allele in 77 elite French road 
male cyclists when compared to controls (24.7 vs 17.1%, 
P = 0.04). In accordance with this data, the frequency of 
the C/G genotype was significantly higher in 65 profes-
sional Spanish endurance athletes (50 road cyclists and 
15 endurance runners) in comparison with controls (41.5 
vs 24.6%, P = 0.01) (Chicharro et al. 2004). Finally, Her-
mine et al. (2015) have found that the frequency of CG/
GG genotypes was significantly higher in the group of 
French elite athletes compared to controls (38% vs 21.9%, 
P = 0.0019). Although these findings in West European 
populations support the hypothesis that the iron-increasing 
HFE rs1799945 G allele is favorable for endurance perfor-
mance, replication studies in different ethnic groups using 
different designs are warranted. This approach leads to 
the exclusion of false-positive genetic associations (Eynon 
et al. 2013; Zarebska et al. 2017; Papadimitriou et al. 
2018; Yvert et al. 2018; Guilherme et al. 2019; Pickering 
et al. 2019).

The aim of the study was to investigate the association 
between the HFE gene H63D polymorphism and endurance 
athlete status in Japanese and Russian populations, aerobic 
capacity, and to perform a meta-analysis using current find-
ings and three previous studies.

Methods

Ethical approval

The study was approved by the Ethics Committee of the 
Physiological Section of the Russian National Committee 
for Biological Ethics, Ethics Committees of the Juntendo 
University and National Institutes of Biomedical Innova-
tion, Health and Nutrition (Japan) and by the Institutional 
Research Board of Anti-Doping Laboratory Qatar (ADLQ) 
(F2014000009). Written informed consent was obtained 
from each participant. The study complied with the guide-
lines set out in the World Medical Association Declaration 
of Helsinki and ethical standards in sport and exercise sci-
ence research. The experimental procedures were conducted 
in accordance with the set of guiding principles for report-
ing the results of genetic association studies defined by the 
Strengthening the reporting of genetic association studies 
(STREGA) statement.
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Study participants

The study involved 315 international-level endurance ath-
letes (255 Russian and 60 Japanese) and 809 healthy con-
trols (405 Russian and 404 Japanese). The first group com-
prised 255 international-level Russian endurance athletes 
tested negative for doping substances and involved in biath-
lon, kayaking, cross-country skiing, cycling, rowing, run-
ning ≥ 800 m, speed skating ≥ 1.5 km, swimming ≥ 400 m, 
and triathlon. Controls were 405 healthy, unrelated citizens 
of Russia without any competitive sport experience. Of 
those, 46 male endurance athletes (middle-distance athletes 
(n = 31): rowers, kayakers, speed skaters; long-distance 
athletes (n = 15): biathletes and cross-country skiers) par-
ticipated in the study of aerobic performance. The second 
group involved 60 Japanese international-level endurance 
athletes (800 m to marathon runners) tested negative for 
doping substances, including several world record holders 
and medallist in Olympic Games. Controls were (n = 406) 
healthy, unrelated citizens of Japanese.

Genotyping

DNA samples of the Russian cohorts were majorly geno-
typed using micro-array analysis, as described previously 
(Pickering et  al. 2019). In part, some DNA samples of 
Russian athletes and controls were genotyped for the HFE 
rs1799945 polymorphism with a TaqMan® SNP Genotyping 
Assay (Thermo Fisher Scientific Inc, Waltham, Massachu-
setts, USA) with a StepOne TM Real-Time PCR System 
(Thermo Fisher Scientific Inc, Waltham, Massachusetts, 
USA) or using PCR-restriction fragment length polymor-
phism (RFLP) method, according to a previously described 
method (Merryweather-Clarke et al. 1997).

Japanese cohort: total DNA was extracted from saliva 
or venous blood using Oragene DNA Collection Kit (DNA 
genotek, Ontario, Canada) or QIAamp DNA blood Maxi 
Kit (QIAGEN, Hilden, Germany), respectively. Illumina® 
HumanOmniExpress Beadchip (Illumina Inc, Hayward, 
California, USA) were used for genotyping of more than 
700,000 SNPs in athletes and controls. The genotype calls 
were performed with Illumina® GenomeStudio Software. 
Genotype data of the HFE rs1799945 polymorphism were 
obtained from the genotyping results of the Illumina® 
HumanOmniExpress Beadchip.

VO2max measurement

Maximal oxygen consumption rate (V ̇O2max) in rowers was 
determined using an incremental test to exhaustion on a 
PM 3 rowing ergometer (Concept II, Morrisville, Vermont, 
USA). The initial workload was 150 W. The duration of 
exercise at each workload was 3 min, with a 30 s rest period 

between increments of 50 W. VO2 and VCO2 was determined 
breath by breath by a MetaMax 3B gas analysis system (Cor-
tex, Leipzig, Germany) using an electro-chemical cell and 
non-dispersive infrared sensor, respectively; air flow was 
measured using a turbine transducer (Triple V). Two-point 
gas calibrations (first gas—15% O2, 5% CO2; second gas—
ambient air) were performed daily. A one-point gas calibra-
tion with ambient air was performed before each test as well 
as a flow transducer calibration using a 3 L syringe (Hans 
Rudolph, Kansas City, USA). The criteria used to confirm 
a maximal test were a decrease in power of more than 30 W 
from the target power despite strong verbal encouragement 
and a respiratory exchange ratio greater than 1.1 before ces-
sation of exercise. VȮ2max was recorded as the highest mean 
value observed over a 30 s period.

VȮ2max in kayakers was determined using an incremental 
test to exhaustion on a kayaking ergometer (Efremov, Mos-
cow, Russia). The initial workload was 8 kg for men and 
5 kg for women. The duration of exercise at each workload 
was 2 min, with a 30 s rest period between increments of 
1 kg. VȮ2max was determined breath by breath using a Meta-
Lyzer II gas analysis system (Cortex Biophysik, Leipzig, 
Germany). VO2max was recorded as the highest mean value 
observed over a 30 s period.

V ̇O2max in speed skaters was determined using a ramp 
test to exhaustion on an electromagnetic cycle ergometer 
Ergoselect 200 K (Ergoline, Bitz, Germany). The initial 
workload was 60 W, the increment was 15 W/min, and the 
target cadence was 60–70 rpm. V ̇O2max was determined 
breath by breath using a MetaMax 3B gas analysis system 
(Cortex Biophysik, Leipzig, Germany). The criteria used to 
confirm a maximal test were a decrease in cadence of less 
than 50 rpm despite strong verbal encouragement and a res-
piratory exchange ratio greater than 1.1 before cessation of 
exercise. V ̇O2max was recorded as the highest mean value 
observed over a 30 s period.

V ̇O2max in biathletes and cross-country skiers was deter-
mined using an incremental test to exhaustion on a treadmill 
HP Cosmos (h/p/cosmos sports & medical gmbh, Nussdorf, 
Germany). The initial speed was 7 km/h, the increment was 
0.1 km/h every 10 s. V ̇O2max was determined breath by 
breath using a MetaMax 3B-R2 gas analysis system (Cortex 
Biophysik, Leipzig, Germany). V ̇O2max was recorded as the 
highest mean value observed over a 30 s period.

Selection of studies for the meta‑analysis

Databases of PubMed, Web of Science, Science Direct and 
Google Scholar were searched for association studies as of 
July 19, 2019. The terms used were “HFE” and “athletes” 
restricted to English. The exclusion criteria were: (1) review; 
(2) non-English; (3) studies did not involve endurance ath-
letes; (4) ethnically mixed group of athletes were analysed 
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(given that allelic frequencies vary significantly across dif-
ferent ethnicities; for example, we did not include the study 
of Grealy et al. (2015) because the mixed group of athletes 
from North America, Europe, Oceania, South America, 
Asia, and Africa was studied); and (5) duplicates. The inclu-
sion criteria were: (1) case–control study design evaluating 
the association between HFE gene H63D polymorphism and 
endurance athlete status; (2) sufficient genotype frequency 
data to calculate the odds ratios (ORs) and 95% confidence 
intervals (CIs) and (3) athletes and controls in studies com-
ply with the Hardy–Weinberg equilibrium (HWE). Overall, 
seven articles published between 1998 and 2015 were identi-
fied of which three were found as eligible including a total 
number of 271 endurance athletes and 607 controls.

Statistical analysis

Genotype distribution and allele frequencies between ath-
letes and controls were compared using χ2 tests. Differences 
in phenotype between groups were analysed using unpaired 
t tests. Data are presented as mean (standard deviation). 
Statistical analyses were conducted using GraphPad InStat 
software (GraphPad Software, Inc., California, USA) and 
PLINK software program (Purcell et al. 2007). To perform 
the meta-analysis with obtained data and all published stud-
ies the Cochrane Review Manager (RevMan) (London, UK) 
version 5.3 was used. Random and fixed effect models were 
applied. Odds ratio with 95% confidence intervals (CI) was 
estimated using the Mantel–Haenszel method. The hetero-
geneity degree between the studies was assessed with the 
I2 statistics. P values < 0.05 were considered statistically 
significant.

Results

Case–control study

In Japanese and Russian groups of athletes and controls, the 
HFE gene rs1799945 polymorphism met Hardy–Weinberg 
expectations (P > 0.05 in both groups tested separately). The 
frequencies of the rs1799945 G allele were significantly 
higher in Russian (21.0 vs 13.2%; P = 0.0002) and Japanese 
(7.5 vs 2.5%; P = 0.0032) endurance athletes compared to 
ethnically matched controls (Table 1). Furthermore, the 
rs1799945 CG/GG genotypes were significantly over- rep-
resented in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) 
and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance 
athletes compared to ethnically matched controls (Table 2). 
These results remained statistically significant after correc-
tion for multiple testing.

Meta‑analysis

Multi-database literature search yielded three eligible stud-
ies involving endurance athletes that were genotyped for the 
HFE gene H63D polymorphism. These involved 77 French 
elite road cyclists and 254 controls (Deugnier et al. 2002); 
65 Spanish highly trained athletes (50 professional road 
cyclists and 15 Olympic class endurance runners) and 134 
controls (sedentary men from Spain) (Chicharro et al. 2004) 
and 129 French elite athletes (Nordic skiing, rowing, fight-
ing) and 219 controls (Hermine et. al. 2015). The genotypic 
frequencies for both the cases and the controls in all studies 
were in Hardy–Weinberg equilibrium.

Table 1   Distribution of 
HFE genotypes and allelic 
frequencies in Japanese and 
Russian endurance athletes and 
controls

*P < 0.05, statistically significant differences of G allele frequency between athletes and controls

Groups n Athletes n Controls P

CC CG GG G allele, % CC CG GG G allele, %

Russian 255 158 87 10 21.0 405 304 95 6 13.2 0.0002*
Japanese 60 52 7 1 7.5 404 384 20 0 2.5 0.0032*

Table 2   Distribution of HFE 
genotypes in endurance athletes 
and controls

*P < 0.05, statistically significant differences of CG/GG genotypes frequency between athletes and controls

Groups Athletes Controls P

n Genotypes n Genotypes

CC CG/GG CC CG/GG

Russian 255 158 97 (38.0%) 405 304 101 (24.9%) 0.0003*
Japanese 60 52 8 (13.3%) 404 384 20 (5.0%) 0.011*
French #1 (Deugnier et al. 2002) 77 43 34 (44.2%) 254 173 81 (31.9%) 0.048*
Spanish (Chicharro et al. 2004) 65 36 29 (44.6%) 134 96 38 (28.4%) 0.023*
French #2 (Hermine et. al. 2015) 129 80 49 (38.0%) 219 171 48 (21.9%) 0.0012*
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The frequencies of the rs1799945 CG/GG genotypes were 
significantly higher in three groups of French and Spanish 
endurance athletes compared to controls (Table 2). Overall, 
five case–control studies (two current and three previous) 
including a total number of 586 endurance athletes and 1416 
controls were used for the meta-analysis. The pooled OR for 
the CG/GG genotypes compared to the CC genotype was 
1.95 (95% CI 1.57–2.43, P = 2.5 × 10–9 for the fixed effect 
model) and 1.96 (95% CI 1.58–2.45, P = 1.7 × 10–9 for the 
random effect model) (Fig. 1). No heterogeneity between 
studies (I2 = 0%; P = 0.83) was observed. These results indi-
cate that the carriage of the HFE mutation (i.e. CG/GG gen-
otypes) is strongly associated with endurance athlete status.

Aerobic study

We identified that the HFE gene rs1799945 G allele was 
significantly associated with increased V ̇O2max in the whole 
group of Russian male endurance athletes (CC [n = 29]: 61.8 
(6.1), CG/GG [n = 17]: 66.3 (7.8) ml/min/kg; P = 0.036), as 
well as in long-distance athletes only (CC [n = 8]: 68.1 (3.4), 
CG/GG [n = 7]: 73.0 (4.6) ml/min/kg; P = 0.038).

Discussion

This is the first study to demonstrate that H63D variation 
in the HFE is associated with elite endurance athlete sta-
tus in Russian and Japanese populations. More specifically, 
we found that the frequencies of the iron-increasing geno-
types (i.e. CG/GG) were significantly higher in Russian and 
Japanese elite endurance athletes compared to ethnically 
matched controls. We also confirmed the observation that 
the H63D mutation is commonly found in East Europeans 
(13.2%) and is rarer in East Asian (2.5%) populations. In 
addition, the meta-analysis using five cohorts (two French, 
Japanese, Spanish, and Russian) including a total num-
ber of 586 endurance athletes and 1416 controls showed 

significantly higher prevalence of the CG/GG genotypes in 
endurance athletes compared with controls.

The H63D polymorphism is functional given that the 
rare G allele has been shown to reduce the ability of the 
HFE protein to bind to its ligand, thereby preventing the 
inhibition of transferrin–TFRC binding and resulting in 
increased transport of iron into circulation and cells (Feder 
et al. 1998). The hypothesis that the iron-increasing HFE 
rs1799945 G (63D) allele is favorable for endurance per-
formance was confirmed in our functional study, where we 
identified that the G allele was associated with increased 
V ̇O2max in Russian male endurance athletes. One might sug-
gest that the favorable effect of the HFE G allele on aerobic 
capacity and ability to become an endurance athlete is medi-
ated through its impact on hematological parameters, as was 
shown in the study of French endurance athletes (Hermine 
et al. 2015). Furthermore, in the genome-wide association 
study (GWAS) of 173,480 European-ancestry participants, 
the HFE rs1799945 G allele was shown to be significantly 
(P < 5 × 10–8) associated with increased values of hemato-
logical parameters, such as hematocrit, mean corpuscular 
hemoglobin concentration, hemoglobin, and reticulocyte 
count (Astle et al. 2016). Previous studies in athletes have 
also shown that variations in genes, which regulate hema-
tological traits, are associated with aerobic capacity and 
endurance athlete status (Ahmetov et al. 2015; Malczewska-
Lenczowska et al. 2016).

Our findings seem reasonable given the importance of 
iron metabolism for endurance athletes (Abbaspour et al. 
2014). The leading role of iron is to transport oxygen into 
the red blood cells and tissues, and it does so mainly through 
hemoglobin. Furthermore, iron is present in myoglobin and 
cytochromes of skeletal muscle mostly in oxidative (slow-
twitch) muscle fibers. The normal level of iron is crucial to 
maintain redox balance in muscle and produce mitochon-
drial energy production, which are primary factors deter-
mining exercise performance (Buratti et al. 2015). Iron 
deficiency without anemia and/or sports anemia are a com-
mon issue in athletic populations (at 15–35% of female and 

Fig. 1   Meta-analysis for association studies for HFE gene and endurance sports
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3–11% of male athletes) (Fallon 2008; Malczewska et al. 
2001; Parks et al. 2017) with higher frequency in endurance 
athletes, e.g., distance runners and triathletes (Rietjens et al. 
2002; Lukaski 2004; Sinclair and Hinton 2005), and physi-
cally active individuals compared with sedentary controls 
(Milic et al. 2011; Eliakim et al. 2002; Gropper et al. 2006; 
Woolf et al. 2009). Factors, which could affect both male and 
female athletes’ iron stores, is low energy intake, inadequate 
dietary iron intake, vegetarian diets, exercise-associated iron 
losses, reduced iron recycling (Hinton 2014; Castell et al. 
2019; Sim et al. 2019), and menstrual blood losses in female 
athletes (Pedlar et al. 2018). Iron deficiency, which is accom-
panied by a reduction of oxygen transport to the working 
skeletal muscle, can lead to lower blood pH, depletion of 
muscle glycogen, which may negatively affect the endurance 
performance and exercise economy (Sim et al. 2019).

Humans with experimentally induced anemia showed 
reduced VO2max, which is proportional to hemoglobin con-
centrations (Woodson et al. 1978; Celsing et al. 1986). Iron 
supplementation of anemic women improved iron status 
and performance during a standardized, multi-stage tread-
mill test and reduced exercise heart rate and blood lactate 
concentrations (Gardner et al. 1975). Although iron supple-
mentation does not necessarily improve VO2max (Klingshirn 
et al. 1992; Zhu and Haas 1998), this strategy is useful for 
iron-deficient nonanemic athletes in the improvement of ath-
letic performance in endurance sports (Burden et al. 2015; 
Rubeor et al. 2018). Therefore, the iron status of athletes 
should be monitored systematically throughout the training 
and competition season to early detection or prevention of 
iron deficiency.

The limitation of our study is the small sample sizes of 
Japanese athletes, as well as sub-group of Russian athletes 
with VO2max data, which may lead to potential type I errors. 
As in all such studies, extension to, and replication within 
other racial groups is proposed.

In conclusion, we have shown that the HFE gene H63D 
polymorphism is strongly associated with endurance athlete 
status across East Asian, East and West European popula-
tions and with aerobic capacity in Russian athletes.
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