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ABSTRACT 

YOUNIS, ADEL S., Doctorate : January : 2020, 

Doctorate of Philosophy in Civil Engineering 

Title: Sustainable Concrete Using Seawater, Recycled Aggregates, and Non-Corrosive 

Reinforcement 

Supervisor of Dissertation: Usama A. Ebead. 

Using seawater and recycled concrete aggregate (RCA) in a concrete mix is 

potentially advantageous from a sustainability perspective. However, the high chloride 

levels expected in such a concrete mix demands the use of non-corrosive reinforcement 

in lieu of normal black steel to avoid corrosion problems. Glass fiber reinforced 

polymer (GFRP) is considered promising as an alternative reinforcement owing to its 

corrosion resistance and acceptable mechanical properties that minimize maintenance 

and repairs and extend service life. Yet, the relatively high initial cost of GFRP bars 

may mitigate its potential use. In view of that, the current thesis is aimed at verifying 

the safe and economic utilization of seawater, recycled concrete aggregate, and GFRP 

reinforcement to produce sustainable and efficient concrete structures.  

The main body of the thesis consists of five key studies. In the first study, an 

extensive experimental program was conducted to compare the fresh and hardened 

properties of freshwater- and seawater-mixed concretes. In the second study, the 

performance of concrete mixed with seawater and recycled coarse aggregates (at 100% 

replacement level) was experimentally investigated. The third study was carried out to 

experimentally examine the flexural performance of seawater-mixed recycled-

aggregate GFRP-reinforced concrete beams. In the fourth study, a life cycle cost 

analysis (LCCA) was performed (considering 100-year analysis period) to verify the 
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cost performance of structural concrete combining seawater, RCA, and GFRP 

reinforcement for high-rise buildings as compared to the traditional reinforced concrete 

(i.e., with freshwater, natural aggregates, and black steel reinforcement). The fifth study 

evaluates the cost effectiveness of different reinforcement alternatives in a concrete 

water chlorination tank using LCCA: a comparison was established between four 

concrete reinforcing materials, namely, black steel, epoxy-coated steel, stainless steel, 

and GFRP through a 100-year analysis period. The results of these five studies suggest 

the potential use of the proposed combination (seawater + RCA + GFRP reinforcement) 

to produce safe and economic concrete structures. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Freshwater scarcity is increasingly an issue of global concern. Recently, it has 

been estimated that around two-thirds of the global population live under conditions of 

severe water scarcity for at least one month every year [1]. Consequently, desalination 

is used worldwide in regions with freshwater shortages: the global capacity of 

desalination plants has increased from 5 million m³/day in 1980 to 80.9 million m³/day 

in 2013 [2]. However, desalination is energy-intensive, making the desalted water 

relatively expensive, and generates a brine waste stream which negatively impacts on 

the environment [3]. The average cost of reverse osmosis (RO), the most commonly-

used desalination technique worldwide [2], ranges between 0.50 and 1.20 $/m3 [4] and 

is associated with an energy consumption of 3–4 kWh/m3 as well as emitted CO2 levels 

of 1.4–1.8 kg/m3 of product water [3]. The annual volume of brine generated is 

estimated to reach 156 km³ by 2050 [2]. 

One important step towards overcoming the challenge of freshwater scarcity 

and the corresponding increasingly high demand for desalination is reducing the 

unnecessary use of freshwater for construction purposes. Concrete is the most 

commonly used construction material worldwide, and is typically produced by mixing 

cement, freshwater, aggregates, and often mineral/chemical admixtures [5]. The 

construction industry uses over two billion tons of potable water every year to produce 

concrete [6], with the use of reinforced concrete increasing globally every year: this 

accounts for approximately 9% of the global industrial water demand [7]. Predictions 

show that, in 2050, 75% of the water demand for concrete production will occur in 

regions most likely to experience water shortages [7]. Seawater can represent a valid 

alternative to freshwater in concrete production but, despite it being more a sustainable 
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water source, the use of seawater in concrete is currently prohibited because its high 

salinity promotes corrosion of steel reinforcement [8]. Seawater has an average total 

salinity of 3.5%, of which typically around 78% is sodium chloride (NaCl) [9]. 

Construction and demolition wastes make up about 30% of the total waste 

worldwide (over two billion tons annually [10]). In the US alone, the annual 

construction and demolition waste has been estimated at ~480 million tons, of which 

more than 50% is primarily concrete [11]. Without recycling, the yearly accumulation 

of these wastes is likely to lead to significant economic and environmental problems 

[12]. Furthermore, the global construction industry consumes over 40 billion tons of 

natural aggregates every year [10]. Using recycled concrete aggregate (RCA) can 

largely reduce the negative effects of the demolition waste and control the harvesting 

of natural aggregates (Figure 1.1) while potentially providing acceptable properties of 

the resulting concrete [13,14]. However, one of the main concerns in using RCA is the 

likelihood of saline contamination, given the high diversity in RCA sources, again 

promoting corrosion of the steel reinforcement [15]. 

 

 

Figure 1.1. The waste produced and mineral resource depletion per 1 m3 of natural 

aggregate and recycled-aggregate concretes [14]. 
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It is postulated from the existing literature that the salt, existing either in 

seawater or potentially in RCA, has no significant negative effects on plain concrete 

characteristics [15–17]; the negative effect in such a case appears to be limited to the 

corrosion of steel reinforcement. This can be addressed by using fiber-reinforced 

polymer (FRP) to reinforce concrete structures [18], this material being corrosion-

resistant [19,20] and lightweight while still providing sufficient mechanical strength 

[21]. Despite the higher cost of FRP reinforcement compared to that of black steel, the 

implementation of economic and environmental studies on FRP-reinforced concrete 

indicates significant cost savings in the long term [22–24]. Amongst all FRP types 

applicable to reinforce concrete, glass-FRP (GFRP) is the most common, being less 

expensive while having acceptable mechanical properties [25,26]. 

Existing literature postulates direct environmental benefits associated with the 

use of seawater or RCA in structural concrete. For instance, Arosio et al. [27] reported 

that mixing concrete with seawater would lead to reductions up to 12% in its water 

footprint. Hossain et al. [28] reported that using RCA in concrete mixtures can result in 

approximately 65% savings in greenhouse gas emissions and up to 58% reductions in 

non-renewable energy consumption. These findings have been corroborated by other 

studies on RCA environmental benefits [12,14,29]. Studies have shown that FRP also 

provides clear environmental benefits in concrete structures due to the increased service 

life [30–33]. For instance, Cadenazzi et al. [31] performed a life-cycle-assessment study 

(at the design stage) on a GFRP-reinforced concrete bridge in Florida. It was reported 

that the cradle-to-grave environmental impacts of the GFRP-RC bridge are lower than 

that of the black-steel-reinforced counterpart in terms of global warming (by 25%), 

photochemical oxidant creation (by 15%), acidification (by 5%), and eutrophication (by 

50%). The shorter service life of the black steel-RC bridge was a relevant factor for its 
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lower performance. Also, Amnon [34] concluded that the environmental load of FRP-

reinforced pavement is significantly lower than that of the steel-reinforced counterpart, 

mainly due to the absence of maintenance activities related to steel corrosion during the 

pavement service life. 

In light of the aforementioned background, the present thesis investigates a 

seawater-mixed concrete incorporating RCA and corrosion-resistant reinforcement 

(GFRP). Indeed, the probable corrosion concerns associated with chloride ions in 

seawater and/or possibly contaminated RCA are avoided through the use of GFRP. The 

rest of Chapter 1 is organized as follows: at first, a literature appraisal is presented in 

Section 1.2 to identify research gaps to be bridged in the current thesis. After that, 

Section 1.3 highlights the objectives of the thesis, and Section 1.4 presents the thesis 

outline. 

1.2 Literature Appraisal 

1.2.1 Seawater in plain concrete 

Despite the common belief that seawater is improper for use in structural 

concrete, a number of structures were successfully built using seawater concrete 

(seawater-mixed concrete and seawater concrete are used interchangeably in the text) 

during the last century [35] or even earlier [36,37]. This can be regarded as intuitive 

evidence for the potential use of seawater to produce durable concrete. The issue of 

steel corrosion can be addressed either by using seawater in non-reinforced concrete 

applications or alternatively by using non-corrosive material such as fiber-reinforced 

polymer (FRP) to reinforce concrete structures [18]. In effect, durability studies have 

verified the long-term strength performance of GFRP bars in seawater concrete [38–

40]. 

While using seawater in concrete mixtures appears viable, there is a need to 

determine the fresh, hardened, and durability characteristics of such concrete. Existing 
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literature postulates no significant negative effects on the mechanical properties of 

seawater concrete [16,41]. Starting from early works, Narver [42] reported a higher 

compressive strength for seawater concrete during the first month, and then, from the 

third month, the strength was 6% lower when compared to that of freshwater concrete. 

Similarly, Steinour [43] showed an increase in the early strength followed by a later 

strength reduction of 8–15% for seawater concrete. These results are in conformity with 

more recent studies [16,35,44–46]. In contrast, the research conducted by Griffin and 

Henry [47] showed a strength increase not only at early ages but also in the long term. 

A gain in strength was also reported by Dewar [48], who underlined that the concrete 

strength increased with the salinity content of mixing water. Shi et al. [49] reported a 

22% increase in the 28-day compressive strength of seawater concrete compared to that 

of freshwater-mixed counterpart. Park et al. [50] evaluated concrete mixtures with 

different chloride contents (0–1.2% of cement weight) in terms of concrete shrinkage 

and mechanical characteristics. While an insignificant influence of NaCl content was 

reported on the mechanical characteristics, the presence of chloride led to a notable 

increase in the drying shrinkage and cracking [50]. Seawater concrete was found to 

achieve better characteristics with the addition of mineral admixtures such as blast 

furnace slag [16,51–53], fly ash [17,54,55], and metakaolin [49,56,57]. In this context, 

Nishida et al. [16] conducted a comprehensive survey of about 85 references published 

between 1974 and 2013 and pertaining to the effects of using seawater in concrete 

mixture: it was reported that over 38% of the preceding research had shown promising 

outcomes, more particularly in the case of using blast furnace slag (Figure 1.2). When 

considering fresh concrete properties, it was generally reported that the existence of salt 

in seawater concrete leads to a decrease in the workability and the setting time [51,58–
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60]. Some studies suggested that the use of suitable chemical admixtures leads to an 

improvement in the workability of seawater concrete [35]. 

 

 

Figure 1.2. Positive and negative responses regarding seawater-mixed concrete, 

collected from previous research (adapted, with modifications, from [16]). 

 

From the aforementioned literature survey, it is apparent that the reports 

concerning seawater concrete are, to a certain degree, contradictory. While the majority 

of studies concluded a slight negative effect on the concrete strength, some revealed 

otherwise [47–49]. It is likely that the exact effect of mixing using seawater on the 

compressive strength depends on the seawater composition, cement chemistry, concrete 

mixture proportions, and curing conditions. Nonetheless, further studies are needed 

before accepting the use of seawater concrete in structural applications. Further 

research is also needed to generate well-established design provisions in this regard and 

thus maximize the potential use of seawater for concrete production.  
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1.2.2 Combining seawater and RCA in plain concrete 

The idea of producing RCA from demolished concrete structures was first 

introduced in Europe around the time of World War II [61], after which RCA usage has 

gained popularity and general acceptance. Currently, around 10% of the aggregate used 

in Europe is RCA; out of this amount, 65% and 35% are used to produce new concrete 

for buildings and infrastructure, respectively [10]. The first recorded use of seawater to 

produce concrete in modern times is traced back to World War II – structures were built 

along the coasts of California and Florida using seawater-mixed concrete [35]. 

However, some have suggested that the ancient Romans pioneered the use of seawater 

in concrete made with natural pozzolans [36]. 

Previous studies generally show negative impacts of RCA on the fresh and 

hardened properties of concrete (see the literature surveys [15,62–68]). Examples 

include reductions in workability, strength, and durability (more studies pertaining to 

recycled-aggregate concrete and its mechanisms are discussed in Chapter 4). For 

instance, a complete replacement of natural coarse aggregates (NCA) by RCA in plain 

concrete results in reductions up to 30% in compressive strength, 24% in tensile 

strength, and 45% in the elastic modulus [15,64,65,67]. In principle, such drawbacks 

are generally attributed to the relatively inferior physical and mechanical performance 

of RCA compared to NCA [69]. However, these negative impacts may potentially be 

mitigated by adjustments in the concrete mixture design [70,71] or by using 

supplementary cementitious materials and chemical admixtures [72–74]. For example, 

Marinković et al. [14] indicated that a slight increase in cement concentration (~5%) is 

sufficient for the recycled-aggregate concrete to achieve a compressive strength 

comparable to that of conventional concrete as shown in Figure 1.3 (although this 
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highly depends on other several factors such as RCA quality, curing regime, type of 

cementitious materials, etc.). 

  

 

Figure 1.3. Relationship between compressive strength and cement content for 

natural-aggregate concrete (NAC) and recycled aggregate concrete (RAC) [14]. 

 

Whilst a significant amount of research has been performed in the last two 

decades on the sole effect of mixing concrete with seawater [16,41] or RCA [15,62–

68], studies concerning the combined effect of seawater and RCA are relatively very 

scarce [51]. In this context, Etxeberria et al. [51] reported an approximately 30% 

reduction in the compressive strength of concrete while using both seawater and RCA 

in the mixture at 100% replacement level. Nevertheless, further research is needed to 

understand the fresh and hardened properties of seawater-mixed concrete made with 

RCA, primarily to address the shortcomings expected in the performance of such 

concrete. While various aspects of such novel and sustainable concretes need to be 

studied and understood before widespread implementation, this research is focused on 
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understanding and quantifying the negative impacts of the combined use of seawater 

and RCA on a large range of concrete properties, and on mitigating these negative 

impacts. 

1.2.3 Flexural performance of RC beams 

Studies on the flexural performance of RC beams with seawater-mixed concrete 

are limited [75] with a clear lack of addressing durability related issues. In this context, 

Dong et al. [75] reported a change in the failure mode of seawater concrete beams 

reinforced with steel/FRP composite bars and subject to aggressive exposure (over 6-

month immersion in 50 °C seawater) from concrete crushing to rebar tensile rupture, 

associated with ~11% reduction in the flexural capacity. 

The effects of using RCA on the flexural performance of RC beams have 

received significant attention among researchers worldwide [76–84]. Alnahhal and 

Aljidda [76] underlined that the use of RCA has no remarkable impact on the flexural 

capacity of RC beams. Likewise, Sunayana and Barai [77] demonstrated application of 

100% RCA in RC beams without compromising flexure performance. This finding was 

corroborated by preceding works from other researchers [78–84], who conclusively 

reported no significant difference in flexural capacity and service-load deflections 

between NCA and RCA reinforced concrete beams having the same reinforcement 

percentage and concrete strength. 

GFRP has shown high potential as an alternative non-corrosive reinforcement 

material given its high strength-to-weight ratio [21], excellent durability performance 

[85], and relatively lower cost compared to carbon FRPs [23]. Therefore, GFRP has 

globally attracted the interest of the construction industry. Design guidelines have also 

been developed for the use of GFRP in RC elements [86,87]. As such, successful 

implementations have been reported on the use of GFRP-RC in several types of 
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structures such as bridges [88,89], parking garages [90], as well as tunnels and marine 

structures [91]. Over the last decade, a significant amount of research has been carried 

out to investigate the flexural performance of GFRP-RC beams [92–101], 

demonstrating a higher flexural strength yet lower stiffness and ductility of GFRP-RC 

beams compared to their steel-reinforced counterparts. Indeed, this is attributable to the 

linear elastic behavior and the relatively lower elastic modulus of GFRP bars [21]. 

The main research gap identified from the above literature survey is the lack of 

understanding of the flexural behavior of seawater-mixed recycled-aggregate GFRP-

reinforced concrete beams – which is an aim of the present thesis. To achieve this, 

twelve RC beams with varying concrete mixture design and reinforcement material 

were constructed and tested under four-point loading. 

1.2.4 Life cycle cost analysis 

In principle, to quantitatively measure the sustainability of a product, the 

economic and environmental impacts associated with it are obtained on a life-cycle 

assessment basis (i.e., cradle-to-grave); starting from raw materials collection and 

assembly, and extending to fabrication, operation, transport, and waste management 

[102]. Life-cycle cost analysis (LCCA) is an established tool to optimize the cost of a 

certain product when the focus is on measuring the economic aspects of sustainability. 

Classically, the LCCA of an RC structure involves four key cost items (Figure 1.4), 

namely, initial, functional, repairs, and disposal at the end of the life-cycle [103,104]. 

The existing literature shows a clear advantage of individually using recycled 

concrete aggregate [14,105,106] or FRP reinforcement [22–24] in structural concrete 

in terms of cost performance. The main research gap to be bridged here is to assess the 

life-cycle cost implications of combining seawater, RCA, and GFRP reinforcement in 

concrete structures (particularly high-rise buildings). In addition, as elaborated in the 



  

11 

 

literature survey of Chapter 7, there is a perceptible need to compare the cost 

performance of GFRP with that of other corrosion-resistant reinforcements in concrete 

structures other than bridges. In this thesis, we established a comparative cost analysis 

among four reinforcement materials, namely, black steel, stainless steel, epoxy-coated 

steel, and GFRP for an RC water chlorination tank.      

 

 

Figure 1.4. Components of the life-cycle cost model for an RC structure. 

 

1.3 Research Objectives and Significance 

The current research represents a step towards redefining sustainable/green 

concrete as shown in Figure 1.5. It is apparent that combining seawater and RCA in 

concrete mixtures is significantly advantageous from a sustainability perspective, 

considering the increasing global concerns of freshwater scarcity, desalination impacts, 

construction and demolition waste, and the possible depletion of natural aggregate. 

However, the expected high concentration of chlorides in such mixtures potentially 

resulting in steel reinforcement corrosion is an undeniable challenge. This challenge 

may be addressed by using the proposed mixtures in plain concrete applications or with 
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non-corrosive reinforcement such as FRPs. The relatively higher initial direct cost of 

FRP reinforcement can be recompensed in the long term by the savings associated with 

corrosion alleviation. Therefore, combining seawater, RCA, and FRP in structural 

concrete is a novelty, and is potentially viable from technical, environmental, and 

economic standpoints. 

The main objective of this research is to establish the experimental scientific 

evidence on the safe utilization of both seawater and recycled aggregates that, when 

combined with GFRP reinforcement, can be used to construct sustainable and economic 

concrete structures. In light of Figure 1.5, and based on the research gaps identified in 

Section 1.2, this thesis aims at fulfilling five key tasks: 

(a) To carry out a wide-range experimental study on the fresh and hardened 

properties of seawater-mixed concrete. 

(b) To study the effect of combining seawater and recycled coarse aggregates 

on the performance of the resulted concrete. 

(c) To investigate the flexural performance of seawater-mixed recycled-

aggregate GFRP-reinforced concrete beams.  

(d) To conduct a life cycle cost analysis in order to measure the cost 

effectiveness of the proposed combination (i.e., seawater + RCA + GFRP 

reinforcement) as compared to traditional RC structures.  

(e) To establish a comparison among different reinforcement materials for 

structural concrete in terms of their cost effectiveness. 
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Figure 1.5. A perspective towards sustainable concrete structures (NA stands for 

natural aggregates; C&D for construction and demolition; LCCA for life cycle cost 

analysis; and LCA for life cycle assessment). 

 

  



  

14 

 

1.4 Thesis Outline 

In line with the objectives listed in Section 1.3, the main body of this thesis 

consists of three main parts (Figure 1.6), namely, concrete characterization, RC beams 

testing, and life cycle cost analysis, overall encompassing five core studies. Each of the 

five studies has been submitted (by the thesis date) for consideration for a journal 

publication. 

  

 

Figure 1.6. Outline of the thesis body. 

 

Chapter 2 details the concrete characterization methodology in the first and 

second studies of the thesis. Material characterization results for the concrete mix 

constituents were presented. In addition, methods implemented to measure fresh and 

hardened properties of concrete were explained. 

Chapter 3 (Study 1) reports on the results of an extensive experimental study 

to compare the fresh and hardened properties of freshwater- and seawater-mixed 

concretes. The experimental program included the following tests: (a) characterization 



  

15 

 

of fresh concrete (slump flow, density, yield, air content, and setting time tests); (b) 

mechanical characterization of hardened concrete (compressive strength, splitting 

tensile strength, and shrinkage tests); and (c) permeability performance of hardened 

concrete (rapid chloride permeability, chloride migration, and water absorption tests). 

Scanning electron microscopy and isothermal calorimetry were used as supplementary 

tools to better explain the experimental observations. Based on the study results, 

remedial measures were proposed based on lab trials to improve the properties of 

seawater concrete. 

Likewise, Chapter 4 (Study 2) investigates the fresh and hardened properties 

of a proposed “green” concrete mixed using seawater and recycled coarse aggregates. 

Fresh and hardened properties of the two concretes including workability, strength gain, 

drying shrinkage, permeability, and microstructure were characterized and compared. 

Finally, strategies to improve the performance of such concrete are suggested. 

Chapter 5 (Study 3) reports on the results of an experimental study on the 

flexural performance of seawater-mixed recycled-aggregate concrete reinforced with 

GFRP bars. A total of 12 medium-scale reinforced concrete (RC) beams (150 × 260 ×

2200 mm) were tested under four-point loading. The test variables included the mixing 

water (seawater/freshwater), aggregate type (conventional/recycled), and 

reinforcement material (black steel/GFRP). A wide range of flexural properties, 

including failure mode, cracking behavior, load-carrying capacity, deformation, energy 

absorption, and ductility were characterized and compared among the beam specimens. 

In Chapter 6 (Study 4), a life cycle cost analysis (LCCA) has been conducted 

to establish the relative cost savings of structural concrete combining seawater, RCA, 

and GFRP reinforcement in high-rise buildings compared with a traditional concrete 

mix and reinforcement material (i.e., black steel). 



  

16 

 

Chapter 7 (Study 5) addresses the use of non-corrosive reinforcement in a 

concrete water chlorination tank using life cycle cost analysis (LCCA) that aims to 

evaluate the cost effectiveness of different reinforcement alternatives. A comparison 

was established between four concrete reinforcing materials, namely, black steel, 

epoxy-coated steel, stainless steel, and GFRP through a 100-year analysis period.  

Finally, based on the outcomes of this thesis, the final conclusions, as well as 

recommendations for future work, are presented in Chapter 8. 
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CHAPTER 2: CONCRETE CHARACTERIZATION METHODOLOGY 

Chapter 2 details the experimental program for the first part of this thesis (Part 

1: Concrete Characterization). This chapter presents the concrete mixtures to be 

investigated, details the material characterization of concrete constituents as well as 

concrete mixture proportions, and describes the test and observation methods used to 

measure the performance of fresh and hardened concrete. 

2.1 Concrete Mixtures 

Three concrete mixtures were prepared as shown in Table 2.1. Mix A represents 

the conventional concrete mixed with freshwater and natural coarse aggregates (NCA) 

and is considered as a reference. Mix B is made with the use of seawater and NCA. Mix 

C represents the use of concrete mixed with seawater and recycled coarse aggregate 

(RCA) at 100% replacement level. 

 

Table 2.1. Concrete mixtures. 

Concrete Mixtures. 

Concrete Mix Water Coarse Aggregate 

Mix A Freshwater Conventional 

Mix B Seawater Conventional 

Mix C Seawater Recycled 
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2.2 Material Characterization of Concrete Constituents 

2.2.1 Water 

Seawater was pumped from Al-Khor coastal area in Qatar to a portable tank. 

After that, the seawater was delivered to the concrete plant, fabric-filtered, and stored 

in chemical tanks to be used for concrete mixing and curing. Chemical characterization 

was performed for both types of mixing water, including the determination of chlorides, 

sulfates, alkalinity, total dissolved solids, and pH (at 25 ºC). Table 2.2 summarizes the 

chemical characterization results for both water types as per the corresponding 

methods/standards. As shown in the table, the pH values were comparable. Alkalinity 

measurements were within acceptable limits as per Qatar Construction Specifications 

(QCS) [107] for both water types. However, the sulfates, chlorides, and dissolved solids 

in seawater were significantly higher than those of the conventional freshwater or the 

allowable limits. The relatively high concentrations of chlorides and sulfates in Qatari 

seawater compared to those of the global average [41] can be attributed to extensive 

desalination activities which result in high disposal rates of the generated brine. 

Accordingly, this research evaluates the implications of using such water in concrete, 

with an attempt to provide remedial measures, if needed, to achieve properties 

comparable to that of the conventional concrete. 
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Table 2.2. Chemical characterization of the two types of mixing water. 

Chemical Characterization of the Two Types of Mixing Water. 

Test Unit Method/Standard 

Maximum 

Limit [107] 

Results 

Freshwater Seawater 

Chloride (Cl-) mg/L BS 1377 PART 3 [108] 1000 14.1 18600 

Sulfate (SO4
-2) mg/L BS 1377 PART 3 [108] 2000 20.9 2359 

Total alkalinity mg/L BS 6068-2.51 [109] 500 69.5 149 

Total dissolved 

solids 

mg/L BS 1377 PART 2 [110] 2000 62.0 30300 

pH (at 25 ºC) - BS 6068-2.50 [111] 6.5 – 9.0 8.1 8.20 

 

2.2.2 Aggregates 

Locally-available washed sand was used in all concrete mixtures. The natural 

coarse aggregates used in Mix A and Mix B were Gabbro crushed rock (imported from 

Oman to Qatar to meet local demands). Recycled concrete aggregates (produced and 

used in Qatar since 2009 from demolished concrete structures and discarded concrete 

from construction [112]) were used as coarse aggregates in Mix C. Gradation analysis 

was carried out on the coarse and fine aggregates as per BS EN 933-1 [113], for which 

Figure 2.1 presents the particle size distributions. The size of the RCA used was 

between 5–20 mm: 75% of the RCAs were 10-mm in size or more.  

Table 2.3 presents the physical and chemical characteristics of the fine and 

coarse aggregates used in the current research. In general, the measured properties of 

the aggregates were within the acceptable limits [107], except the RCA water 

absorption, which was significantly higher than the 2% limit [107]. Indeed, this high 

water absorption is due to the high porosity of the RCA, the presence of adhered mortar 

on the RCA surface, and the relatively high percentage of clay lumps and friable 

particles in the RCA. RCA showed a lower particle density than the NCA. Results from 
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the Los Angeles abrasion and 10%-fines-value tests revealed an increase in the material 

loss for RCA as compared to NCA. Aggregate soundness test showed that RCA had 

potentially less resistance to disintegration by weathering compared to the NCA. 

Flakiness and particle-shape indices suggested that, compared to NCA, RCA had a 

rougher surface texture with an irregular shape. These results taken together indicate 

that the RCA generally showed inferior physical and mechanical performance 

compared to the NCA, which is somewhat expected. However, RCA showed similar 

results to NCA in tests for organic impurities, acid-soluble chloride, acid-soluble 

sulfate, and percentage of lightweight particles. 

 

 

Figure 2.1. Particle size distributions for the aggregates used. 
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Table 2.3. Physical and chemical characterization of aggregates. 

Physical and Chemical Characterization of Aggregates. 

Test Method 

Results (Coarse Aggregates) Results (Fine Aggregates) 

20-mm Gabbro 10-mm Gabbro RCA Limit [107] Washed Sand Limit [107] 

Material finer than 63 µm BS EN 933-1 [113] 0.8% 1% 0.3% 2.0% max. 1.1% 3.0% max. 

Particle density (kg/m3) 

(a) Oven dried 

(b) Saturated surface dried 

(c) Apparent 

BS EN 1097-6 [114] 

 

(a) 2980 

(b) 2960 

(c) 2940 

 

(a) 2930 

(b) 2950 

(c) 2980 

 

(a) 2440 

(b) 2552 

(c) 2746 

2000 min. 

 

(a) 2620 

(b) 2630 

(c) 2650 

2000 min. 

Water absorption BS EN 1097-6 [114] 0.4% 0.6% 4.6% 2.0% max. 0.6% 2.3% max. 

Clay lumps & friable particles ASTM C142 [115] 0.10% 0.10% 0.29% 2.0% max. 0.10% 2.0% max. 

Flakiness index BS EN 933-3 [116] 6.9% 11.7% 5.2% 35.0% max. - - 

Particle shape index BS EN 933-4 [117] 8.2% 7.7% 3.4% 15.0% max. - - 

% of lightweight particles ASTM C123 [118] 0.0% 0.0% 0.0% 0.5% max. 0.0% 0.5% max. 

10% Fines value BS 812-111 [119] 360 kN 360 kN 189 kN 150 kN min. - - 

Los Angeles abrasion test BS EN 1097-2 [120] 9% 10% 24% 30% max. - - 

Aggregate soundness  BS EN 1367-2 [121] 1.2% 2.9% 12.6% 15.0% max. 10.3% 15% max. 

Organic impurities ASTM C40 [122] None None None - None - 

Acid-soluble chloride BS EN 1744-5 [123] 0.02% wt. 0.02% wt. 0.02% wt. 0.03% wt. max. 0.02% wt. 0.06% wt. max. 

Acid-soluble sulfate BS EN 1744-1 [124] 0.1% wt. 0% wt. 0.19% wt. 0.3% wt. max. 0.3% wt. 0.4% wt. max. 
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2.2.3 Cementitious materials 

Ordinary Portland cement (OPC) and blast furnace slag were used as 

cementitious materials. Table 2.4 lists the chemical composition of the ordinary 

Portland cement obtained as per BS EN 196-2 [125]. Blast furnace slag (referred to as 

“slag” in the rest of the thesis) was used at 65% supplementary cementitious material 

replacement level in all mixtures as it is known to improve the performance of fresh 

and hardened seawater-mixed concrete [126] or recycled-aggregate concrete [51]. In 

accordance with BS EN 15167 [127], the chemical composition of the slag was 

determined by X-ray fluorescence and listed in Table 2.4. The chemical composition of 

the slag conforms with previous research [128] and acceptable criteria [127]. The 

calcium oxide (CaO) content in slag (41.1% wt.) was lower than that of the ordinary 

Portland cement (61.8% wt.) but higher than typical values for fly ash [129] or 

metakaolin [49]. Accordingly, the CaO/SiO2 ratios calculated for the slag and cement 

were 1.25 and 3.11, respectively. The fineness obtained by Blaine air permeability test 

[130] was measured as 4510 and 3350 cm2/g for the slag and ordinary Portland cement, 

respectively. 
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Table 2.4. Chemical characterization of the cement and slag. 

Chemical Characterization of the Cement and Slag. 

Chemical composition (% wt.) Slag Cement 

SiO2 32.77 19.90 

Al2O3 13.49 4.30 

Fe2O3 0.44 3.21 

CaO 41.10 61.84 

MgO 5.84 4.49 

Na2O 0.24 

0.51 (combined) 

K2O 0.35 

TiO2 0.38 - 

MnO 0.14 - 

Mn2O3 0.16 - 

S 0.82 2.70 

Cl 0.004 0.051 

Loss on Ignition 0.77 2.34 

C2S + C3S - 69.98 

C3A - 5.96 

C4AF - 9.76 
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2.3 Concrete mixture proportions 

Ready-mix concrete, with a 28-day design compressive strength of 60 MPa and 

a water-to-cementitious material (w/cm) of 0.34, was used. Table 2.5 presents the 

mixture design quantitates for each concrete mixture according to BS EN 206 [131]. 

The mixture proportions for concrete per cubic meter were 750 kg of sand, 1190 kg of 

gravel, 158 kg of ordinary Portland cement, 292 kg of slag, and 165 kg of water. In Mix 

B, seawater fully displaced freshwater as mixing water of concrete. In Mix C, NCA was 

fully replaced by RCA on a volume basis. It is noted that while the three mixtures have 

the same w/cm, the water contents in Table 2.5 are different as additional mixing water 

was used in Mix C to account for the higher water absorption of the RCA. Commercial 

superplasticizer (Glenium 110M) at a dosage of 3.8 kg/m3 was used in all mixtures to 

maintain a minimum of 550-mm slump flow for 60 minutes in the control mixture. 

 

Table 2.5. Concrete mixture proportions. 

Concrete Mixture Proportions. 

Component Mix A (kg/m3) Mix B Mix C (kg/m3) 

OPC 158 158 158 

Slag 292 292 292 

Gabbro 20 mm 700 700 - 

Gabbro 10 mm 490 490 - 

5-20 mm RCA - - 990 

Washed sand 750 750 750 

Freshwater 165 - - 

Seawater - 165 205 
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2.4 Test and Observation Methods for Concrete 

2.4.1 Characterization of fresh concrete 

Fresh concrete properties were measured and compared among the three 

concrete mixtures. The slump test was used as a measure of workability. The density, 

yield, and air content were measured for fresh concrete, along with the initial setting 

time of the corresponding mortar. The following standards were adopted: (a) ASTM 

C143/C143M [132] for the slump flow test; (b) ASTM C138/C138M [133] for the 

density, yield and air content; and (c) ASTM C403/C403M [134] for the setting time 

test. 

2.4.2 Mechanical characterization of hardened concrete 

The compressive strength and the splitting tensile strength for concrete 

cylinders, 150 mm diameter and 300 mm height, were measured using the following 

standards: (a) ASTM C39/C39M [135] for the compressive strength test and (b) ASTM 

C496/C496M [136] for the splitting tensile strength test. Two curing conditions were 

considered, namely: 

(a) Standard/control curing (E1): in which the specimens were demolded after 24 

hours and cured with freshwater for a 28-day period, and then left to be exposed 

to the outdoor/ambient environment (of Doha, Qatar); 

(b) Seawater curing (E2): in which the specimens were kept in a fiberglass curing 

tank after demolding and immersed in seawater until the testing time. This 

condition can provide some insight into the effect of seawater exposure in case 

of marine concrete structures. 

Samples were tested to investigate the effect of four variables, namely: (a) 

mixing water (seawater/freshwater); (b) coarse aggregates (natural/recycled); (c) 

testing age (3,7, 28, 56, and 365 days following mixing); and (d) curing condition 

(E1/E2). Three specimens were considered for each test point. 
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Concrete shrinkage test was performed on the concrete mixtures in accordance 

with ASTM C157/C157M [137] (Figure 2.2). Three concrete prisms (100 × 100 ×

500 𝑚𝑚) were cast for each mixture. After 24 hours, concrete prisms were demolded 

and immersed in water for 30 minutes, then initial length measurements were taken. 

Concrete specimens were then stored in a room with air-drying conditions (i.e., 

temperature of 25 ± 1℃ and humidity less than or equal 50%). The concrete shrinkage 

was measured at Days 4, 7, 14, 21, 28, 56, 112, 224, and 365 following concrete mixing. 

For each measurement, the length difference (∆𝐿) was determined between a reference 

bar and the concrete prism. The concrete shrinkage at time 𝑡, 𝑆𝑡, is calculated as the 

change in ∆𝐿𝑡 with respect to that initially measured (∆𝐿0) divided by the gauge length 

(𝐺 = 25.4 𝑚𝑚) as follows: 

𝑆𝑡 (%) =  
∆𝐿𝑡 − ∆𝐿0

𝐺
𝑥100                                                  (2.1) 

 

 

Figure 2.2. Concrete shrinkage test—measurement of (a) reference bar length and 

(b) specimen’s length. 
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2.4.3 Permeability performance of hardened concrete 

Three tests were performed to partially assess the durability performance of 

hardened concrete, namely:  

(a) rapid chloride permeability (RCP) test: in which the electrical conductance of 

concrete was determined to provide a rapid indication of its resistance to the 

penetration of chloride ions. 

(b) chloride migration (CM) test: in which the resistance of concrete to chloride 

penetration was also measured but via a different and relatively longer 

procedure that includes the determination of the non-steady-state migration 

coefficient. This provides additional information with respect to chloride 

penetration resistance, which can be compared to that provided by the RCP test.     

(c) water absorption (WA) test: in which the ingress of water through the surface 

of hardened concrete was determined. This test is important given that the 

performance of concrete subjected to aggressive environments can be strongly 

related to the penetrability of its pore system [138,139].  

These permeability tests provide indications about the quality of hardened 

concrete and its resistance to chemical attack. It is emphasized that, as Mix B and Mix 

C concretes are naturally not supposed to be used with steel reinforcement, resistance 

to chloride penetration is not important per se; however, it is used as a general indicator 

of the concrete quality. 

Rapid chloride permeability test was performed in accordance with ASTM 

C1202 [140] (Figure 2.3). In this test, the total amount of electrical current passing 

through a concrete cylinder of 100 mm in diameter and 50 mm in depth was measured 

over a period of 6 hours. The potential difference was maintained at 60 V between the 

two ends of the specimen, of which the first was immersed in an NaCl solution and the 
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second in an NaOH solution. The total charge passed in Coulombs can be related to the 

resistance of the specimen to chloride penetration and thus to the concrete 

permeability/quality. 

 

 

Figure 2.3. Rapid chloride permeability test. 

 

Chloride migration test was performed in accordance with NT BUILD 492 

[141] (Figure 2.4). In this test, the external chloride ions were forced to migrate into 

the specimen by applying an external electric potential across the specimen. After a 

certain period (24 hours), the specimen was axially split, and a silver nitrate solution 

was sprayed on both freshly-split sections. The depth of chloride penetration was then 

measured from the visible white precipitation of silver chloride. Using these 

measurements, the chloride migration coefficient was determined for the specimen as 

an indication to its resistance to chemical attack. 
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Figure 2.4. Chloride migration test. 

 

Water absorption test was performed in accordance with BS 1881-Part 122 

[142]. Three cylindrical cores, 75 mm in diameter and 47 mm deep, were extracted 

from the top, middle, and bottom of a 150 mm concrete cube. The samples were then 

placed in a 110 ºC drying oven for three days. The samples were then cooled for one 

day in a dry airtight vessel. After that, the initial weight for each sample was measured 

(W1), and the samples were then immersed in water for 30 minutes. The samples were 

dried with a cloth (i.e., saturated surface-dried) and weighed again (W2). The water 

absorption was calculated as follows: 

𝑊𝐴 (%) =
𝑊2 − 𝑊1

𝑊1
× 100                                                        (2.2) 

2.4.4 Isothermal calorimetry 

Isothermal calorimetry was performed at the University of Miami as per ASTM 

C1679 [143] on freshwater and seawater-mixed pure cement pastes with the same w/cm 

ratio (0.34). As soon as the water was mixed with cement, the paste was poured into a 

glass ampoule, with an approximate amount of 6–7 g, and then gently tamped to ensure 
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proper consolidation. The glass ampoule was then sealed and placed in an isothermal 

calorimeter preconditioned at 23 ± 0.05 °C. The heat flow and the cumulative heat 

release were measured for a 7-day period following mixing and normalized to the mass 

of cementitious material. Further details of isothermal calorimetry testing can be found 

elsewhere [144,145]. 

2.4.5 Microstructure investigation 

The microstructure of hardened concrete was investigated using scanning 

electron microscopy (SEM) to provide a basis upon which certain experimental 

observations can be explained. Scanning electron microscopy was performed in 

accordance with ASTM C1723 [146] with the use of a NOVA NANO SEM 450 

machine located at Qatar University. Three types of analysis techniques were utilized, 

namely [147]: 

(a) Secondary electron (SE) imaging: in which the secondary electrons - that are 

produced due to the collision with the primary electrons of the passing electron 

beam - were detected. Secondary electrons are low-energy and thus cannot travel 

far enough from the specimen surface once emitted without being reabsorbed. 

Consequently, SE imaging primarily provides information about the morphology of 

the specimen surface. Hence, the specimens used for this technique were surface-

fractured. 

(b) Backscattered electron (BSE) imaging:  in which the backscattered electrons were 

detected. Backscattered electrons are primary electrons re-emerged from the 

specimen surface with relatively much higher energy than that of the SE 

counterparts. The proportion of the detected backscattered electrons from the 

primary electrons is strongly dependent on the atomic number of the specimen. 

Therefore, BSE imaging can provide a general indication of the atomic number 
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distribution for the specimen by means of the difference in surface brightness. The 

specimens used for this technique have a flat/polished surface, for which section 

polishing was performed as per ASTM C1723 [146] in the Center of Advanced 

Material at Qatar University. 

(c) Energy-dispersive X-ray microanalysis (EDX): in which the X-rays - that are 

generated due to the interaction between the specimen and the projected electron 

beam - were detected. The analysis of the resulting X-ray spectra can be used as an 

effective tool to identify the chemical composition. 
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CHAPTER 3: FRESH AND HARDENED PROPERTIES OF SEAWATER-MIXED 

CONCRETE 

This chapter reports on the results of an extensive experimental study on the 

effect of using seawater in concrete mixtures. A comparison between freshwater and 

seawater concretes (referred to as Mix A and Mix B, respectively) in terms of their 

fresh, mechanical, and permeability characteristics is detailed, supported by analytical 

testing including scanning electron microscopy and isothermal calorimetry. 

3.1 Fresh Concrete Properties 

The density and yield of the fresh concrete were similar in both mixtures (2555 

kg/m3 and 101.6%, respectively). As expected, densities of Mixes A and B were similar, 

as the density of seawater is only 2 – 3 % greater than freshwater and the rest of the 

concrete ingredients are the same. A slight difference in the air content was observed 

(1.40% and 1.65% for Mix A and Mix B, respectively).  

As shown in Figure 3.1, the use of seawater reduced the initial slump flow to a 

value that was 20% lower than that of the reference mix. The use of seawater also 

impacted the slump retention, where Mix B lost slump faster than Mix A. Figure 3.2 

shows the penetration resistance for the fresh concrete as a function of time. The initial 

setting time - which is the time corresponding to a penetration resistance of 3.5 MPa - 

was obtained as 395 and 285 minutes for Mix A and Mix B, respectively. The use of 

seawater reduced the initial setting time of the fresh concrete by approximately 30%. 

These observations may be explained by the acceleration in the cement hydration 

induced by seawater – the faster hydration reduces slump, slump retention, and setting 

time. These results are consistent with other studies in the literature showing an initial 

accelerating effect of seawater [58–60].  
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In principle, chlorides are known to accelerate cement hydration [148,149]. A 

possible mechanism is the reaction between NaCl existing in seawater and the Ca(OH)2 

formed from cement hydration to form CaCl2 as per Eq. (3.1) [53,150]. Calcium 

chloride is a strong accelerator of cement hydration as discussed elsewhere [151,152]. 

𝐶𝑎(𝑂𝐻)2 + 2𝑁𝑎𝐶𝐿 → 𝐶𝑎𝐶𝐿2 + 2𝑁𝑎+ + 2𝑂𝐻−                               (3.1) 

 

 

Figure 3.1. Slump flow for Mixes A and B as a function of time. 

 



  

34 

 

 

Figure 3.2. Initial setting time measurements for Mix A and Mix B. 

 

3.2 Mechanical Characteristics of Hardened Concrete 

Figure 3.3 and Figure 3.4 present the compressive and tensile strength 

measurements for the tested specimens, respectively. As shown in Figure 3.3, using 

seawater resulted in a slight increase (~5%) in the compressive strength of the concrete 

at early ages (3 and 7 days). At 28 days (and later) following mixing, the compressive 

strength of Mix B was 7-10% lower than that of Mix A. These results are in agreement 

with previous research [16,17,50,153,154]. As suggested by Kaushik and Islam [35], 

the higher early-age strength of seawater concrete can be attributed to lower porosity 

because of the acceleration in the hydration, while the lower long-term strength could 

be due to the leaching of hydration products. Wegian [44], however, suggested that the 

lower long-term strength of seawater concrete could be due to salt crystallization in 

concrete. According to Wegian [44], magnesium sulfates (MgSO4) in seawater react 

with calcium hydroxide (Ca(OH)2) in the pore solution to form soluble magnesium 

hydroxide (Mg(OH)2) and gypsum (CaSO4.2H2O). These phases may cause expansive 
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crystallization pressure which results in a decrease in the concrete strength. While 

various explanations have been proposed, the strength decrease likely depends on 

cement and seawater chemistry, the use of supplementary cementitious materials, and 

the curing regime used. We note here that the strength decrease is not substantial (7-

10%). On the other hand; tensile strength test results of seawater concrete were 10–20% 

lower (depending on the test age) than those of freshwater-mixed counterpart (Figure 

3.4). 

 

 

Figure 3.3. Compressive strength test results for Mix A and Mix B concretes. 

Note: standard deviations (Days 3, 7, 28, 56, 365) in MPa are (0.31, 0.11, 1.05, 2.40, 

0.67) for Mix A-E1; (1.13, 2.62, 0.49, 2.58, 1.70) for Mix B-E1; (0.40, 0.96, 2.44, 

0.80, 0.62) for Mix A-E2; and (1.12, 1.17, 0.17, 1.48, 1.53) for Mix B-E2. 
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Figure 3.4. Tensile strength test results for Mix A and Mix B concretes. 

Note: standard deviations (Days 3, 7, 28, 56, 365) in MPa are (0.19, 0.14, 0.53, 0.10, 

0.88) for Mix A-E1; (0.40, 0.36, 0.12, 0.19, 0.67) for Mix B-E1; (0.27, 0.20, 0.13, 

0.25, 0.20) for Mix A-E2; (0.23, 0.42, 0.34, 0.11, 0.33) for Mix B-E2. 

 

In general, continuous seawater curing resulted in greater compressive strength 

of concrete when compared to that kept under ambient conditions. After one year, the 

compressive strengths of the E2 specimens were on average 10% higher than those of 

the E1 counterparts (Figure 3.3). It is possible that continuous moist curing further 

enhanced the cement hydration in the E2 specimens compared to the E1 specimens 

(under ambient conditions). This suggests that seawater-mixed concretes with the 

current design mixture could show good performance under marine conditions. The 

tensile strengths of the E2 specimens, on the other hand, were observed to reduce after 

56 days, being 12–20% lower than those of the E1 counterparts after one year (Figure 

3.4). Similarly, Wegian [44] reported long-term reductions in the tensile strength of 
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concrete as a result of continuous seawater curing (comparing 3-month and 28-day 

results). 

Figure 3.5 shows the concrete shrinkage (%) as a function of time for each 

concrete mixture. Each test point is the average of three measurements. In general, the 

rate of increase in concrete shrinkage is reduced after a period of 28 days following 

mixing. Mix B showed a slightly higher drying shrinkage (<5%) than that of Mix A 

until Day 56, after which the shrinkage rate between Mix A and Mix B became 

comparable. The observed slight influence of seawater on the drying shrinkage could 

be due to the presence of chloride in the pore solution, or due to the formation of a finer 

pore structure in the seawater-mixed concrete [49,50,57]. Still, comparing the two 

shrinkage diagrams between Mix A and Mix B, it can be reasonably said that the effect 

of seawater mixing on shrinkage was negligible. 
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Figure 3.5. Shrinkage test results for Mix A and Mix B concretes. 

Note: standard deviations are 0.041% for 3-day, 0.082% for 7-day, 0.068% for 14-

day, 0.078% for 21-day, 0.01% for 28-day, 0.098% for 56-day, 0.088% for 112-day, 

0.12% for 224-day, and 0.097% for 1-year measures on average. 

 

3.3 Permeability Performance of Hardened Concrete 

Table 3.1 summarizes the results of rapid chloride permeability, chloride 

migration, and water absorption tests. Each concrete mixture was tested after 28-day 

and 56-day periods following mixing. Each test point represents the average of two 

samples. It can be observed that the measurements of chloride permeability, chloride 

migration, and water absorption at 28-day age are lower than those corresponding to 

the 56-day age. This can be attributed to the general improvement in concrete properties 

due to the ongoing hydration of cement. Also, the measurements obtained for Mixes A 

and B are comparable, indicating an insignificant effect of using seawater on the 

permeability performance of hardened concrete. 
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Table 3.1. Summary of permeability performance test results for Mixes A and B 

Summary of Permeability Performance Test Results for Mixes A and B. 

Specimen 

RCP CM 

WA Charge passed 

(coulombs) 

Permeability 

Class 

Non-steady-state 

migration coefficient 

(x10-12 m2/s) 

Resistance to 

chloride 

ingress 

Mix A – 28d 407 Very low 2.07 Good 1.79 

Mix A – 56d 369 Very low 1.49 Very Good 1.58 

Mix B – 28d 439 Very low 1.81 Very Good 1.69 

Mix B – 56d 349 Very low 1.48 Very Good 1.56 

 

3.4 Isothermal Calorimetry 

Figure 3.6-a presents the heat flow results for the freshwater- and seawater-

mixed pastes. As illustrated in the figure, the seawater accelerated the hydration 

reaction (kinetics) of the cementitious pastes. This is evident from the larger magnitude 

and the earlier occurrence time of the peak of the seawater paste curve as compared to 

those of the freshwater counterpart. The maximum heat flow was measured as 4.0 and 

5.4 mW/g for the freshwater and the seawater pastes, respectively, associated with a 

silicate peak time of 8.25 hours for the former and 6.52 hours for the latter. This 

acceleration is related to the various ions existing in seawater, and explains the earlier 

setting time as well as the lower slump retention in Mix B as compared to those in Mix 

A. On the other hand, no difference was observed in the heat flow (i.e., rate of reaction) 

between seawater and freshwater pastes at later ages. 
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Figure 3.6-b shows the results of the cumulative heat release for both 

cementitious pastes. As shown in the figure, the seawater paste has a higher cumulative 

heat at early ages: the 3-day cumulative heat was measured as 260 J/g for freshwater 

paste and 280 J/g for the seawater counterpart. However, this difference was observed 

to decrease with time and, in seven days after mixing, almost no difference was realized 

in the cumulative heat between seawater and freshwater pastes (measured as 

approximately 300 J/g for both cement pastes). Given that the cumulative heat release 

is a direct indicator of the cement hydration and thus of the attained compressive 

strength, these results validate the higher early strength measured in seawater concrete 

as compared to that of the freshwater-mixed counterpart (Figure 3.3). 
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(a) 

 

(b) 

Figure 3.6. (a) Heat flow and (b) Cumulative heat release of the paste samples. 
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3.5 SEM Results 

3.5.1 Cement paste 

Figure 3.7-a and Figure 3.7-b show the difference between the back-scattered 

electron (BSE) images for 3-day freshwater and seawater pastes of the same w/cm ratio 

(0.34). In general, the microstructure of the seawater paste appeared to be more 

densified and solid than that corresponding to the freshwater counterpart, with the 

following qualitative observations being noticed: (a) greater number of pores (black-

colored [155]) with larger size in the freshwater paste than that in seawater-mixed 

counterpart; (b) the amount of anhydrous cement (white-colored [155]) in the 

freshwater paste was more than that in seawater-mixed counterpart. These observations 

can explain the more advantageous mechanical characteristics of the seawater concrete 

during the first 7 days (Figure 3.3). Furthermore, the semi-quantitative EDX 

microanalysis for the sections corresponding to Figure 3.7 revealed clearly higher 

amounts of sodium and chloride in seawater paste than those of the paste with 

freshwater. The proportion of iron atoms - which generally indicates the anhydrous 

cement - in the freshwater paste was generally higher than that of the seawater-mixed 

counterpart. 
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(a) (b) 

Figure 3.7. BSE images taken for the (a) 3-day freshwater paste and (b) 3-day 

seawater paste. 

 

Such advantages observed for the early-age seawater paste can also be 

evidenced by the secondary electron (SE) imaging. Figure 3.8-a and Figure 3.8-b show 

the morphological behavior of the fractured surface for freshwater and seawater cement 

pastes, respectively. As shown in Figure 3.8-a, the C-S-H needles (as so named in 

[156]) were less densified and highly distributed in case of freshwater paste. Against 

this, the seawater paste showed a more densified structure (Figure 3.8-b). Similar 

observations on the early-age pastes were reported by Katano et al. [60] and Shi et al. 

[49] concluding that, in case of seawater paste, ettringite and gypsum crystals are 

formed so as to fill in the voids and further densify the microstructure. However, the 

microstructure of the freshwater and seawater cement pastes was similar at 28-day of 

mixing and, as intuitively expected, was more densified than that of the early-age paste 

as illustrated from the BSE (Figure 3.9-a and Figure 3.9-b) and SE (Figure 3.9-c and 

Figure 3.9-d) images.  
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(a) (b) 

Figure 3.8. SE images taken for the (a) 3-day freshwater paste and (b) 3-day seawater 

paste. 

 

  

(a) Freshwater paste-BSE image (b) Seawater paste-BSE image 

  

(c) Freshwater paste-SE image (d) Seawater paste-SE image 

Figure 3.9. Typical microstructure for seawater- and freshwater-mixed 28-day 

cement pastes. 
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3.5.2 Mature, hardened concrete 

The BSE images of the 56-day hardened concrete were comparable for Mixes 

A and B (Figure 3.10-a and Figure 3.10-b, respectively). The BSE images generally 

showed low porosity (black color) as compared to the early-age paste (Figure 3.7), with 

the distribution of slag (the irregular-shaped grey particles) and very little anhydrous 

cement (white color) [155]. The overall grey-colored matrix represents the hydrated 

cement [155]. The difference between the two mixtures could only be observed using 

EDX microanalysis, where the Na and Cl atoms are found in greater amounts in Mix B 

(Figure 3.11). Also, the SE images accompanied by EDX microanalysis indicated that 

part of the calcium in Mix B reacted with the sulfate ions of seawater forming salt 

impurities (most likely gypsum [157]) as shown in Figure 3.12); this could be related 

to the high concentration of sulfate ions existing in seawater. Such phases could be 

regarded as a possible explanation for the slight reduction in the mechanical 

performance of the mature hardened concrete of Mix B as compared to that of Mix A.  

 

  

(a) (b) 

Figure 3.10. BSE images taken after 56 days for concrete of (a) Mix A and (b) Mix 

B (refer to Figure 3.11 for the ‘x’ mark).  
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(a) 

 

(b) 

Figure 3.11. Typical EDX microanalysis for the hydrated cement (‘x’ sign location 

in Figure 3.10) in the 56-day concrete of (a) Mix A and (b) Mix B. 
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(a) SE image 

(b) EDX analysis 

Figure 3.12. Observation of salt impurities in the SE image of the 56-day seawater 

concrete. 
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3.6 Remedial Measures 

Seawater had some negative effects on the fresh concrete, and to a less extent 

the hardened concrete. Lab trials were performed to mitigate such potential drawbacks 

in seawater concrete, during which the effects on the fundamental concrete properties 

(i.e., slump flow and compressive strength) were evaluated. Consequently, it was found 

that using retarder and superplasticizer in the concrete mixture improved the fresh 

properties of seawater concrete. Here, about 0.25 L/m³ of a commercial retarder 

(CHRYSOPlast CQ240) in the seawater concrete mix was used. Also, the 

superplasticizer dosage used in seawater concrete mix was 15% higher than that of 

freshwater concrete leading the workability of Mix B to be comparable to that of Mix 

A (Figure 3.13-a). The compressive strength of Mix B was enhanced after 

implementing the countermeasures. Figure 3.13-b depicts the compressive strength test 

results at Days 7, 28, and 56 for Mixes A and B, under standard curing conditions. It is 

possible that the elimination of the accelerating effects in seawater concrete improved 

its strength performance. Likewise, other studies indicated the positive effect of 

superplasticizers on compressive strength of concrete [158,159]. This can be regarded 

as a direct evidence of the applicability of using seawater for mixing concrete, with the 

consideration of proper chemical admixtures to achieve properties comparable to those 

of conventional concrete. 
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(a) 

 

(b) 

Figure 3.13. (a) Slump flow and (b) compressive strength results for seawater 

concrete after remedial actions. 

Note: standard deviations for compressive strength (Days 7, 28, 56) in MPa are (0.54, 

1.16, 1.74) for Mix A and (0.18, 0.035, 2.38) for Mix B. 
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3.7 Summary and Conclusions 

Two concrete mixtures were compared; namely, Mix A denoting the freshwater 

concrete and Mix B denoting the seawater-mixed concrete. Based on the results of this 

study, the following conclusions have been drawn: 

 Using seawater in concrete mixtures had almost no effect on the density, yield, and 

air content measurements of the fresh concrete. 

 A notable reduction in the workability, workability retention, and initial setting time 

measurements was observed when using seawater in concrete. The initial slump 

flow of Mix B was approximately 20% lower than that of Mix A. The initial setting 

time measured for Mix B was 30% lower than that of Mix A. 

 Using seawater in concrete resulted in an initial slight increase in the compressive 

strength of the hardened concrete until Day 7 following mixing. Then, a reduction 

of around 7–10% was observed in the compressive strength results of Mix B as 

compared to those of Mix A after 28 days. Seawater concrete had averagely 10–

20% lower tensile strength than that of freshwater mixed counterpart. The shrinkage 

of Mix B concrete was comparable to that of Mix A.  

 Using seawater in concrete mixtures had no effect on the permeability and/or 

resistance to chloride ingression of hardened concrete. The two mixtures under 

comparison (i.e., Mixes A and B) had almost the same results for the RCP, CM, and 

WA tests. 

 Results from isothermal calorimetry revealed the heat flow (i.e., rate of hydration) 

of the seawater paste to be higher than that of the freshwater-mixed counterpart at 

early ages (up to Day 7). However, at later ages, the heat flow was almost the same 

for both cement pastes. 
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 Results from scanning electron microscopy revealed a more densified 

microstructure of the seawater paste at early ages as compared to that of the 

freshwater counterpart; however, at later ages, the microstructure was similar for 

the two cement pastes. Salt impurities were observed in Mix B mature concrete as 

a result of seawater ions. 

 Using chemical admixtures in seawater concrete was found to be effective to 

achieve concrete properties in Mix B comparable to those of Mix A. Based on lab 

trials, we proposed a specific procedure for this purpose which includes adding 0.25 

L/m³ of a commercial retarder (in this study CHRYSOPlast CQ240) and increasing 

the superplasticizer amount by 15%. 

Finally, it should be emphasized that the above conclusions are solely based on 

the materials and the specimens used in this study. Future research could be directed 

towards investigating different concrete compositions and other aspects of durability 

such as water permeability under pressure. Furthermore, as the current study focuses 

on plain concrete characteristics, the above conclusions are of most use for non-

reinforced concrete structures or for concrete with non-corrosive reinforcement. 
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CHAPTER 4: PERFORMANCE OF SEAWATER-MIXED RECYCLED-

AGGREGATE CONCRETE 

In Chapter 3, we investigated the performance of plain concrete mixed with 

seawater. This chapter details the results of an experimental study on the effects of 

using seawater and RCA together in concrete mixtures. This chapter presents a 

comparison between two concrete mixtures, namely: (a) Mix A, which represents the 

conventional mixture produced with freshwater and natural coarse aggregate (NCA) 

and is regarded as a reference; and (b) Mix C, which is produced with seawater and 

RCA. 

4.1 Fresh Concrete 

4.1.1 Density 

The density of Mix C concrete (2400 kg/m3) was approximately 5% lower than 

that of Mix A (2555 kg/m3). As previously reported in Chapter 3, mixing with seawater 

has no effect on the fresh concrete density: this suggests that the replacement of NCA 

by RCA reduced the concrete density of Mix C. This can be attributed to the presence 

of adhered mortar on the surface of RCAs, which makes RCAs less dense than NCAs 

[15]. This result is in agreement with the literature [62], which shows a 5–8% lower 

concrete density when using 100% RCA. In accordance with Bravo et al. [160], the 

decrease in concrete density is strongly related to the physical properties of RCAs: those 

with lower density and higher water absorption generally yield further loss in the fresh 

density of concrete.  

4.1.2 Air content 

The use of seawater and RCA together in Mix C resulted in an increase in the 

air content (1.85%) when compared to the conventional Mix A (1.40%). Existing 

literature on seawater-mixed concrete [41] and RCA concrete [62] suggest that 

increases in the air content are generally attributed to the use of RCA rather than the 
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use of seawater. In addition to their higher porosity, RCAs also possess a rougher 

surface with greater angularity, as a result of the recycling process, which can lead to 

air become trapped on the aggregate surface [62,161]. As the RCAs were not pre-

saturated in this study, it is possible that the air inside the mortar of the RCA was also 

being measured. Previous research has shown similar impact of using RCA on the 

concrete air content, with the air content increasing with RCA replacement levels [70]. 

4.1.3 Workability and setting 

Figure 4.1 depicts the slump flow as a function of time for both concrete 

mixtures. In Chapter 3, we noted that the use of seawater reduced the initial slump flow 

of fresh concrete by approximately 20% compared to the reference, and resulted in 

somewhat lower slump retention. Here, combining seawater and RCA resulted in a 

more significant reduction in the workability. Mix C not only showed an initial slump 

25% lower than that of Mix A, but also it remained flowable for only half the period 

(i.e., 60 minutes in Mix C versus 120 minutes in Mix A). The initial setting time for 

Mixes A and C was 395 and 210 minutes, respectively (Figure 4.2). While the sole use 

of seawater was observed to reduce the initial setting time by almost 30% in Chapter 3, 

the combined effects of seawater and RCA in Mix C resulted in an approximately 50% 

lower initial setting time compared to Mix A. These observations conform with 

previous studies indicating the accelerating effects induced by seawater [162] and RCA 

[163].  
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Figure 4.1. Slump flow as a function of time for Mix A and Mix C concretes. 

 

 

Figure 4.2. Setting time test results for Mix A and Mix C concretes. 
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As indicated in Chapter 3, the reduction in workability and setting time in 

seawater concrete is attributed to the presence of large amounts of chloride accelerating 

the cement hydration [53]: isothermal calorimetry comparison between freshwater and 

seawater cement pastes revealed that the heat flow (i.e., the rate of hydration) and the 

heat release of the latter are higher than that of the former at early ages [162,164]. Here, 

incorporation of RCA in Mix C resulted in a significantly higher water demand and 

thus a slump loss greater than in Mix A. In general, RCA has harsh/granular texture 

because of the adhered porous mortar on its surface; hence, more water (or effort) are 

required for compaction due to the inter-particle friction [15,165]. While not 

overlooking the simultaneous accelerating effects of seawater, it is apparent that using 

100% RCA in an air-dry condition hampered the concrete workability to a great extent 

despite the additional mixing water. Therefore, it is recommended in this particular case 

to consider pre-soaked recycled aggregates [51,166,167] or greater amounts of 

superplasticizer [74] to mitigate such reductions in workability performance. Koenders 

et al. [168] reported that using RCA in a saturated surface dry condition resulted in 

relatively lower heat flow (i.e., rate of hydration) and a slightly longer induction period, 

possibly due to the unabsorbed mixing water. 

4.2 Hardened Concrete 

4.2.1 Strength 

Figure 4.3 and Figure 4.4 show the compressive and tensile strength results of 

the studied mixtures, respectively. Mix A achieved the 60-MPa design compressive 

strength after 28 days, whereas Mix C did not. With the sole use of seawater (refer to 

Chapter 3), we noted a slight increase (within 5%) in the strength at early ages (up to 7 

days) attributable to the reduced porosity due to the acceleration in cement hydration. 

At later ages (28 days or later), seawater concrete showed strength values 8–10% lower 

than those of the conventional concrete, suggested to be due to leaching of hydrates. 
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Here, Mix C showed significantly lower compressive and tensile strength values 

compared to those of the conventional Mix A at all ages. For instance, the compressive 

strength value of Mix C concrete was approximately 35% lower than that of Mix A 

after one year (Figure 4.3). It is evident that the combined negative effects from mixing 

seawater and RCA worsen the mechanical behavior of Mix C. These results are in 

agreement with previous research on RCA concrete [15,65], which generally shows a 

reduction up to 30% in the concrete compressive strength with the use of 100% RCA. 

In principle, RCA concrete has lower strength than conventional concrete due to the 

increased porosity, the lower strength and density of RCA, the weak interfacial bond 

between RCA and the matrix, and/or the presence of microcracks and fissures within 

the RCA because of crushing and recycling processes [15].  

Similar to the observations reported in Chapter 3, continuous seawater curing 

generally resulted in greater compressive strength of concrete when compared to that 

kept under ambient conditions (Figure 4.3). Also, the tensile strengths of the E2 

specimens were observed to reduce after 56 days following mixing as shown in Figure 

4.4. 
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Figure 4.3. Compression test results for Mix A and Mix C concretes. 

Note: standard deviations (Days 3, 7, 28, 56, 365) in MPa are (0.31, 0.11, 1.05, 2.40, 

0.67) for Mix A-E1; (1.47, 0.72, 1.88, 1.74, 1.71) for Mix C-E1; (0.40, 0.96, 2.44, 

0.80, 0.62) for Mix A-E2; and (1.14, 1.48, 2.70, 2.24, 0.76) for Mix C-E2. 
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Figure 4.4. Splitting tensile test results for Mix A and Mix C concretes. 

Note: standard deviations (Days 3, 7, 28, 56, 365) in MPa are (0.19, 0.14, 0.53, 0.10, 

0.88) for Mix A-E1; (0.31, 0.19, 0.23, 0.83, 0.10) for Mix C-E1; (0.27, 0.20, 0.13, 

0.25, 0.20) for Mix A-E2; (0.15, 0.30, 0.21, 0.14, 0.32) for Mix C-E2. 

 

4.2.2 Microstructure 

Figure 4.5 shows the BSE images of 56-day hardened concrete for the two 

mixtures. In general, the microstructure of the two mixtures appeared to be similar, 

although this was not quantified. In a qualitative manner, both mixtures showed low 

porosity (black color) and little anhydrous cement (white-colored). The majority of the 

space was covered by hydrated cement (grey color) and slag (irregular-shaped grey 

particles) [155]. The SE images; however, showed relatively a less dense microstructure 

of Mix C as compared to Mix A (Figure 4.6). Several microcracks and fissures were 

observed in the microstructure of Mix C: those, as suggested by Xiao et al. [169], are 
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likely to exist within the RCA as a result of crushing the parent concrete and recycling 

processes.  

 

  

(a) (b) 

Figure 4.5. BSE images taken after 56 days for concrete of (a) Mix A and (b) Mix C. 

 

  

(a) (b) 

Figure 4.6. SE images of the 56-day-aged concrete for (a) Mix A and (b) Mix C. 

 

At higher magnifications, crystalline products were observed in concrete mixed 

with seawater (see Figure 3.12 in Chapter 3), suggesting that part of the calcium in the 
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pore solution reacted with the sulfate ions (abundant in seawater) to form such phases 

(mostly gypsum as per the EDX). While not directly confirmed, gypsum formation 

could possibly yield expansive crystallization pressures that result in decreases in 

concrete strength, which explain in part the reduction in the strength of Mix C compared 

to Mix A.  

Apart from the negative effects of salt crystallization and RCA microcracks, the 

dual interfacial transition zone (ITZ), normally existing in RCA concrete [170], likely 

plays a role in the inferior properties of Mix C. This dual ITZ (i.e., coarse aggregate/old 

mortar and RCA/new mortar interfaces as shown in Figure 4.7) represents a weak link 

(hence a load-transfer barrier within the concrete matrix) that limits the strength of Mix 

C. Further discussion about the microstructure of recycled-aggregate concrete can be 

found in [171–173]. 

 

 

Figure 4.7. Pictorial representation of RCA micro cracks and dual ITZ [15]. 
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4.2.3 Permeability 

The results of rapid chloride permeability (RCP) test and water absorption 

(WA) are shown in Table 4.1. Tests were performed on hardened concrete at 28 and 56 

days following mixing. The permeability performance of hardened concrete at Day 56 

was better than that at Day 28, because of the reduction in porosity due to increased 

hydration of cement and reaction of slag. RCP test results for both concrete mixtures 

were within the acceptable limits [107]; however, there was a 100% higher charge 

passed when comparing Mix C with Mix A. Similarly, WA test results revealed a poor 

performance for Mix C compared to Mix A or even the standard limits (2.5% max. 

[107]). While seawater mixing showed almost no effect on the permeability 

performance of hardened concrete (refer to Section 3.3 in Chapter 3), incorporating 

RCA in Mix C reduced its permeability performance. This is attributed to the inferior 

quality of RCA given the existence of microcracks, the high porosity, and the adhered 

old mortar, which make concrete more vulnerable to permeation [63]. 

 

Table 4.1. Summary of permeability performance test results for Mixes A and C. 

Summary of Permeability Performance Test Results for Mixes A and C. 

Specimen 

RCP result 

(as the charge passed in 

coulombs) 

WA (%) 

Mix A – 28d 407 1.79 

Mix A – 56d 369 1.58 

Mix C – 28d 1100 2.87 

Mix C – 56d 844 2.63 

Mix C – 28d (improved) 616 1.18 
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4.2.4 Shrinkage 

Figure 4.8 shows the concrete drying shrinkage (%) as a function of time for 

the two mixtures. In general, the shrinkage curve followed a bilinear trend that consisted 

of two portions. The first portion showed a rapid increase in shrinkage up until Day 28 

(at which concrete gains most of its strength); the second portion, after 28 days, showed 

a lower slope (i.e., a slower shrinkage rate). Similar drying shrinkage of concrete has 

been reported elsewhere [174].  

Mix C showed higher drying shrinkage at all ages compared to Mix C: an 

approximate difference of 10% was reported at Day 365. Seawater appeared to have 

little-to-no effect on the drying shrinkage as reported in Chapter 3, especially in the 

long term. However, incorporating RCA in Mix C increased its drying shrinkage due 

to the higher water absorption, higher porosity, and lower modulus of elasticity, which 

in turn resulted in greater mass loss and shrinkage stresses. Other researchers have also 

reported higher drying shrinkage for recycled-aggregate concrete compared to the 

conventional counterpart [66,175]; however, the effect of RCA here seemed to be 

relatively less significant (only within 10%), possibly due to the use of slag as 

supplementary cementitious material [72]. 
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Figure 4.8. Shrinkage test results for Mix A and Mix C concretes.  

Note: standard deviations are 0.041% for 3-day, 0.082% for 7-day, 0.068% for 14-

day, 0.078% for 21-day, 0.01% for 28-day, 0.098% for 56-day, 0.088% for 112-day, 

0.12% for 224-day, and 0.097% for 1-year measures on average. 

 

From the results reported in Sections 4.1 and 4.2, the strong negative effect of 

the combined use of seawater and RCA on concrete properties is apparent. While this 

is somewhat expected, the quantification of these negative impacts is important, as it 

allows for the design of appropriate strategies that may be used to reduce these impacts. 

Several such strategies could be envisioned, but only some are explored here, and 

further studies on the feasibility and sustainability of such changes are being carried 

out. 
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4.3 Improving Performance of Concrete with Seawater and RCA 

In order to improve the performance of concrete made with RCA and seawater, 

changes in mixture design for Mix C were performed to improve the slump flow, 

compressive strength, water absorption, and chloride permeability. The following 

changes were made in Mix C: (i) a dosage of 0.75 L/m³ of commercial retarder 

(CHRYSOPlast CQ240) was used in the mixture, (ii) the superplasticizer dosage was 

increased by 40% compared to the conventional mix, and (iii) the w/cm was reduced 

from 0.34 to ~0.30 by increasing the cement content (by ~10%). These changes led to 

a significant improvement in the workability (Figure 4.9), strength (Figure 4.10), and 

permeability (Table 4.1) of Mix C concrete. The resulting properties of Mix C concrete 

were comparable to those of the conventional Mix A.  

 

 

Figure 4.9. Slump flow after changes in mixture design for Mix C. 
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Figure 4.10.  Compressive strength results for Mix C concrete after applying mixture 

design improvements, considering standard curing conditions. 

Note: standard deviations (Days 7, 28, 56) in MPa are (0.54, 1.16, 1.74) for Mix A 

and (0.67, 0.88, 0.40) for Mix C. 

 

The improvement in fresh concrete properties of Mix C can be mainly attributed 

to the use of chemical admixtures [74], while the improvement in hardened properties 

likely resulted from reducing the w/cm [14]. These results provide evidence of the 

applicability of using seawater and RCA in concrete mixtures, especially with 

appropriate consideration of chemical admixtures and mixture proportions. Yet, the 

methods implemented here, despite being effective, are not necessarily “green”. Life-

cycle analysis and similar analyses are likely required before optimal improvement 

strategies for the use of concrete combining seawater and RCA can be fully understood. 

Recent research efforts suggest that the carbonation treatment of RCA may represent a 
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more viable solution that not only improves the performance of RCA concrete but also 

represents a more environmentally-friendly approach [69,176,177]. 

4.4 Summary and Conclusions 

This chapter compared two concrete mixtures, namely, conventional concrete 

(Mix A) and seawater-mixed recycled-aggregate concrete (Mix C). Based on the results 

of this study, the following conclusions have been drawn concerning the effects of 

combining seawater and RCA in concrete (compared to conventional concrete): 

 Combining seawater and RCA reduced the concrete density (by approximately 5%) 

and increased the air content of the fresh concrete. This is attributed to the effects 

of RCA rather than seawater. 

 Combining seawater and RCA resulted in a significant reduction in the slump flow 

(25%), initial setting time (50%), and also the workability retention (Mix C 

remained flowable for only half the time as Mix A).  

 Combining seawater and RCA resulted in a significant reduction in the strength 

gain of hardened concrete (approximately 35%) at all ages. Scanning electron 

microscopy results showed some changes in microstructure between Mix C and 

Mix A which could potentially explain the poor strength performance. 

 Long-term seawater curing (up to one year) increased the compressive strength of 

hardened concrete but led to reductions in the tensile strength.  

 Mix C showed slightly an increase in the drying shrinkage (approximately 10%) 

compared to Mix A, mostly due to the effects of having RCA in the mixture. 

 Combining seawater and RCA resulted in a reduced permeability performance, 

evidently from the increase in charge passed and also from the increase in water 

absorption of Mix C concrete over the allowable limits. 
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 Mixture design modifications were proposed to overcome the performance issues 

associated with the use of seawater and RCA, using chemical admixtures and 

adjusting w/cm. 

While the fundamental observations in terms of behavior may be generalized, 

the above conclusions and specifically the numbers listed are valid for the materials and 

the specimens used herein. Future research is required to shed further light onto the 

effect of combining seawater and RCA in concrete mixtures while considering different 

compositions and test methods. Other “greener” approaches, such as RCA carbonation 

treatment, can also be investigated to improve the performance of the proposed concrete 

mixture. 
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CHAPTER 5: FLEXURAL PERFORMANCE OF SEAWATER-MIXED 

RECYCLED AGGREGATE GFRP-REINFORCED CONCRETE BEAMS 

Following the concrete-characterization program carried out in Chapters 2–4, 

Chapter 5 investigates the flexural performance of seawater-mixed recycled-aggregate 

concrete reinforced with GFRP bars. Twelve RC beams with varying concrete mixture 

design and reinforcement material were constructed and tested under four-point 

loading. It is emphasized here that the concrete mixtures incorporating seawater and 

RCA are those “improved” mixtures proposed in Chapter 3 and Chapter 4. 

5.1 Experimental Program 

5.1.1 Concrete mixtures 

Ready-mix concrete, with a 28-day design compressive strength of 60 MPa, was 

used to cast the RC beam specimens. Three concrete mixtures were considered, as 

shown in Table 5.1. Mix A (reference) is the conventional mix with freshwater and 

NCA. In Mix B, seawater replaced freshwater as mixing water. Mix C represents 

concrete mixed with seawater and RCA at 100% replacement level. Blast furnace slag 

was used in all mixtures as supplementary cementitious material (at 65% Portland 

cement replacement level) as it is known to improve the durability of seawater and/or 

RCA concrete [16,51]. Chemical and mechanical characterization details for the mix 

constituents can be found in Chapter 2.  

Table 5.1 presents the mix proportions (per cubic meter) as per BS EN 206 [131] 

for each mixture. Direct volume replacement was used to determine the amount of RCA 

replacing NCA in Mix C (refer to Chapter 2). Additional mixing water was used in Mix 

C to compensate for the higher water absorption of RCA (compared to NCA), as 

explained in Chapter 2. Remedial measures were adopted in Mix B and Mix C to 

address the performance reductions expected due to the use of seawater and RCA, using 

chemical admixtures and/or reducing the water-to-cementitious material (w/cm) ratio 
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as detailed in Chapter 3 (for Mix B) and Chapter 4 (for Mix C). Consequently, Mix B 

and Mix C concretes showed performance comparable to the conventional Mix A for 

both workability and strength (Table 5.1). 



  

70 

 

Table 5.1. Concrete mixtures adopted in Study 3. 

Concrete Mixtures Adopted in Study 3. 

Property Mix A Mix B Mix C 

1. Concrete mixture proportions 

Water 165 kg/m³ (Freshwater) 165 kg/m³ (Seawater) 200 kg/m³ (Seawater) 

Coarse aggregates 

Conventional — 700 kg/m³ (Gabbro 

20 mm) + 490 kg/m³ (Gabbro 10 mm) 

Conventional — 700 kg/m³ (Gabbro 

20 mm) + 490 kg/m³ (Gabbro 10 mm) 

Recycled concrete — 990 kg/m³ (5-

20 mm RCA) 

Fine aggregates 750 kg/m³ (Washed sand) 750 kg/m³ (Washed sand) 750 kg/m³ (Washed sand) 

Cementitious material 450 kg/m³ (35% OPC + 65% Slag) 450 kg/m³ (35% OPC + 65% Slag) 490 kg/m³ (35% OPC + 65% Slag) 

Retarder (CHRYSOPlast CQ240) - 0.25 L/m³ 0.75 L/m³ 

Super plasticizer (Glenium 110 M) 4.05 L/m³ 4.46 L/m³ 5.57 L/m³ 

2. Concrete fresh properties and compressive strength 

Fresh concrete temperature 28.7 °C 30.0 °C 30.0 °C 

Initial slump 250 mm 260 mm 270 mm 

Initial slump flow 610 mm 650 mm 660 mm 

28-day compressive strength 64.1 ± 0.4 𝑀𝑃𝑎 68.5 ± 1.0 𝑀𝑃𝑎 59.7 ± 0.4 𝑀𝑃𝑎 
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5.1.2 RC beam specimens 

Table 5.2 presents the test matrix for the RC beam specimens used in the current 

study. Twelve RC beam specimens were tested under four-point loading to assess their 

flexural performance. Two test variables were considered, namely, the concrete mixture 

(Mix A, B, or C) and the reinforcement material (steel/GFRP). Two identical samples 

were tested for each beam specimen. It is emphasized that the reinforcement ratio was 

kept the same among beam specimens with different concrete mixtures, with an intent 

to investigate the effects of mixing with seawater and RCA.  

As shown in Figure 5.1, the beam specimens were 2.2 m in length (𝐿), 150 mm 

in width (𝑏), and 260 mm in height (ℎ). GFRP/steel bars of 8 mm in diameter were used 

as transverse and top reinforcement, while 12 mm diameter bars were used as main 

flexural reinforcement. A 25 mm clear cover to reinforcement was maintained from all 

sides of the beam specimen, resulting in an effective depth (𝑑) of 221 mm. The beams’ 

dimensions and reinforcement details were typically aimed to produce an under-

reinforced section (i.e., tension-controlled failure).  

Steel bars of grade 500B (BS 4449:2005 [178]) were used as reinforcement in 

steel-RC beam specimens. Based on a tested sample of the steel bars, the yield stress, 

yield strain, and modulus of elasticity were measured as 594 MPa, 0.27%, and 220 GPa, 

respectively [179]. The GFRP bars had a tensile modulus of 45 GPa, a guaranteed 

tensile strength (𝑓𝑓𝑢
∗ ) of 760 MPa, and a maximum strain of 1.7% as provided by the 

manufacturer [180]. 
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Figure 5.1. Schematic drawing for a typical RC beam used in this study. 

 

Table 5.2. Test matrix for the RC beams. 

Test Matrix for the RC Beams. 

Specimen ID Concrete Mixture Reinforcement 

A-S-1 & A-S-2 Mix A Steel 

B-S-1 & B-S-2 Mix B Steel 

C-S-1 & C-S-2 Mix C Steel 

A-F-1 & A-F-2 Mix A GFRP 

B-F-1 & B-F-2 Mix B GFRP 

C-F-1 & C-F-2 Mix C GFRP 

 

5.1.3 Test setup 

Figure 5.2 illustrates the test setup and instrumentation for a typical specimen. 

After two months following casting, each specimen was tested under four-point 

bending with monotonic loading using the Instron 1500 HDX Static Hydraulic 

Universal Testing Machine. Displacement-controlled loading was applied at a rate of 1 

mm/min until failure. The vertical deflection at mid-span was monitored using a Linear 

Variable Displacement Transducer (LVDT). The beam specimen midspan was 

instrumented with a 60-mm strain gauge bonded at the top concrete surface and with 

two 5-mm strain gauges bonded to the rebars in tension. Additionally, a clip-type 

displacement transducer was placed at the side of the beam to measure the crack width 
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as shown in Figure 5.2. Data acquisition of the measurements was performed at a 

frequency of 1 Hz. 

 

 

Figure 5.2. Test setup and instrumentation for RC beams. 
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5.2 Experimental Results 

Table 5.3 presents a summary of the experimental results. In general, using 

seawater and/or RCA in the concrete mix had ultimately little-to-no effect on the 

flexural performance of RC beams, consistent with previous studies on recycled-

aggregate RC beams [76,77]. This is perhaps unsurprising as the workability and 

strength were comparable among the concrete mixtures (Table 5.1). Reinforcement 

material, however, showed a notable effect on the flexural capacity as well as the 

deformational characteristics of the RC beams tested, conforming with previous studies 

on FRP-RC beams [92–101]. The following sub-sections (5.2.1–5.2.7) provide a 

detailed discussion on the experimental results. 

5.2.1 Modes of failure 

Column 13 of Table 5.3 presents the failure modes of the tested beams. The 

concrete mixture had no effect on the flexural failure behavior of RC beams, and the 

failure was a function of the reinforcement material. Two distinct failure modes were 

observed, namely, (a) concrete crushing following reinforcement yielding (denoted 

CC+Y) in steel-RC beams (Figure 5.3) and (b) rebar tensile rupture (denoted TR) in 

GFRP-RC beams (Figure 5.4). The concrete-crushing failure mode in steel-RC beams 

was verified via the concrete compressive strain values at the top soffit, that were 

generally close to or often exceeded the 0.003 maximum strain specified by ACI-318 

[181] (Column 5 of Table 5.3). On the other hand, the tensile-rupture failure mode of 

GFRP-RC beams was confirmed by the rebar tensile strains reaching the ultimate value 

provided by the supplier (𝜀𝑓𝑢
∗ = 1.7%) (Column 4 of Table 5.3), in addition to the 

relatively small concrete compressive strains at failure (Column 5 of Table 5.3). 
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Figure 5.4. GFRP tensile rupture in Specimen B-F-2. 

 

Figure 5.3. Concrete crushing in Specimen B-S-2. 
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Table 5.3. Summary of the test results. 

Summary of the Test Results. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Specimen 

𝑃𝑢  

(kN) 

𝛿𝑢  

(mm) 

𝜀𝑡−𝑚𝑎𝑥   

(%) 

𝜀𝑐−𝑚𝑎𝑥  

(%) 

𝑃𝑐𝑟   

(kN) 

No. of 

cracks 

𝑤𝑢  

(mm) 

Expected 𝑆𝑖 

(kN/mm) 

𝑆𝑐𝑟  

(kN/mm) 

𝜓  

(kN.mm) 

𝜇 Failure Mode 

A-S-1 79.3 50.6 1.49 0.279 19.0 12 3.60 58.5 6.5 3497 12.17 CC+Y 

A-S-2 89.6 56.2 - 0.334 20.4 11 4.40 58.5 7.1 4314 12.20 CC+Y 

B-S-1 83.5 47.8 1.95 0.243 22.2 12 4.87 60.4 6.7 3372 12.35 CC+Y 

B-S-2 81.1 39.0 1.21 0.246 20.6 10 - 60.4 6.2 2680 9.88 CC+Y 

C-S-1 87.3 59.1 0.98 0.245 22.1 10 - 56.7 7.9 4548 14.36 CC+Y 

C-S-2 86.1 44.6 2.30 0.293 16.7 12 3.30 56.7 6.25 3255 8.33 CC+Y 

A-F-1 103.2 36.9 1.79 0.158 14.8 9 1.53 55.4 2.3 2181 2.54 TR 

A-F-2 103.2 37.4 1.94 0.151 17.1 8 - 55.4 2.4 2277 2.89 TR 

B-F-1 99.7 40.5 1.71 0.156 19.1 9 1.55 57.1 2.2 2382 3.65 TR 

B-F-2 116.2 47.5 1.88 0.185 16.7 10 1.93 57.1 2.7 3309 3.19 TR 

C-F-1 92.5 30.5 1.82 0.168 20.4 8 1.88 53.5 2.4 1674 3.19 TR 

C-F-2 102.4 44.3 1.67 0.153 19.2 9 - 53.5 2.7 2986 4.36 TR 
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5.2.2 Load-carrying capacity 

Column 2 of Table 5.3 lists the values of the load-carrying capacity (𝑃𝑢) of all 

beams. The difference in 𝑃𝑢 was insignificant (≤ 5%) among the companion specimens 

with different concrete mixtures. Taking the six steel-RC beams as an example, the 

two-beam average 𝑃𝑢 values were calculated as 84.5, 82.3, and 86.7 kN for Mixes A, 

B, and C, respectively. As expected, the effect of the reinforcement material was 

substantial on the flexural capacity of the tested RC beams. The average load-carrying 

capacity of GFRP- and steel-reinforced concrete beams was 103 and 85 kN, 

respectively — i.e., the GFRP-RC beams outperformed their steel-reinforced 

counterparts by approximately 25%. This is attributed to the fact that the reinforcement 

in GFRP-RC beams had fully attained its tensile strength (𝑓𝑓𝑢
∗ = 760 𝑀𝑃𝑎) at failure, 

as opposed to their steel-reinforced counterparts whose reinforcement only yielded at 

𝑓𝑦 = 594 𝑀𝑃𝑎. 

5.2.3 Deformational characteristics 

Figure 5.5-a and Figure 5.5-b present the load-deflection responses for steel- 

and GFRP-RC beams, respectively. As shown in Figure 5.5-a, the load-deflection 

diagram of steel-RC beams typically consisted of three phases: (a) the uncracked phase, 

(b) the post-cracking/reduced-stiffness phase, and (c) the yield plateau that had a very 

small stiffness. On the other hand, the GFRP-RC beams showed a typical bilinear load-

deflection response that represented two distinct phases, namely, the uncracked phase 

and the reduced-slope/post-cracking phase (Figure 5.5-b). These observed load-

deflection behaviors were the same among beams with different concrete mixtures. 

Figure 5.6-a and Figure 5.6-b show an idealization of the load-deflection response for 

steel- and GFRP-RC beams, respectively. 
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(a) 

 

(b) 

Figure 5.5. Load vs. deflection diagrams for (a) steel and (b) GFRP reinforced 

concrete beams. 
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(a) 

 

(b) 

Figure 5.6. Idealization of load-deflection diagrams for (a) steel and (b) GFRP 

reinforced concrete beams. 
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The uncracked stiffness (𝑆𝑖) widely varied among the tested beams without 

showing a specific pattern among different reinforcements or concrete mixtures, with 

an overall average of 48.0 kN/mm (compared to average expected value 56.9 kN/mm). 

The post-cracking stiffness (𝑆𝑐𝑟) values are listed in Column 10 of Table 5.3. The post-

cracking stiffness of steel-RC beams (6.78 ± 0.64 kN/mm) was higher than that of the 

GFRP-reinforced counterparts (2.45 ± 0.21 kN/mm). This means that the GFRP-RC 

beams exhibited higher amounts of deflection at service-load conditions compared to 

their steel-reinforced counterparts. Indeed, this can be attributed to the higher tensile 

modulus of steel compared to GFRP. No effect of using seawater and/or RCA was 

observed, though, on the stiffness values of the tested beams. 

The deflection values measured at failure (𝛿𝑢) for the tested beams are listed in 

Column 3 of Table 5.3. GFRP-RC beams had generally lower 𝛿𝑢 values as compared 

to those of their steel-reinforced counterparts. On average, the maximum deflection 

measured for GFRP- and steel-reinforced concrete beams was approximately 40 and 50 

mm, respectively. This can be attributed to the more ductile behavior of steel-RC 

beams. As shown in Figure 5.5-a, most of the steel-RC beam’s deflection occurred after 

the steel yielded. On average, the deflection at the yield plateau for steel-RC beams 

(𝛿𝑢 − 𝛿𝑦) was approximately 86% from the total deflection (𝛿𝑢). 

5.2.4 Strain characteristics 

The tensile strain of the flexural reinforcement (𝜀𝑡), as well as the concrete 

compressive strain at the top surface (𝜀𝑐), were continuously (and simultaneously) 

measured at the mid-span of the tested beams, until failure. The maximum tensile 

(𝜀𝑡−𝑚𝑎𝑥) and compressive (𝜀𝑐−𝑚𝑎𝑥) strains measured at failure are listed in Columns 4 

and 5 of Table 5.3, respectively. In general, the effect of the concrete mix on strain 

characteristics was negligible when compared to that of the reinforcement material. As 
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expected, steel-RC beams had 𝜀𝑡−𝑚𝑎𝑥 values higher than the yield strain (𝜀𝑦 = 0.27%) 

at failure (𝜀𝑡−𝑚𝑎𝑥 = 1.586% on average), associated with high compressive strains at 

the top soffit (𝜀𝑐−𝑚𝑎𝑥 = 0.273% on average). The 𝜀𝑡−𝑚𝑎𝑥 values of GFRP-RC beams 

(1.8% on average) have had approached or exceeded the ultimate strain value provided 

by the supplier (𝜀𝑓𝑢
∗ = 1.7%), and were associated with relatively lower 𝜀𝑐−𝑚𝑎𝑥 values 

(0.162% on average) compared to those of steel-RC beams. These results taken together 

verify the tension-controlled failure mode exhibited by steel- and GFRP-RC beams.  

Figure 5.7-a and Figure 5.7-b depict the increase in the rebar tensile strain with 

the applied load for steel- and GFRP-RC beams, respectively. In general, the tensile 

strain of the flexural reinforcement started to significantly develop just after the crack 

initiation (at 𝑃 = 𝑃𝑐𝑟). After that, the tensile strain increased with the applied load, 

taking a shape matching the constitutive law of the reinforcement material — i.e., linear 

elastic to failure for GFRP (Figure 5.7-b) and bi-linear for steel (Figure 5.7-a). 

Likewise, Figure 5.8-a and Figure 5.8-b present the load versus concrete-compressive-

strain diagrams for steel- and GFRP-RC specimens, respectively. In general, the 𝑃 − 𝜀𝑐 

curves of the tested beams had profiles similar to their load-deflection diagrams (i.e., 

tri-linear for steel-RC beams and bi-linear for GFRP-RC beam specimens), with 

approximately the same load values at pivot points. 



  

82 

 

 

(a) 

 

(b) 

Figure 5.7. Load vs. rebar strain diagrams for (a) steel and (b) GFRP reinforced 

concrete beams. 
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(a) 

 

(b) 

Figure 5.8. Load Vs. concrete compressive strain diagrams for (a) steel and (b) 

GFRP reinforced concrete beams. 
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5.2.5 Energy absorption 

Energy absorption (𝜓) is defined as the total area under the load-deflection 

curve up until the failure point (𝛿𝑢, 𝑃𝑢) [182]. Column 11 of Table 5.3 lists the energy 

absorption values determined for the beam specimens. The concrete mixture type 

showed no clear effect on the energy absorption of the tested beams when compared to 

that of the reinforcement material. The 𝜓 values calculated for steel- and GFRP-RC 

beam specimens (expressed as average ± standard deviation) were 3611 ± 698 and 

2468 ± 588 kN.mm, respectively, indicating the superior flexural performance of the 

steel-RC beams due to their ductile behavior as demonstrated in load-deflection 

diagrams (Figure 5.5). 

5.2.6 Ductility index 

In steel-RC beams, the ductility index (𝜇) is classically defined as the ratio of 

the deflection at ultimate (𝛿𝑢) to that at steel yielding (𝛿𝑦). However, in the case of 

FRP-RC beams, such interpretation of ductility (i.e., on the basis of reinforcement 

yielding) may be misleading since FRP bars exhibit a linear stress-strain relationship 

until failure without an intermediate yielding point. Alternatively, Naaman and Jeong 

[183] proposed an energy-based approach to calculate 𝜇 that is applicable to both steel- 

and FRP-reinforced concrete beams, thus providing a common basis for comparison. 

In this energy-based approach, the ductility index can be calculated as follows [183]: 

𝜇 = 0.5 (
𝜓

𝜓𝑒𝑙
+ 1)                                                         (5.1) 

where 𝜓 is the total energy absorption, and 𝜓𝑒𝑙 is the elastic energy calculated as 

illustrated in Figure 5.9. The 𝑃1 in Figure 5.9 refers to the cracking load, 𝑃𝑐𝑟 (Column 

6 of Table 5.3); 𝑃2 refers to the load at which the beam’s stiffness changes prior to 

failure (and is usually close to 𝑃𝑢); 𝑆1 here is taken as the expected value of uncracked 
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stiffness (Column 9 of Table 5.3); and 𝑆2 refers to the post-cracking stiffness (Column 

10 of Table 5.3).  

 

 

Figure 5.9. Schematic description of ductility index for RC beams based on energy 

concept [183]. 

 

Column 12 of Table 5.3 lists the 𝜇 values calculated as per Eq. (5.1) for the 

tested specimens. Using seawater and/or RCA appeared to have almost no significant 

effect on 𝜇 when compared to that of the reinforcement material. Comparing 𝜇 values 

between steel and GFRP-RC beams verifies the ductile behavior of the former as well 

as the brittle behavior of the latter. The ductility indices for steel- and GFRP-RC beams 

(expressed as average ± standard deviation) are 11.55 ± 2.12 and 3.30 ± 0.64, 

respectively. 
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5.2.7 Cracking behavior 

All beams exhibited a steep load-deflection response until the applied load 

reached the cracking load (𝑃𝑐𝑟), at which crack initiated at the constant-moment zone 

of the beam span. Column 6 of Table 5.3 lists the 𝑃𝑐𝑟 values for the tested beams. The 

𝑃𝑐𝑟 values ranged from 14.8 kN (Specimen A-F-1) to 22.2 kN (Specimen B-S-1), with 

an average value of 19.0 kN and a standard deviation of 2.3 kN. No clear or patterned 

effect of the concrete mix was observed on 𝑃𝑐𝑟 (given that 𝑓𝑐′ was comparable among 

concrete mixtures). Also, the cracking pattern was almost the same among specimens 

with different concrete mixtures. 

The reinforcement material exhibited a clear effect on the cracking behavior of 

the tested specimen. Figure 5.10-a and Figure 5.10-b present the cracking pattern for 

steel- and GFRP-RC beams, respectively. Although both steel- and GFRP-RC beams 

showed the same flexural-shear crack pattern that is naturally expected for an RC beam 

subject to 4-point loading (idealized in Figure 5.10-c), the former had generally a 

greater number of cracks at failure (see Figure 5.10-a and Column 7 of Table 5.3). 

Furthermore, the crack-width values at failure (𝑤𝑢) corresponding to steel-RC beams 

were higher than those of GFRP-reinforced counterparts (Column 8 of Table 5.3): the 

average 𝑤𝑢 obtained for steel- and GFRP-RC beams was 4.04 and 1.72 mm, 

respectively. This can be attributed to the fact that the steel yields at the crack location 

allowing the cracks to widen. The effect of the beam ductility on the crack width can 

be demonstrated by comparing the 𝑃 − 𝑤 diagrams between steel- and GFRP-RC beam 

specimens (Figure 5.11). Most of the increase in the crack width (approximately 90%) 

in the steel-RC beams had occurred after the steel yielded (Figure 5.11-a). Against this, 

the crack width (following 𝑃𝑐𝑟) of GFRP-RC beams had a linear profile (Figure 5.11-

b). 
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(a) 

 

(b) 

 

(c) 

Figure 5.10. Crack pattern for Specimens (a) C-S-2 and (b) C-F-2; (c) idealization 

of the crack pattern in the RC beams tested. 
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(a) 

 

(b) 

Figure 5.11. Load vs. crack-width diagrams for samples of (a) steel and (b) GFRP 

reinforced concrete beams. 
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5.3 Theoretical Formulation 

5.3.1 Cracking and ultimate Loads 

Theoretical values of cracking load (𝑃𝑐𝑟−𝑇ℎ) were obtained considering a 

concrete modulus of rupture (𝑓𝑟) determined as per ACI-318 [181] (𝑓𝑟 = 0.62√𝑓𝑐′ ), 

and accounting for the reinforcement stiffnesses in the gross moments of inertia. As 

shown in Column 4 of Table 5.4, the experimental 𝑃𝑐𝑟 values were lower (by 20% on 

average) than those predicted using ACI-318 [181]. 

Theoretical values of load-carrying capacity (𝑃𝑢−𝑇ℎ) were obtained according 

to ACI 318 [181] for steel-RC beams and ACI 440.1 [86] for GFRP-RC beams. Based 

on the equilibrium illustrated in Figure 5.12, the moment capacity (𝑀𝑛) of a typical 

steel-RC beam is obtained using Eq. (5.2): 

𝑀𝑛 = 𝑇 (𝑑 −
𝛽1𝑐

2
)                                                     (5.2) 

where 𝛽1, 𝛼1, and 𝜀𝑐 (see Figure 5.12) were taken as 0.65, 0.85, and 0.003, respectively, 

in compliance with ACI 318 provisions [181]. 

The same formula was used to calculate 𝑃𝑢−𝑇ℎ for GFRP-RC beams considering 

the GFRP tensile parameters (𝐸𝑓 = 45 𝐺𝑃𝑎 and 𝑓𝑓𝑢 = 𝑓𝑓𝑢
∗ = 760 𝑀𝑃𝑎). The concrete 

compressive strain (𝜀𝑐), the depth of compression zone (𝑐), and the rectangular stress 

block parameters (𝛽1 and 𝛼1) were obtained by means of “equilibrium and 

compatibility” as per ACI 440.1 [86] provisions (for tension-controlled failure). 
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Figure 5.12. Equilibrium forces for a typical RC beam under flexure. 

 

Columns 6 and 7 of Table 5.4 list 𝑃𝑢−𝑇ℎ values and 𝑃𝑢 𝑃𝑢−𝑇ℎ⁄  ratios for the 

tested RC beams, respectively. The experimental values of load-carrying capacity were 

generally higher (except for C-F-1) than those predicted by the ACI design guides 

[86,181]. A reasonable agreement was obtained between the experimental and 

theoretical 𝑃𝑢 values, with an approximate average difference of 7.5%.
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Table 5.4. Comparison of experimental and theoretical predictions. 

Comparison of Experimental and Theoretical Predictions. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Specimen 

Cracking load Load-carrying capacity Deflection (Service) Crack width (Service) 

𝑃𝑐𝑟  (kN) 𝑃𝑐𝑟−𝑇ℎ (kN) 𝑃𝑐𝑟 𝑃𝑐𝑟−Th⁄  𝑃𝑢 (kN) 𝑃𝑢−𝑇ℎ (kN) 𝑃𝑢 𝑃𝑢−𝑇ℎ⁄  𝛿𝑠𝑒𝑟 (mm) 𝛿𝑠𝑒𝑟−𝑇ℎ (mm) 𝛿𝑠𝑒𝑟 𝛿𝑠𝑒𝑟−𝑇ℎ⁄  𝑤𝑠𝑒𝑟  (mm) 𝑤𝑠𝑒𝑟−𝑇ℎ (mm) 𝑤𝑠𝑒𝑟 𝑤𝑠𝑒𝑟−𝑇ℎ⁄  

A-S-1 19.0 24.5 0.78 79.3 78.8 1.006 1.72 1.23 1.40 0.217 0.141 1.539 

A-S-2 20.4 24.5 0.83 89.6 78.8 1.137 1.92 1.23 1.56 0.205 0.141 1.454 

B-S-1 22.2 25.3 0.88 83.5 79.0 1.057 1.27 1.13 1.13 0.152 0.140 1.078 

B-S-2 20.6 25.3 0.81 81.1 79.0 1.027 2.10 1.13 1.88 - - - 

C-S-1 22.1 23.7 0.93 87.3 78.6 1.111 1.26 1.33 0.95 - - - 

C-S-2 16.7 23.7 0.70 86.1 78.6 1.095 2.49 1.33 1.87 0.097 0.141 0.688 

A-F-1 14.8 23.2 0.64 103.2 97.4 1.060 4.85 6.06 0.80 0.505 0.905 0.558 

A-F-2 17.1 23.2 0.74 103.2 97.4 1.060 5.52 6.06 0.91 - - - 

B-F-1 19.1 24.0 0.80 99.7 96.4 1.034 5.02 5.69 0.88 0.499 0.904 0.551 

B-F-2 16.7 24.0 0.70 116.2 96.4 1.205 5.87 5.69 1.03 0.571 0.904 0.631 

C-F-1 20.4 22.4 0.91 92.5 98.5 0.939 5.57 6.45 0.86 0.719 0.905 0.794 

C-F-2 19.2 22.4 0.86 102.4 98.5 1.040 5.08 6.45 0.79 - - - 



  

92 

 

5.3.2 Crack width 

The ACI-318 design code [86] accounts for the crack-width control of steel RC 

beams by setting maximum limits for the reinforcement spacing, rather than using a 

specific formula to calculate the crack width. ACI 440.1 [184], however, recommends 

using Eq. (5.3) to calculate the maximum crack width for FRP-RC beams under flexure: 

𝑤 = 2
𝑓𝑓

𝐸𝑓
𝛽𝑘𝑏√𝑑𝑐

2 + (𝑠 2⁄ )2                                            (5.3) 

where w is the maximum crack width (in mm); 𝑓𝑓 is the reinforcement stress (in MPa); 

𝐸𝑓 is the reinforcement modulus of elasticity (in MPa); 𝛽 is the ratio of the distance 

between neutral axis and extreme tension face to the distance between neutral axis and 

centroid of reinforcement; 𝑑𝑐 is the thickness of cover from the extreme tension face to 

the center of closest bar (in mm); 𝑠 is the bar spacing (in mm); and 𝑘𝑏 is a coefficient 

that indicates the degree of bond between FRP bar and concrete. In accordance with 

ACI 440.1 [184], 𝑘𝑏 was conservatively taken here as 1.4 given the lack of experimental 

evidence on the bond between concrete and the GFRP bars used here. 

Columns 11–13 of Table 5.4 compare the predicted and experimental values of 

crack width at service load. The service load (𝑃𝑠𝑒𝑟) for GFRP-RC beams refers to the 

load at which the rebar tensile stress reaches the creep-rupture limit (𝑓𝑓 = 0.3𝑓𝑓𝑢 [185]), 

and was determined to be 30.2 kN. It is emphasized that the small difference in 𝑓𝑐′ 

among the concrete mixtures had ultimately no effect on crack-width calculations. The 

predicted crack width at service load (𝑤𝑠𝑒𝑟−𝑇ℎ) was calculated as 0.90 mm, and was 

generally higher than that experimentally measured (0.60 mm on average). This 

discrepancy is probably attributed to the conservative use of 𝑘𝑏 = 1.4. Considering a 

𝑘𝑏 of 1.2 (as recommended by ISIS [186]) reduced the gap between the predicted and 
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experimental 𝑤𝑠𝑒𝑟 values by 40%. 

Likewise, the crack width was predicted for steel-RC beams using Eq. (5.3) 

considering the tensile parameters of steel bars and taking 𝑘𝑏 as 1.0 (in compliance with 

ACI 440.1 [184]). The stress level at steel bars was taken as 0.4𝑓𝑦 (adopted in the 

allowable stress method [187]) and corresponded to 𝑃𝑠𝑒𝑟 = 30.0 𝑘𝑁. The 𝑤𝑠𝑒𝑟 for steel-

RC was predicted as 0.14 mm (compared to an average experimental value of 0.17 as 

shown in Column 12 of Table 5.4). The discrepancy observed among steel-RC beams 

in the experimental 𝑤𝑠𝑒𝑟 are likely attributed to deviations in their uncracked stiffness. 

5.3.3 Deflection 

The immediate mid-span deflection (𝛿𝑇ℎ) of a simply supported RC beam 

subject to four-point loading is calculated as follows: 

𝛿 =
𝑃𝑎

48𝐸𝑐𝐼𝑒

(3𝐿2 − 4𝑎2)                                                  (5.4) 

where 𝐿 is the total span length; 𝑎 is the shear span; 𝑃 is the total applied load; 𝐸𝑐 is the 

concrete modulus of elasticity determined as 𝐸𝑐 = 4700 √𝑓𝑐′ [86]; and 𝐼𝑒 is the 

effective moment of inertia. Prior to concrete cracking, 𝐼𝑒 is taken as the gross moment 

of inertia (𝐼𝑔) that accounts also for reinforcement stiffness. The moment of inertia 

corresponding to a fully-cracked section (𝐼𝑐𝑟) is calculated using an elastic analysis for 

the beam section in which the concrete in tension is neglected [181]. During the service-

load stage, 𝐼𝑒 is calculated to represent the transition between 𝐼𝑔 and 𝐼𝑐𝑟. The ACI 318 

[181] adopts Branson’s model [188] to calculate 𝐼𝑒 as follows: 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

𝐼𝑔 + (1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

) 𝐼𝑐𝑟                                         (5.5) 
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where 𝑀𝑎 is the applied moment and 𝑀𝑐𝑟 is the cracking moment. 

An alternative formula was suggested by Bischoff [189] to calculate 𝐼𝑒 as 

follows: 

𝐼𝑒 =
𝐼𝑐𝑟

1 − (1 −
𝐼𝑐𝑟

𝐼𝑔
) (

𝑀𝑐𝑟

𝑀𝑎
)

2                                                   (5.6) 

Figure 5.13-a presents the predicted load-deflection response for steel-

reinforced specimens (up until 𝑃𝑠𝑒𝑟 = 30.0 𝑘𝑁), obtained using both Branson and 

Bischoff formulas. The latter appears to have a better match with the experimental 𝑃 −

𝛿 diagrams, for which an acceptable agreement was obtained, particularly in Specimens 

C-S-1 and B-S-1 (Column 10 of Table 5.4). A high discrepancy was observed, though, 

between the predicted and experimental deflections for the other steel-RC beams, likely 

attributed to deviations in the uncracked stiffness. 

For FRP-RC beams, ACI-440.1R-06 [184] had recommended the use of an 

adjusted form of Branson’s formula to calculate 𝐼𝑒 as follows:  

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

𝛽𝑑𝐼𝑔 + (1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

) ∗ 𝐼𝑐𝑟                               (5.7) 

where 𝛽𝑑 = 0.2𝜌𝑓 𝜌𝑓𝑏⁄  is a reduction coefficient related to the reduced tension 

stiffening of FRP-RC beams. Lately, the ACI-440.1R-15 [86] design guide replaced 

Eq. (5.7) with an updated form of Bischoff’s formula to calculate 𝐼𝑒 as follows: 

𝐼𝑒 =
𝐼𝑐𝑟

1 − 𝛾(1 −
𝐼𝑐𝑟

𝐼𝑔
) (

𝑀𝑐𝑟

𝑀𝑎
)

2                                                    (5.8) 

where 𝛾 (function of 𝑎/𝐿 and 𝑀𝑐𝑟/𝑀𝑎 [86]) is a factor that accounts for the variation 
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in stiffness along the beam span, calculated here as 𝛾 = 1.85 − 0.85
𝑀𝑐𝑟

𝑀𝑎
. 

The design manual ISIS-2007 [186] recommends using Eq. (5.9) to calculate 𝐼𝑒 

as follows: 

𝐼𝑒 =
𝐼𝑐𝑟𝐼𝑔

𝐼𝑐𝑟 + (1 − 0.5 (
𝑀𝑐𝑟

𝑀𝑎
)

2

) (𝐼𝑔 − 𝐼𝑐𝑟)

                                       (5.9) 

The CSA S806-12 [87] design code recommends using Eq. (5.10) to calculate 

the deflection of a simply supported beam subject to 4-point loading, as follows: 

𝛿 =
𝑃𝐿3

48𝐸𝑐𝐼𝑐𝑟
(3

𝑎

𝐿
− 4 (

𝑎

𝐿
)

3

− 8 (1 −
𝐼𝑐𝑟

𝐼𝑔
) (

𝐿𝑔

𝐿
)

3

)                        (5.10) 

where 𝐿𝑔 = 𝑎𝑀𝑐𝑟/𝑀𝑎 is the length of the uncracked section. 

Figure 5.13-b compares the predicted load-deflection responses among the 

aforementioned design codes for GFRP-reinforced specimens (up until 𝑃𝑠𝑒𝑟 =

30.2 𝑘𝑁). Compared to the experimental 𝑃 − 𝛿 diagrams, the ACI-440.1R-06 formula 

[184] appeared to be the most representative to the tested specimens, while the CSA 

S806-12 [87] formula was the most conservative. 

Columns 8–10 of Table 5.4 compare the predicted service deflections (𝛿𝑠𝑒𝑟−𝑇ℎ) 

with those experimentally measured at 𝑃𝑠𝑒𝑟. The stipulated 𝛿𝑠𝑒𝑟−𝑇ℎ values are those 

corresponding to Eq. (5.6) (Bischoff formula [189]) for steel-RC beams and to Eq. (5.7) 

(ACI-440.1R-06 [184]) for GFRP-RC beams. A reasonable agreement was obtained 

between the experimental and predicted 𝛿𝑠𝑒𝑟 values for GFRP-RC beams, with an 

approximate average difference of 13%. 
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(a) 

 

(b) 

Figure 5.13. Predicted vs. experimental load-deflection diagrams (taking fc’=60 

MPa) for (a) steel-RC and (b) GFRP-RC beams. 
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5.4 Summary and Conclusion 

This effort investigated the flexural performance of seawater-mixed recycled-

aggregate GFRP-reinforced concrete beams. Twelve medium-scale RC beams were 

tested under four-point loading considering three test variables, namely, mixing water 

(seawater/freshwater), aggregates type (virgin/recycled), and reinforcement material 

(black steel/GFRP). Based on the study results, the following conclusions have been 

drawn:  

 If reductions in concrete performance are averted (using admixtures and/or changes 

in concrete mix design), using seawater and recycled coarse aggregate in concrete 

mixtures has little-to-no effect on the short-term flexural capacity of RC beams. The 

reinforcement material controls the flexural performance of RC beams. 

 Steel-RC beams generally failed due to concrete crushing that follows the steel 

yielding. The GFRP-RC beams showed a more brittle failure due to rebar tensile 

rupture. On average, GFRP-RC beams showed an approximately 25% increase in 

the load-carrying capacity as compared to their steel-reinforced counterparts, but 

they also showed notable reductions in deformational and cracking performance.  

 Theoretical values of flexural capacity, deflection, and crack width were predicted 

for the tested specimens and compared with the experimental results. A reasonable 

agreement was obtained between the predicted and experimental values of flexural 

capacity (7.5% difference on average). The predicted deflections of GFRP-RC 

beams somewhat conformed with the experimental values (averagely 13% 

difference). Some deviations were observed, though, in crack-width and deflection 

predictions for certain specimens, mostly attributed to discrepancies in the 

uncracked stiffness.  
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CHAPTER 6: LIFE CYCLE COST ANALYSIS OF STRUCTURAL CONCRETE 

USING SEAWATER, RECYCLED CONCRETE AGGREGATES, AND GFRP 

REINFORCEMENT 

Chapters 2–5 have detailed experimental studies on the performance of plain 

concrete mixed with seawater and RCA as well as the flexural performance of this 

concrete reinforced with GFRP. Chapter 6 aims at verifying the cost effectiveness of 

the proposed combination (i.e., seawater + RCA + GFRP reinforcement) as compared 

to that of the traditional RC structure (i.e., freshwater + natural aggregates + black steel 

reinforcement), using life cycle cost analysis. 

6.1 Materials and Methods 

6.1.1 Design alternatives 

Two design alternatives for reinforced concrete in high-rise buildings are 

considered, with reference to the concrete mixture and reinforcement material (Table 

6.1). RC1 represents the conventional design - with freshwater, natural aggregates 

(NA), and black steel reinforcement – and is considered as a reference. As opposed to 

the well-known RC1, the proposed design alternative RC2 combines the seawater-

mixed concrete with RCA and GFRP reinforcement. 

 

Table 6.1. Design alternatives considered in Study 4. 

Design Alternatives Considered in Study 4. 

Design Alternative Mixing water Aggregates used Reinforcement material 

RC1 Freshwater Natural aggregate Black steel 

RC2 Seawater Recycled concrete aggregate GFRP 
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6.1.2 Reinforced concrete design 

The relative amounts of concrete and reinforcement are critical in achieving a 

safe and economic concrete structure. For the conventional reinforced concrete (RC1), 

the structural design data were obtained from Foraboschi et al. [190] in their work 

concerning the embodied energy of high-rise buildings. These authors performed 

structural design on several reinforced concrete tall buildings of different height and 

gross floor area [190]. The compressive strength of concrete was taken as 40 MPa 

[190], assumed valid for high-rise reinforced concrete buildings. A uniformly-

distributed dead load of 2.5 kN/m², in addition to the self-weight, was assumed for 

loading over the entire floor area to represent internal non-bearing elements. The 

external facade was reproduced by a uniform dead load of 4 kN/m applied along the 

perimeter beams. The vertical live load was assumed as 3 kN/m², uniformly-distributed 

over the entire floor area. The wind load was applied as per the Eurocode [191]. Seismic 

actions were not considered since they are generally deemed to have negligible 

structural effects on tall buildings compared to those induced by the wind load [192–

194]. The structural analyses were performed using the finite element method. The 

buildings were designed to consistently meet the same serviceability margins, by 

imposing the maximum horizontal and vertical displacements for each building to equal 

1/400 of the building height and 1/400 of the longest floor span, respectively [190].  

The amounts of concrete and reinforcement are summed up for all structural 

elements (i.e., slabs, beams, columns, etc.) and divided by the gross floor area [190] 

(Table 6.2). The reinforced concrete design is thus expressed in terms of the overall 

concrete volume and reinforcement weight needed per unit floor area. The average 

concrete volume, reinforcement weight, and reinforcement ratio, ratio (𝜌), the latter 

being the ratio between the volume of reinforcement to the volume of concrete, are 
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taken as 0.32 𝑚3/𝑚2, 50.45 kg/m², and 2%, respectively for the same unit floor area. 

These are considered as input quantities for the RC1 LCCA calculations.  

The GFRP reinforcement, on the other hand, exhibits a brittle failure at the 

ultimate stress [21,26] but has higher tensile strength and lower elastic modulus [25]. 

Consequently, the balanced reinforcement ratio (𝜌𝑏) of a typical GFRP-reinforced 

concrete flexural member is approximately one-fifth that of steel-reinforced counterpart 

[184]. This lower balanced ratio leads to a lower reinforcement volume needed for the 

structural design of GFRP-reinforced concrete. However, to ensure meeting the 

minimum reinforcement requirements as per ACI 440.1 [184], the reinforcement ratio 

of GFRP-reinforced concrete (i.e. RC2) is assumed to be the same as that of steel-

reinforced counterpart (𝜌 = 2%). This assumption yields an over-reinforced section (i.e. 

𝜌 > 𝜌𝑏), that is recommended due to the corresponding less severe failure mode [184]. 

The relatively low density of GFRP (1/4–1/5 that of steel [184]), provides a notably 

lower reinforcement weight per unit area for RC2 compared with the steel-reinforced 

counterpart. 
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Table 6.2. Summary of the design of conventional steel-reinforced concrete for tall buildings with different heights and gross floor areas  [190]. 

Summary of the Design of Conventional Steel-Reinforced Concrete for Tall Buildings 

with Different Heights and Gross Floor Areas  [190]. 

No. of 

stories 

Gross floor 

area (m²) 

Total 

concrete 

volume (𝒎𝟑) 

Total steel 

weight (kg) 

Volume of concrete 

per unit area  

(𝒎𝟑/𝒎𝟐) 

Steel weight 

per unit area 

(kg/m²) 

20 8,000 2,185 341,547 0.27 42.69 

30 17,280 4,883 764,123 0.28 44.22 

40 36,000 11,222 1,764,518 0.31 49.01 

50 57,800 20,772 3,275,740 0.36 56.67 

60 105,840 36,371 5,772,557 0.34 54.54 

70 189,280 66,345 10,515,272 0.35 55.55 

 

6.1.3 Concrete mix design 

As per BS EN 206 [131], the mix design quantities (per m3) for concrete with a 

40-MPa compressive strength are 530 kg of sand, 1150 kg of gravel, 463 kg of ordinary 

Portland cement, and 186 kg of water, maintaining a water-to-cement ratio of 0.4. These 

quantities are assumed for the traditional concrete mix of RC1. For the RC2 concrete 

mixture, the freshwater and natural coarse aggregates are considered to be fully 

replaced by seawater and RCA, respectively. However, this reduces the performance of 

the resulting concrete in RC2 compared to that in RC1 [15,41]. Since the LCCA 

comparison should be carried out on the same basis regarding the strength performance, 

remedial measures are considered to eliminate such shortcomings in the RC2 concrete. 

Due to the high porosity and water absorption of RCA, the workability of RC2 fresh 

concrete is expected to be lower than that of the traditional mix [15]. Therefore, the 

addition of the appropriate amount of superplasticizer is considered for RC2 to achieve 

the desired workability. Whilst the comparatively low density of RCA may reduce the 
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compressive strength of RC2 concrete [195], experimental results show that a slightly 

increased cement concentration (5–10%) is sufficient to obtain a compressive strength 

equivalent to that of conventional concrete [14]. Likewise, using seawater in the 

concrete mix may also lead to a slight change in concrete characteristics [16,35], which 

can be resolved with the same strategies applied to address the issues in using RCA 

[41]. In effect, a strength performance comparable to that in conventional concrete was 

reported by Khatibmasjedi et al. [17] for the concrete mixed with seawater and RCA. 

6.1.4 Life cycle cost model 

The LCC model components (Figure 6.1) comprise the costs associated with the 

materials, construction, maintenance, and end-of-life. The LCC is calculated for each 

design alternative (Table 6.1) to identify the most economical option based on: 

a) the financial perspective of the building’s owner, and 

b) the structural component of the building, rather than other aspects such as 

operational, electrical, mechanical, etc., which are independent of the construction 

material. This is valid under the reasonable assumption that the two design 

alternatives of structural concrete have the same thermal performance. 

All costs are allocated for a functional unit of one square meter of floor area, 

considering an average concrete volume of 0.32 m³ with 2% reinforcement ratio. Since 

ISO 15686–5 [196] requires that the study period must be long enough to include all 

repair or replacement actions of the design alternatives, a life cycle period of 100 years 

is assumed. This is longer than the commonly selected study period of 40–75 years for 

conventional reinforced concrete (RC1) buildings [197–199] due to the long-term 

durability provided by the corrosion-resistant reinforcement of RC2. At the end of the 

100-year study period, it is assumed that the building will be demolished regardless of 

any prospective residual service life. 



  

103 

 

  

 

Figure 6.1. Components of the life cycle cost model of Study 4. 

 

Material cost 

Material costs are incurred from the production and supply of the basic 

materials, including concrete, reinforcement bars, water, aggregates, admixtures, etc. 

obtained primarily from the RSMeans online dataset [200] along with previous 

publications (as shown in Table 6.3). Data were inflation-adjusted to 2017 prices based 

on US annual general inflation rates [201]. 
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Table 6.3. Unit costs considered in the LCCA of Study 4 (as of 2017 prices). 

Unit Costs Considered in the LCCA of Study 4 (as of 2017 Prices). 

Cost Item Unit cost Source Notes 

Ready mix 

concrete 

177 $/m³  RSMeans [200] 28-day compressive strength of 40 MPa 

Black steel bars 0.66 $/kg RSMeans [200] 

ASTM A615 Grade 60, western mill, 

mill base price, density of 7860 kg/m³ 

GFRP bars 9.4 $/kg RSMeans [200] Average density of 1950 kg/m³ 

Superplasticizer 

4.2 $/m³ of 

ready mix 

concrete 

RSMeans [200] - 

Natural coarse 

aggregate 

14.73 $/ton 

Davis and 

McGinnis [202] 

Averaged for the US, inflation rates 

applied as per [201] to estimate the 

current price. 

Recycled concrete 

aggregate 

10.88 $/ton 

Davis and 

McGinnis [202] 

Averaged for the US, inflation rates 

applied as per [201] to estimate the 

current price. 

Desalination / 

Freshwater 

1.26 $/m³ of 

desalted water 

Ghaffour et al. [4]  

Assuming reverse osmosis desalination 

technique, inflation rates applied as per 

[201] to estimate the current price.  

Demolition – 

concrete building 

122 $/m³ of 

concrete 

RSMeans [200] 

Including 20-mile haul to dump, 

excluding dumping fees 

Landfill rate 0.089 $/kg RSMeans [200] 

Dumping charge for construction 

materials; typical urban city 

black steel bars – 

scrap value 

0.11 $/kg 

Capital Scrap Metal 

LLC [203] 

- 

 

The cost of the concrete mix for RC2 was estimated using the market price 

differences between the traditional and alternative materials with adding the cost of 
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admixtures required to achieve the same performance of the equivalent traditional 

concrete. Seawater and freshwater were assumed to have the same transport cost from 

their source to the concrete plant, and thus their price differs by the desalination cost 

for freshwater production. This assumption is considered valid if the use of seawater in 

concrete becomes as well-established as that of freshwater currently, such that the 

essential infrastructure (i.e., pipelines, tanks, etc.) are correspondingly provided for 

seawater. Against this, the transport cost of NA and RCA is not actually the same 

[14,202,204]. Paranhos et al. [204] suggested the cost of truck transport to be linearly 

proportional to the distance traveled, and thus can be used to estimate the differences 

between RCA and NA transport costs in relation to the comparative distance of the 

recycling plants and NA quarries. The same authors estimated a transport cost 

difference of approximately 10 US$/ton based on a 100-km comparative travel distance 

[204]. To account for this factor, a range of possible RCA-to-NA price ratios (50% to 

200% [202]) were considered as part of sensitivity analysis. Despite having relatively 

very high cost per unit weight, the low density of GFRP reinforcement (~20% that of 

steel) makes a reasonable difference in the cost per unit floor area between RC1 and 

RC2. 

Construction cost 

Construction cost comprises labor and equipment required for material 

transport, concrete formwork, concrete casting, reinforcement placement, and 

construction waste management. Common practice is to define construction cost 

estimates as a percentage of the material cost [205,206]. The nominal construction cost, 

denoted 𝐶, for RC1 is estimated as 150% of the RC1 material cost, denoted 𝑀. For the 

GFRP-reinforced concrete (RC2), the construction cost is expected to be less due to the 

low weight and prefabricated profile of GFRP reinforcement [22,207]. In accordance 
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with [208], the use of GFRP reinforcement was assumed to reduce construction costs 

by 20% compared to that of classical black-steel reinforced concrete, i.e. 80% of 𝐶. 

Maintenance cost 

Maintenance cost refers to all expenses incurred during the service life of the 

building to maintain structural performance. This includes periodic inspections, minor 

and major repairs, rehabilitation, and replacement or reconstruction as needed. Only 

repair actions from corrosion are considered in this study, with inspection and minor 

concrete repairs assumed to be the same for all design alternatives and can be 

disregarded in the LCCA calculations [196,209,210]. 

The cost of repairing reinforced concrete structures can be considered as a 

percentage of the material and construction costs [205,206]. This includes the 

production, transportation, and installation of the new materials as well as the disposal 

of those replaced. In the current study, the cost of the repair was estimated assuming 

10% of the total area to be affected at the time of repair [206], with 50% of the material 

requiring replacement [206], for which the manpower and equipment costs were 

assumed to be 200% of 𝐶 [205]. 

Life-365 software [211] was used to predict the repair scheduling for RC1. This 

software is used to estimate the service life of concrete structures whose reinforcing 

steel is subject to corrosion due to chloride exposure. The service life is calculated as 

the sum of the corrosion initiation and propagation periods, after which the structure 

undergoes sufficient damage to demand repair [211]. The structure was considered to 

lie within 800 m of the ocean, a default exposure category defined in Life-365 database 

[211] corresponding to a maximum surface chloride concentration of 0.6% reached 

within a 15-year period. The clear cover to reinforcement was taken as 40 mm, with no 

corrosion inhibitors or protection membranes in place. 
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The Life-365 results indicated required structure repair every 10 years for RC1. 

It was assumed that the structure repair to be conducted with the same material quality 

and specifications as per the initial construction, i.e. with no change in the original 

durability performance. Since damage would then re-occur, with multiple repairs 

required during the service life of the structure, a total service life of 50 years was 

assumed for RC1 due to irreparable corrosion damage, demanding complete 

reconstruction.  

Since the GFRP reinforcement is completely non-corrosive, RC2 may be 

assumed to be maintenance-free on the basis of the glass fibers being permanently 

protected from the direct contact with concrete by the resin of GFRP. Whilst the long-

term durability of GFRP-reinforced concrete can only be postulated, it has been 

suggested [212] that GFRP bars in concrete retain ~70% of their ultimate tensile 

strength after 100 years of service life at a temperature of 50°C. This retained strength 

is still sufficient to fulfill the minimum design tensile strength required by ACI 440.1 

[184] for GFRP bars in concrete. 

End-of-life cost 

The end-of-life cost includes the demolition of the structure and disposal of the 

rubble to landfill (Table 6.3). The value earned from the reusable/recyclable 

reinforcement scrap is also considered. Steel is considered completely recyclable metal, 

with the scrap recovered and converted to the same or even higher grade following 

processing [213–215]. At the end of the service life of RC1 structure, 90% of the 

original steel weight was assumed to be resold, the remaining 10% of the material being 

landfilled. Against this, the complex, heterogeneous, and anisotropic characteristics of 

GFRP make it difficult to be reused or recycled [216], with research still underway to 

address this challenge [217–219]. The RC2 reinforcement was thus considered to be 
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disposed of to landfill at the end of the study period. 

Determination of life cycle cost (LCC) 

LCC is the sum of all costs incurred over the study period, discounted to present 

value, according to [196]: 

𝐿𝐶𝐶 =  ∑
𝐶𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=0

                                                     (6.1) 

where t is the time (in years) at which the cost is incurred, T the study period, 𝐶𝑡 the 

cost incurred at year t, and r the discount rate, with emphasizing that the term ‘discount 

rate’ throughout Chapter 6 refers to the ‘real’ discount rate. At a certain life stage (𝑡), 

the total cost incurred (𝐶𝑡) can be expressed as the sum of LCC model components 

(Figure 6.1): 

𝐶𝑡 =  𝐶𝑀(𝑡) + 𝐶𝐶(𝑡) + 𝐶𝑅(𝑡) + 𝐶𝐸(𝑡)                                         (6.2) 

where 𝐶𝑀 is the material cost, 𝐶𝑐 the construction cost, 𝐶𝑅 the repair and/or 

reconstruction cost, and 𝐶𝐸 the end-of-life cost; each component is included only where 

applicable at the life stage (𝑡). 

The discount rate reflects the time value of money; it is used to evaluate the 

future costs in terms of present value, accounting for the nominal rates of interest and 

inflation [220]. The inflation rate represents the average annual increase in the 

consumer price index (i.e. the decrease in the purchasing power of money), while the 

‘nominal’ interest rate refers to the interest rate before considering inflation [220]. The 

discount rate varies across time, place, and investment period [221]. In this study, r was 

considered as 0.7% as suggested by White House Office of Management and Budget 

[222] in the US for long-term investments (as of Year 2017) by the federal government 

(30-year or longer). Since private sector investments typically consider higher values 

of r [223], and given that the LCC is highly sensitive to this parameter [210,220], a 
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range of its common values (0%–10%) were considered as part of the sensitivity 

analysis. This range is consistent with previous LCCA studies on buildings [209,224]. 

6.2 Results and Discussion 

6.2.1 Influence of concrete mixture cost 

The change in concrete mix from the traditional (RC1) to the proposed (RC2) 

materials appears to have negligible impact on the ultimate unit cost of concrete. The 

cost difference between the design alternatives is influenced primarily by the 

reinforcement selected. Though less expensive, the use of alternative materials (i.e. 

seawater and RCA vs. freshwater and natural virgin aggregates) leads to some reduction 

in concrete performance compared to that of the traditional mix. Remedial measures to 

address this shortfall eliminate or even exceed the direct savings, resulting in 

comparable unit prices for both concrete mixtures. However, these findings are solely 

from a cost perspective on the part of the building’s owner: a life cycle assessment 

and/or a consideration of the general public perspective reflect additional 

environmental benefits of the alternative approach [5,14,105,106]. 

6.2.2 LCCA results 

Figure 6.2 shows the cash flow diagrams throughout the study period for the 

design alternatives. The costs incurred at each life stage (𝐶𝑡) are expressed in US$ per 

square meter of the building floor area, and are calculated based on Eq. (6.2).  

The incurred LCCA costs for the base conditions of 𝑟 = 0.7% indicate the LCC 

of RC2 to be 50% lower than that of RC1 (Table 6.4). Despite the relatively low initial 

cost associated with the conventional design (RC1), the design alternative RC2 

outperforms RC1 in the long term. The use of corrosion-resistant reinforcement in RC2 

results in longer service lives as well as reduced repair costs over the entire life cycle. 

This also reflects on the insignificant contribution of the recovered reinforcement 

material value to the overall LCC. Similar observations have been reported in previous 
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research concerning the economic viability of using FRP reinforcement in structural 

concrete. Eamon et al. [24] reported that the LCC obtained for different design cases of 

a conventional steel-reinforced concrete bridge was 50–200% more than that of the 

FRP-reinforced material based on a discount rate of 3%. 

 

 

Figure 6.2. Cash flow diagrams for the design alternatives (future costs are not 

discounted). 

 

Table 6.4. Summary of LCCA results. 

Summary of LCCA Results. 

Design 

alternative 

Present Costs ($/m²) LCC 

($/m²) Material Construction Repair Reconstruction End-of-life 

RC1 90 135 183.9 230.7 50.8 690.4 

RC2 174 108 - - 54.3 336.3 
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Figure 6.3 presents the cumulative LCC for each year until the end of the study 

period. The design alternative RC2 attains the same cumulative LCC as the 

conventional design alternative RC1 at t = 20–30 years; this representing the payback 

period for the initial investment in GFRP bars. Previous research contributions have 

generally corroborated these results. Eamon et al. [24] reported a 95% probability that 

using FRP to reinforce concrete bridges results in an overall cost reduction compared 

with traditional steel after a service life of 23–77 years. 

 

 

Figure 6.3. Life cycle cost results (considering the baseline scenario where r= 0.7%). 

 

6.2.3 Sensitivity analysis 

A sensitivity analysis was conducted for the discount rate (𝑟), assumed to be 

0.7% under base conditions, this being the most influential parameter. Since there is an 

exponential relationship between the time elapsed and the LCC as shown in Eq. (6.1), 

the discounting of future costs is highly influenced by 𝑟. For a discount rate of 5.9% or 
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more, the LCC of the design alternative RC2 becomes higher than that of RC1 (Figure 

6.4) because the present values of the repair and reconstruction costs of the 

conventional design RC1 are decreased such that the initial investment in GFRP bars 

of RC2 is not recovered. Accordingly, the design alternative RC2 is no longer 

economically viable from an LCC perspective. 

 

 

Figure 6.4. Sensitivity of LCC results to the discount rate. 

 

Despite it being influential on the concrete unit cost (Figure 6.5), the effect of 

the aggregates transport cost, represented by varying RCA-to-NA price ratio, was found 

to have negligible impact on the ultimate LCCA results (Figure 6.6). This confirms the 

negligible effect of concrete direct cost on the LCCA outcomes when compared to that 

obtained from altering reinforcement material. 
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Figure 6.5. Variation of the concrete cost with different RCA-to-NA price ratios. 

 

 

Figure 6.6. Variation of LCCA results with respect to different RCA-to-NA price 

ratios. 
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6.3 Summary and Conclusions 

The economic impact of combining seawater, recycled concrete aggregate, and 

glass fiber reinforced polymer (GFRP) reinforcement in structural concrete has been 

investigated through life cycle cost analysis (LCCA) of two design alternatives for the 

same structure. The two approaches considered were: (a) RC1, traditional concrete mix 

with black-steel reinforcement, and (b) RC2, concrete with seawater, RCA, and GFRP 

reinforcement. Based on the assumptions, data, and approach implemented, the 

following can be concluded: 

 The use of alternative materials for the concrete mix has no significant impact on 

the cost of concrete and thus the LCC performance. Cost savings are instead 

influenced by the selection of reinforcement material. This is further evidenced by 

the negligible change in the ultimate LCC results while including the effects of 

aggregate transport costs. 

 The use of GFRP reinforcement improves the long-term economic performance of 

the structural concrete. Based on a 100-year study period and a 0.7% discount rate, 

the LCC of the proposed design alternative RC2 is approximately 50% less than 

that of the traditional reinforced concrete (RC1). The payback period (break-even 

point) for the initial investment in GFRP reinforcement ranges from 20–30 years 

according to the base conditions applied. 

 The LCCA outputs are highly sensitive to the choice of the discount rate (𝑟). At a 

discount rate of 5.9% or higher, the LCC of RC1 over the 100-year study period 

considered is lower than RC2.  

The findings are limited to the assumptions made regarding the equivalence of the water 

transport costs, the nature of the high-rise buildings, 100% replacement of NA by RCA, 

and other factors. More LCCA studies are required to validate the cost effectiveness of 
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the proposed combination (i.e. concrete with seawater, RCA, GFRP reinforcement), 

accounting for different cases and assumptions. However, based on the reasonable 

assumptions made, a long-term cost benefit is evident from the use of corrosion-

resistant reinforcement. 
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CHAPTER 7: COST EFFECTIVENESS OF REINFORCEMENT ALTERNATIVES 

FOR A CONCRETE WATER CHLORINATION TANK 

In Chapter 6, we investigated the cost benefits associated with combining 

seawater, recycled coarse aggregates, and GFRP reinforcement in structural concrete 

for high-rise buildings. It was concluded that the long-term cost of structural concrete 

ultimately depends on the selection of the reinforcement material rather than the 

concrete mixture design. Chapter 7 extends the previous work with a greater focus on 

the cost benefits of using non-corrosive reinforcement, considering a different type of 

structure (RC water chlorination tank). 

7.1 Introduction 

The World Commission on Environment and Development has defined 

“Sustainable Development” as [225]: “a process of change in which the exploitation of 

resources, the direction of investments, the orientation of technological development, 

and institutional change are all in harmony and enhance both current and future 

potential to meet human needs and aspirations”. Currently, there is a growing industrial 

and academic interest to produce sustainable reinforced concrete (RC) structures, 

mostly by using alternative “greener” materials in building new structures 

[18,41,106,207,226] or strengthening existing structures  [227,228]. Concrete 

structures are traditionally steel-reinforced; as such, corrosion is a significant factor 

causing deterioration of RC structures and leading to reductions in service life, thereby 

hindering sustainable development. Classically, design codes, standards, and guidelines 

provide stringent limits on chlorides in concrete mixtures to mitigate corrosion (Table 

7.1). However, for structures exposed to chlorides, such as those in the proximity to the 

sea [229] or those exposed to deicing salts [230], these limits can often be reached over 

long-term exposure period, especially if the concrete is cracked, either because of poor 
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construction practices, shrinkage, or other durability issues. Recently, the global cost 

of corrosion damage has been estimated at $2.5 trillion; out of which around 35% is 

directly attributed to damages in infrastructure and services [231]. 

 

Table 7.1. Maximum limits of water-soluble chloride content in concrete mixture according to different standards 

Maximum Limits of Water-Soluble Chloride Content in Concrete Mixture According to 

Different Standards. 

RC Type 

Maximum chloride content 

Kg/m3 of 

concrete 

% of the cement mass 

IS 456 

[232] 

BS 8110 

[233] 

ACI 201 

[234] 

ACI 318 

[181] 

ACI 222 

[235] 

Pre-stressed concrete 0.4 0.1 0.06 0.06 0.06 

Reinforced concrete exposed to 

moisture/chloride sources 

0.6 0.2 0.1 0.15 0.08 

Reinforced concrete which is in 

dry service or protected from 

moisture 

- 0.4 0.2 1 0.15 

 

Several strengthening techniques have been proposed to mitigate corrosion-

induced damage and to extend the service life of RC structures. In these techniques, 

different strengthening materials such as fiber-reinforced polymers (FRPs) [236,237], 

ferrocement [238], and fabric-reinforced cementitious matrix [182,227,239] are 

typically used. However, strengthening/rehabilitation of an existing RC structure can 

be expensive, time and labor-intensive, and occasionally impractical. Therefore, it is 

often more feasible (or practical) to prevent reinforcement corrosion in concrete 

structures by using non-corrosive reinforcement such as stainless steel [240,241] or 
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FRP [93,242]. The latter shows more potential given its high strength-to-weight ratio 

[21] and excellent durability performance [19]. Among the different FRP reinforcement 

types, glass-FRP (GFRP) is the most popular, having relatively lower cost [23] and 

acceptable mechanical properties and durability performance [25,26,38]. Several 

research studies have conclusively demonstrated the effectiveness of FRPs in various 

applications such as bridges, parking garages, tunnels, and marine structures [88–

91,243]. A recent survey conducted in North America [244] showed that the most 

accepted standard practices for the use of FRPs in civil infrastructure are (i) CFRP-

strengthening for retrofitting bridge piers and (ii) GFRP-reinforced bridge decks. 

Nevertheless, the higher initial cost of non-corrosive reinforcing materials (with respect 

to conventional black steel) necessitates long-term economic investigations to quantify 

their cost effectiveness throughout the service life of RC structures. 

7.2 Research Significance 

Existing literature highlights the potential cost savings with the use of FRP 

[22,24,31,245–248] or stainless steel [205,206,248,249] reinforcement in structural 

concrete. However, the majority of these LCCA studies have been in the context of RC 

bridges. Whilst numerous studies have been conducted to explore the financial viability 

of using alternative construction materials and methods in the building sector [250–

255], those concerning the cost implications of using corrosion-resistant reinforcement 

are relatively scarce (mainly because such reinforcement types are less often used in 

structures other than bridges). When considering non-bridge applications of corrosion-

resistant reinforcement, Ahmed et al. [90] performed a comparative cost analysis 

between steel- and GFRP-reinforced designs for RC flat slabs of a parking garage in 

Québec, Canada and concluded that the initial higher cost of GFRP bars can be 

recompensed at the construction stage by replacing the asphalt flooring layer with a 
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polyurethane one. However, this analysis considered only direct/initial costs. More 

recently, Younis et al. [256] investigated the cost benefits associated with combining 

seawater, recycled coarse aggregates, and GFRP reinforcement in structural concrete 

for high-rise buildings and concluded that the long-term cost of structural concrete 

ultimately depended on the selection of the reinforcement material rather than on the 

concrete mixture design. The current study builds on the previous work [256] with a 

greater focus on the cost benefits of using non-corrosive reinforcement, considering a 

different type of structure (RC water chlorination tank) on which little life-cycle work 

with GFRP has been performed. The effect of several sensitivity parameters on the 

long-term cost performance is evaluated. 

In general, concrete water tanks (especially those for water treatment purposes) 

are likely to experience severe corrosion because of the direct and prolonged exposure 

to aggressive chemical environments [257]. In principle, using chlorine to 

disinfect/treat water has a strong negative effect on the reinforcing steel [257]. 

Classically, corrosion issues in such structures are addressed by optimizing concrete 

mixture design (e.g., reducing water-to-cement ratio, using supplementary cementitious 

materials, corrosion inhibitors, etc.) and/or waterproofing techniques; unfortunately, 

these have had somewhat limited success [258]. The American Water Works 

Association has estimated the corrosion-related cost in the water sector (drinking and 

sewer) at approximately $36 billion per year [259]. Consequently, using non-corrosive 

reinforcement appears to be a viable solution to mitigate corrosion-induced damages 

for RC water tanks. In order to validate the preceding statement from an economic 

standpoint, the current study provides a detailed comparison among black steel, epoxy-

coated steel, stainless steel, and GFRP as reinforcement materials for an existing 

concrete water chlorination tank in terms of their cost effectiveness, using life-cycle 
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cost analysis. 

7.3 Materials and Design 

This study considers an existing GFRP-RC water chlorination tank as part of a 

new water treatment plant located in Quebec, Canada [258]. The tank is 24 m in length, 

23 m in width, 4.65 m in height, and has a 2500 m3 volume capacity. It is composed of 

two identical cells, each of which is divided by a discontinuous internal RC wall to 

create two interconnected zones (Figure 7.1). The RC structure is underground, resting 

on the rock, and buried with compacted soil surrounding the walls. The cover slab of 

the tank is supported by vertical RC walls that, in turn, rest on an RC raft. The 

dimensions of the concrete elements (walls, slab, and raft) as well as reinforcement 

details are presented in Figure 7.1. Further details about the project and the structural 

system of the tank can be found elsewhere [258]. 

 

 

Figure 7.1. Reinforcement details for the main vertical cross-section of the water tank 

(adapted, with modifications, from [258]). 
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Four reinforcing materials proposed for RC structures were compared, namely, 

black steel (the reference material), epoxy-coated steel, stainless steel, and GFRP; the 

latter three are studied for their corrosion resistance compared to the reference material. 

For the GFRP reinforced concrete, the actual reinforcement details were obtained from 

[258] and are presented in Table 7.2. Assumptions concerning the material properties, 

loads applied, and the analysis routine used in the GFRP-RC structural design can be 

found in [258]. According to Mohamed and Benmokrane [258], using noncorrosive 

GFRP enables reducing the clear concrete cover to 50 mm, as opposed to the 60 mm 

required by ACI 350 [260] for the black steel reinforced water tanks. 

 

Table 7.2. Reinforcement design for the RC water tank. 

Reinforcement Design for the RC Water Tank. 

Reinforcement form 

(Figure 7.1) 

Actual GFRP reinforcement [258] 

R1 ∅16@120 𝑚𝑚 

R2 ∅16@250 𝑚𝑚 

R3 ∅16@250 𝑚𝑚 

R4 ∅16@300 𝑚𝑚 

R5 ∅16@180 𝑚𝑚 

R6 ∅16@250 𝑚𝑚 

R7 ∅16@180 𝑚𝑚 + ∅16@180 𝑚𝑚 (𝑒𝑥𝑡𝑟𝑎) 

R8 ∅16@140 𝑚𝑚 

R9 ∅20@130 𝑚𝑚 

R10 ∅16@250 𝑚𝑚 

R11 ∅16@130 𝑚𝑚 

R12 ∅20@130 𝑚𝑚 + ∅16@130 𝑚𝑚 
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The GFRP reinforcement has distinct material characteristics: unlike the steels, 

the GFRP reinforcement exhibits a brittle failure associated with relatively high tensile 

strength and low elastic modulus [25]. Typically, the GFRP-RC flexural member has a 

balanced reinforcement ratio (𝜌𝑏), which is approximately one-fifth that of the steel-

RC counterpart [184]. This, in theory, leads to a relatively lower reinforcement ratio in 

the structural design of GFRP-RC structures. However, in practice, the design of FRP 

structures accounts for equal or slightly more reinforcement compared to black steel 

because of the lower stiffness of FRP (i.e., lower elastic modulus) which in turn affects 

the long-term performance of the structure (in terms of crack width and deflection) 

[31,96]. According to Mohamed and Benmokrane [258], the design ratio for the black 

steel reinforcement of the RC water tank, obtained in accordance with ACI 318 [181] 

and ACI 350 [260] and considering the same concrete properties and thicknesses, was 

very close to that needed for GFRP bars. This is attributed to the use of high-strength, 

low-spaced, and small-diameter GFRP bars with less concrete cover to control the crack 

width [258]. Therefore, the reinforcement ratio of GFRP- and steel-reinforced concrete 

was considered here to be the same (~1.7% in total). This assumption also guaranteed 

minimum reinforcement requirements for GFRP-reinforced concrete, and increased the 

likelihood of an over-reinforced section (i.e., 𝜌 > 𝜌𝑏) that is theoretically preferred as 

it is associated with less acute compression-controlled failure [184]. 

The total amounts of concrete and reinforcement of the structural members (i.e., 

walls, slabs, raft, and so on) were obtained with respect to the volume capacity of the 

water tank. On average, the concrete volume and the black steel reinforcement weight 

per cubic meter of the water capacity are 0.23 𝑚3 and 30.5 kg, respectively. These were 

considered to be input quantities for the LCCA calculations of the black, epoxy coated, 

and stainless steel reinforced concretes (assuming comparable mechanical 
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characteristics among the different reinforcing steel types). Because of the significantly 

lower density of GFRP (~1870 kg/m3) compared to black steel bars (~7860 kg/m3), the 

GFRP reinforcement weight per cubic meter of the water capacity (~7.6 kg/m3) was 

considerably lower than that of the steel reinforcement (~30.5 kg/m3).  

The baseline scenario considers the actual design compressive strength of 

concrete — i.e., 35 MPa [258]. This was complemented by considering another case 

with higher concrete strength (60 MPa) in order to investigate the effect of this 

parameter on steel corrosion and, thus, on the life-cycle cost of the structure. It is 

emphasized that the effect of concrete strength was insignificant on the design 

quantities of the reinforcing steel (because the failure is tension-controlled in steel-RC 

design) or GFRP (although the flexural failure in GFRP-reinforced concrete is 

compression-controlled, crack width and deflection are the governing design 

parameters). Nevertheless, increasing concrete strength intuitively offers some 

advantages in regard to crack-width control by means of increasing the concrete rupture 

stress [181]. 

7.4 Cost Modeling 

The cost model was divided into four main components, namely, material, 

construction, repairs, and end-of-life costs. All costs were allocated for a functional unit 

of 1 m3 of the volume capacity of the water tank. As suggested in the literature [196], 

the analysis period should be long enough to account for all repair/replacement actions 

during the service life of the structure. To satisfy this, a 100-year life-cycle period was 

assumed. Although it has been occasionally considered for life-cycle studies on 

buildings [261] or on bridges [24,247], this analysis period is longer than that typically 

assumed for life-cycle studies on water services, which is 25–50 years [262–264]. This 

longer analysis period is justified because of the high performance and durability 
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anticipated with non-corrosive reinforcement. Indeed, Mohamed and Benmokrane 

[258] suggested that using GFRP reinforcement in RC water tanks can extend their 

service life up to 100 years or more as compared to black steel counterparts. 

Nevertheless, a cumulative LCCA was performed (i.e., from initial construction up to 

100 years following that) so the effects of the analysis period can be quantified. The 

LCCA was performed considering the structural components and neglecting other 

aspects (e.g., electrical supply, plumbing, operations, etc.). 

7.4.1 Material cost 

Material cost refers to the expenses required for the fabrication and procurement 

of the raw materials (i.e., concrete ingredients and uncut reinforcement bars). Table 7.3 

lists the material unit costs adopted in the current study, obtained from RSMeans [200] 

and/or other publications as listed (as of 2019 prices). Stainless steel had the highest 

price (around 7–8 times that of the black steel). Despite the higher cost (per unit weight) 

of GFRP compared to stainless steel bars, the former ultimately has lower cost per unit 

water capacity of the tank because of its lower density (1870 kg/m3 versus 7860 kg/m3 

for steel reinforcement). 
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Table 7.3. Unit costs considered in Study 5 (as of 2019 prices). 

Unit Costs Considered in Study 5 (as of 2019 Prices).  

Cost Item Unit cost Source 

Ready mix concrete (28-day compressive 

strength = 35 MPa, density = 2400 kg/m3) 

180 $/m³ [200] 

Ready mix concrete (28-day compressive 

strength = 60 MPa, density = 2400 kg/m3) 

210 $/m³ [200] 

Black steel reinforcement (ASTM A615 

Grade 60; yield tensile stress = 420 MPa; 

density = 7860 kg/m3) 

0.7 $/kg 

(mill-based) 

[200] 

Epoxy coated steel reinforcement 

(physical/mechanical properties are similar 

to black steel) 

1.2 $/kg 

(mill-based, inflation-adjusted) 

[249] 

Stainless steel reinforcement (ASTM A955-

316L; physical/mechanical properties are 

same as black steel) 

5.5 $/kg 

(mill-based, inflation-adjusted) 

[249] 

GFRP reinforcement (made with resin and 

E-CR Glass; tensile strength is assumed as 

1000–1100 MPa, and elastic modulus as 60–

65 GPa) 

∅16 bar (0.375 kg/m): 4.33 $/m → 11.4 $/kg 

∅20 bar (0.590 kg/m): 6.84 $/m → 11.6 $/kg 

[200] 

Elastomeric sheet waterproofing, EPDM, 

plain, nylon-reinforced sheets, 60 mils thick 

22.5 $/m2 [200] 

Black steel scrap 0.15 $/kg [203] 

Stainless steel scrap 0.75 $/kg [203] 

Demolition of RC structure (per cubic meter 

of concrete; covering 20-mile haul to dump) 

125 $/m3 [200] 

Landfill (for construction materials; 

assuming urban city) 

0.092 $/kg [200] 
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7.4.2 Construction cost 

Construction cost refers to the expenses associated with the manpower and/or 

equipment needed to transport materials, cast concrete, place reinforcement, and 

dispose the construction waste. In accordance with [205,206], construction cost can be 

considered as a ratio of the material cost. In the current study, the reference construction 

cost (𝐶) was considered as that corresponding to the black steel reinforced concrete. In 

the baseline scenario, 𝐶 was assumed to be 1.5 times the reference material cost (𝑀). 

The construction methods and technology are likely to be the same for black, epoxy 

coated, and stainless steel reinforced concretes; therefore, the construction cost of the 

RC tanks utilizing epoxy coated or stainless steel reinforcements was also taken as 𝐶. 

This was complemented by sensitivity analysis which was performed on a range of 

possible 𝐶/𝑀 ratios from 0 (i.e. negligible construction cost) to 2.5 (not typically 

exceeded in building construction [200,265]). 

Construction costs are thought to be relatively lower for GFRP-reinforced 

concrete, since the GFRP bars have lower density and prefabricated profiles (although 

GFRP reinforcement needs to be tied more considering the risk of floating during 

concrete casting activities given the lower density [31,245]). Brown and Tce [208] 

suggested that using GFRP reinforcement results in around 20% reduction in the labor 

time and costs compared to black steel. Berg et al. [22] reported approximately 60% 

savings in the construction costs of concrete bridge decks with the use of GFRP in lieu 

of black steel reinforcement. Here, the construction cost of GFRP-reinforced concrete, 

𝐶𝐺𝐹𝑅𝑃, was assumed as 0.8𝐶 in the baseline scenario. A range of possible 𝐶𝐺𝐹𝑅𝑃/𝐶 

ratios from 0.6 to 1 were considered as part of sensitivity analysis. 
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7.4.3 Repair/maintenance cost 

Repair/maintenance cost represents the expenses incurred to maintain the 

performance of the structure: this includes inspections, routine maintenance, 

major/minor repairs, and/or replacement. Two inspection strategies were considered, 

namely, general (periodic) inspection and detailed inspection. The general (periodic) 

inspection is conducted at 5-year intervals for detecting obvious defects that lead to 

safety problems or restrictions on the use of the structure. Detailed inspections are 

carried out before repair actions to analyze the deterioration of the structure and 

therefore, they are scheduled together with repair/rehabilitation activities. Routine 

maintenance is conducted on a regular basis (every 5 years) and includes cleansing, 

repainting and drainage clearing works, as well as repairing visual concrete cracks. In 

the current study, periodic inspection and routine maintenance activities were 

considered to be the same among the design alternatives.  

Common practices assume the repair/maintenance cost as a ratio of the material 

and/or construction costs [205,206]. Based on the unit costs provided by Cheung et al. 

[249], the costs of general inspection, detailed inspection, and routine maintenance 

were taken as 0.5% (𝑀 + 𝐶), 2.5% (𝑀 + 𝐶), and 1.5% (𝑀 + 𝐶), respectively. Only 

repair of corrosion-induced damages was considered, as the focus of the study is on the 

differences among the reinforcement materials with respect to corrosion resistance. 

Following a detailed inspection, the repair cost involves procuring and installing new 

materials, in addition to the disposal of the materials replaced. The repair cost was 

estimated based on the following: 

(a) 10% of the total exposed area to be damaged at the repair time [206]; 

(b) 50% of the materials in the damaged area to be replaced [206]; for which 

the replacement cost was taken as 2𝐶 [205]. 
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Life-365 [211] was used to predict the repair schedules for the black, epoxy 

coated, and stainless steel reinforced concretes. This tool predicts the service life of RC 

structures considering the corrosion induced as a result of chloride exposures. In theory, 

the predicted service life is the summation of the corrosion initiation and corrosion 

propagation periods, after which the structure encounters sufficient damage and 

requires repair [211]. The built-in yearly temperature profile of Life-365 for 

Sherbrooke, Quebec was used to simulate the ambient exposure. A default ‘severe’ 

exposure category in Life-365 was considered, in which a 0.8% chloride concentration 

(𝐶𝑙𝑠, as % of the cement weight) is reached at the concrete surface after a 1-year period 

[211]. The concrete compressive strength and clear cover to reinforcement were taken 

as 35 MPa (baseline scenario) and 60 mm, respectively. In the baseline scenario, the 

w/c ratio was correspondingly calculated to be 0.47 (as per BS EN 206 [131] for 35-

MPa concrete), and neither supplementary cementitious materials (i.e., fly ash, silica 

fume, slag, etc.) nor corrosion inhibitors were considered in the concrete mixture. 

Protection membranes (with 20-year time to failure) were considered on both sides of 

the water tank. The use of stainless steel and GFRP reinforcement, however, substitutes 

the need for waterproofing membrane (on the external side only) to mitigate corrosion. 

A default chloride-threshold (𝐶𝑙𝑡) value (0.05% wt. of concrete) in Life-365 was 

considered, associated with a diffusion decay index (𝑚) of 0.2 and a reference diffusion 

coefficient (𝐷𝑟𝑒𝑓, at time 𝑡𝑟𝑒𝑓 = 28 𝑑𝑎𝑦𝑠) of 1.17 ×  10−11 𝑚2/𝑠𝑒𝑐. 

Life-365 results showed that the RC tank requires repair after approximately 

16–17 years in the case of black steel reinforcement and 30 years when using epoxy-

coated steel. This extension in the service life of the epoxy-coated steel (compared to 

black steel) is due to the additional corrosion-inhibitor effect provided by the protective 

coating on the bar’s surface. Stainless steel, on the other hand, requires no repair (due 



  

129 

 

to corrosion damages) up until 130 years following construction. This is in line with 

findings from García-Alonso et al. [241] who reported that the corrosion resistance of 

stainless steel bars embedded in concrete is approximately 10 times that of the black 

steel counterparts. In case of higher concrete strength (with 𝑓𝑐 = 60 𝑀𝑃𝑎, 𝑤/𝑐 = 0.33, 

and 𝐷28 = 5.4 × 10−12 𝑚2/𝑠𝑒𝑐), the required repair periods become 25 and 40 years 

for black and epoxy coated steel reinforcements, respectively. The effect of concrete 

strength on the embedded steel rebar corrosion was experimentally demonstrated by 

Abosrra et al. [266] - the rate of corrosion was reduced by approximately 40% with an 

increase in the concrete strength from 20 to 46 MPa.  

 The structural damage repair was assumed to restore the original structural and 

durability performance (i.e., no improvements compared to as-built specifications). 

Accordingly, damage is likely to re-occur and multiple repairs might be needed during 

the service life of the structure. In the case of black steel, the total cumulative damage 

from corrosion was assumed to be too severe in 50 years after multiple rounds of repair; 

therefore, a complete reconstruction would be required. The event of reconstruction, 

however, occurs at Year 75 in the case of high-strength concrete (60 MPa) (presuming 

the same rounds of repair prior to reconstruction). For the epoxy-coated steel, it can be 

fairly assumed that the protective coating on the bar does not remain intact after the 

first round of repair and, accordingly, the repair schedule becomes the same as that of 

the black steel. Consequently, epoxy-coated steel RC tank requires reconstruction, at 

Year 65 and Year 90 in the case of normal (35 MPa) and high-strength (60 MPa) 

concretes, respectively. 

Given that GFRP and stainless steel reinforcements are non-corrosive (at least 

during the 100-year analysis period), the corresponding RC tank was considered to be 

repair-free (again, considering solely corrosion-induced damages, as the focus in this 
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comparison among reinforcements is on the differences with respect to corrosion 

resistance). For the GFRP reinforcement, it was presumed that the glass fibers inside 

the bar are perfectly protected by the resin from any direct contact with concrete. This 

assumption is supported by existing literature, which generally postulates an acceptable 

long-term durability performance of GFRP-reinforced concrete. For instance, Robert 

and Benmokrane [212] suggested that the GFRP reinforcement in concrete can maintain 

up to 70% of its ultimate tensile strength after a 100-year exposure period at 50 °C 

temperature (based on specimens subject to exposure up to a one-year period and using 

Arrhenius approach for long-term prediction): this retained tensile strength meets the 

minimum requirements as per ACI 440.1 [184] for the design strength of GFRP 

reinforcement in concrete. In addition, Masmoudi et al. [267] reported no significant 

reduction in the bond strength between GFRP bars and concrete after 8-month exposure 

at high temperatures (up to 60 °C). Also, Gooranorimi and Nanni [268] investigated the 

performance of GFRP bars exposed to concrete alkalinity and ambient conditions after 

15 years of service. Results from scanning electron microscopy and energy dispersive 

X-ray did not show any sign of GFRP microstructural deterioration or change of 

chemical composition, and the glass transition temperature and the fiber content of the 

GFRP bars were comparable to pristine values.  

7.4.4 End-of-life cost 

The end-of-life cost refers to the cost of demolition, disposal, and landfill 

activities, as opposed to the (earned) residual value of the reinforcement scrap (Table 

7.3). Steel is a perfectly recyclable metal whose scrap can be reconverted to comparable 

or even higher grades with suitable processing [214,215]. In this study, 90% of the 

original steel was considered for resale at the end life of the steel-RC structure. On the 

other hand, GFRP has complex and heterogeneous characteristics that make it 



  

131 

 

challenging to be reused/recycled [216]; research is in progress to address this issue 

[217,219].   

As previously indicated, stainless steel and GFRP reinforced concretes are 

expected to have service lives longer than the 100-year analysis period. However, due 

to the lack of reported evidence on the actual service life of stainless steel/GFRP 

reinforced concretes, Year 100 (i.e., the end of the analysis period) was considered here 

as the end of their service life to achieve a valid cradle-to-grave comparison among the 

design alternatives. Also, the earned value from the prospective remaining service life 

at Year 100 was disregarded from the comparative analysis. 

7.4.5 Net present cost 

The net present cost (NPC) is the sum of all partial costs incurred over the entire 

life cycle, considering the time value of money, calculated as follows [196]: 

𝑁𝑃𝐶 =  ∑
𝐶𝑛

(1 + 𝑟)𝑛

𝑁

𝑛=0

                                                           (7.1) 

where 𝐶𝑛 is the total cost at Year n; N is the analysis period (100 years); and r the real 

discount rate (referred to as “discount rate” in the rest of the chapter). At a certain year 

(𝑛), the cost incurred (𝐶𝑛) was calculated as the summation of the cost elements as 

follows: 

𝐶𝑛 =  𝐶𝑀(𝑛) + 𝐶𝐶(𝑛) + 𝐶𝑅(𝑛) + 𝐶𝑖(𝑛) + 𝐶𝐸(𝑛)                             (7.2) 

where 𝐶𝑀 is the material cost, 𝐶𝑐 the construction cost, 𝐶𝑅 the repair, maintenance 

and/or replacement cost, 𝐶𝑖 the inspection cost, and 𝐶𝐸 the end-of-life cost, wherever 

applicable. 

The discount rate is a key parameter in the calculation of the NPC since it 

reflects the opportunity value of time: the higher the discount rate, the more effect it 

has on the NPC by decreasing the present cost of future activities such as repair or 
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reconstruction. The discount rate is used to evaluate the present dollar value of future 

costs taking into account the nominal interest rate and the inflation rate [220]. In this 

study, a discount rate of 0.6% was assumed as recommended by the Office of 

Management and Budget [222] (as of 2019) for long-term federal investments (≥30 

years). Sensitivity analysis was performed on a range of common r values (0–10%) that 

conform with previous cost studies on buildings and infrastructure [209,224]. 

7.5 Results and Discussion 

7.5.1 LCCA results 

Figure 7.2 presents a summary of the NPC results for the baseline scenario (𝑟 =

0.6%, 𝐶 = 1.5𝑀, and 𝐶𝐺𝐹𝑅𝑃 = 0.8𝐶). The NPC of epoxy-coated steel reinforced 

concrete was approximately 11% lower than that with black steel reinforcement; this 

indicates a higher cost performance of the former in the long term. Likewise, stainless 

steel reinforcement had approximately a 25% lower NPC compared to the conventional 

design. The GFRP-reinforced concrete showed the highest cost effectiveness as the 

NPC was approximately 43% lower than that of the black steel counterpart. Despite the 

lower preliminary costs associated with the black steel, corrosion-resistant 

reinforcements revealed long-term cost savings as they resulted in longer service lives 

and lower repair costs throughout the analysis period; allowing them to make up for the 

upfront investment. For instance, the use of epoxy-coated steel (in lieu of black steel) 

extended the service life of the water tank by 14 years, reduced the overall 

repair/maintenance cost by 20%, and reduced the end-of-life cost by 48% (Figure 7.2). 

Also, non-corrosive reinforcements (i.e., stainless steel and GFRP) outperformed epoxy 

coated or black steel mainly because of the significant savings obtained from averting 

corrosion-induced repairs or replacement. The better performance of GFRP over 

stainless steel reinforcement is attributed to the lower initial cost of the former (by 40%) 
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compared to the latter. 

 

 

Figure 7.2. Summary of LCCA results (100-year study period). 

 

The end-of-life cost associated with black steel was the highest among the 

design alternatives as a result of the two demolition activities during the 100-year 

analysis period. On the other hand, stainless steel showed the lowest end-of-life cost 

(approximately one-third that of the black steel) because of only one demolition activity 

occurring during the life-cycle (at Year 100) and the high resale prices of stainless steel 

(Table 7.3). Considering resale prices of black and stainless steel reinforcements 

resulted in approximately 5% and 25% reductions in the end-of-life cost of the RC tank, 

respectively. However, reinforcement resale prices, while considered, are quite small 

when compared to other items in the cost model.   

Previous studies have also demonstrated the economic viability of corrosion-

resistant reinforcement [24,205,206] for other structures. For instance, Cheung et al. 
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[249] reported approximately 10% saving in the life-cycle cost accompanied by a 20-

year extension in the service life of bridge decks when using epoxy-coated steel in lieu 

of conventional steel (assuming 4% discount rate, 50 MPa concrete, and 70-mm 

concrete cover). Mistry et al. [206] reported that the use of stainless steel in reinforced 

concrete piers resulted in 44% lower NPC compared to the black steel reinforced 

counterpart (with 𝑟 = 0.01%). Thompson et al. [269] reported approximately 50% 

savings in the cost of corrosion (and 20% in the overall NPC) associated with the use 

of epoxy-coated steel in RC bridges. Grace et al. [247] and Eamon et al. [24] estimated 

the NPC of FRP-reinforced concrete bridges to be 30–50% lower than that of their steel-

reinforced counterparts (assuming 𝑟 = 3%). Cadenazzi et al. [31] estimated the NPC 

of a conventional steel-RC bridge in Florida to be 25% higher than that reinforced with 

GFRP (assuming a 1% discount rate and a 100-year analysis period).  

Figure 7.3 depicts the cumulative NPC values through the analysis period. As 

shown in the figure, reconstruction was the key activity resulting in cost differences 

between conventional and stainless steel reinforced concretes. The crossover point 

between these two alternatives was at Year 50, after which the initial investment in 

stainless steel was realized. Likewise, stainless steel outperformed epoxy coated steel 

reinforced concrete at the reconstruction Year 65. However, GFRP-reinforced concrete 

outperformed the conventional design at Year 35 (particularly due to the second round 

of corrosion repair). These results generally agree with previous research 

[24,205,206,247]. Mistry et al. [206] estimated the payback period of stainless steel 

reinforcement as the reconstruction year of the black steel RC structure. Eamon et al. 

[24] reported that the initial high cost associated with using FRP in lieu of black steel 

in RC bridges can be recouped in 23–77 years (depending on the structural design 

conditions). Grace et al. [247] suggested that FRP-RC bridges become more cost-
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effective than their black steel RC counterparts after 20 years following construction 

(with a probability higher than 90%); this period (20 years) was the time of the first 

major repair event in their assumed maintenance schedule.  

The LCCA outcomes are sensitive to the assumption of the analysis period. For 

instance, as shown in Figure 7.3, considering a 65-year or shorter analysis period makes 

epoxy coated steel more cost-effective than stainless steel as a reinforcement material. 

Similarly, if a service life of 50 years (or lower) is considered, the cost benefits of using 

corrosion-resistant reinforcement generally become less obvious, and the black steel 

alternative becomes more viable (Figure 7.3).  

 

 

Figure 7.3. Cumulative NPC results for the reinforcement design alternatives. 
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7.5.2 Sensitivity analysis 

Sensitivity analysis was performed on the discount rate and the construction 

costs, as they are the most influential parameters affecting the NPC. The significance 

of 𝑟 is clearly noticed on major long-term future costs such as reconstruction. Figure 

7.4 demonstrates the sensitivity of the NPC to the selection of 𝑟 (considering 𝐶 = 1.5𝑀, 

and 𝐶𝐺𝐹𝑅𝑃 = 0.8𝐶). With 𝑟 ≥ 1.95%, the NPC of stainless steel reinforced concrete 

becomes higher than that of the black steel reinforced counterpart. This means that the 

repair and/or reconstruction costs of black steel reinforced concrete were decreased so 

that the initial investment in stainless steel was not recompensed. Likewise, the 

crossover point between stainless steel and epoxy coated steel was at a 1.40% discount 

rate. However, the crossover point between GFRP and black or epoxy coated steel 

reinforcements occurred at much higher 𝑟 values (5.15% and 4.50%, respectively, as 

shown in Figure 7.4). 

 

 

Figure 7.4. Sensitivity of NPC to the assumed discount rate (𝐶 is fixed at 1.5M and 

𝐶𝐺𝐹𝑅𝑃 = 0.8C). 
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The significance of the parameter 𝐶 is attributed to its high contribution to the 

initial, repair, and replacement costs. Figure 7.5 shows the sensitivity of the NPC to the 

assumption of 𝐶/𝑀 ratio (considering 𝑟 = 0.6% and 𝐶𝐺𝐹𝑅𝑃 = 0.8𝐶). As shown in the 

figure, GFRP reinforcement outperformed the black/epoxy coated/stainless steels at all 

𝐶/𝑀 values, with the cost gap widening with an increase in the 𝐶/𝑀 ratio. Stainless 

steel, however, showed higher cost effectiveness than epoxy coated steel only when 

considering 𝐶 ≥ 0.55𝑀 (Figure 7.5). Similarly, the crossover point between black and 

stainless steel reinforced concretes was at 𝐶/𝑀 = 0.15. 

 

 

Figure 7.5. Sensitivity of NPC to the assumed construction cost (𝑟 is fixed at 0.6% 

and 𝐶𝐺𝐹𝑅𝑃 = 0.8𝐶). 
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Another sensitivity analysis was performed by altering both the discount rate 

and the construction cost (𝐶). Figure 7.6-a, Figure 7.6-b, and Figure 7.6-c present the 

NPC plot (as a function of discount rate and 𝐶/𝑀 ratio) for the conventional RC tank 

as opposed to that of the epoxy coated steel, stainless steel, and GFRP reinforced 

counterparts, respectively. As shown in Figure 7.6-a, epoxy-coated steel predominantly 

outperforms black steel except in the region of high discount rates (4% ≤ 𝑟𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 ≤

8% depending on 𝐶/𝑀 ratio). However, the area where stainless steel becomes more 

cost-effective than black steel is limited to low discount rates and high 𝐶/𝑀 ratios 

(Figure 7.6-b). On the other hand, GFRP outperforms black steel at a wider range of 

assumptions for 𝑟 and 𝐶/𝑀 (Figure 7.6-c). This demonstrates the superior economic 

performance of GFRP compared to stainless steel as an alternative non-corrosive 

reinforcement. Moreover, it was observed that as 𝐶 increases, the discount rates at the 

crossover points also increase. For instance, when assuming 𝐶 = 2𝑀, the crossover 

points occurred at 𝑟 = 7% for epoxy coated steel, 𝑟 = 2.3% for stainless steel, and 𝑟 =

6.2% for GFRP reinforcement, as opposed to those obtained for 𝐶/𝑀 ratio of 1.0 (5.8%, 

1.5%, and 4.1% for epoxy coated steel, stainless steel, and GFRP, respectively). 

Increasing 𝐶𝐺𝐹𝑅𝑃/𝐶 ratio intuitively leads to an increase in the NPC of GFRP-

reinforced concrete (Figure 7.7-a), that is associated with a delay in the breakeven year 

between GFRP and black/epoxy coated steel (Figure 7.7-b). For instance, while fixing 

r at 0.6% and 𝐶 at 1.5𝑀, increasing 𝐶𝐺𝐹𝑅𝑃/𝐶 ratio from 0.6 to 1.0 yields a change in 

the crossover point from Year 17 to Year 50 between GFRP and black steel (i.e., a delay 

in the payback period of the high initial cost of GFRP), and also from Year 30 to Year 

65 for that between GFRP and epoxy coated steel (Figure 7.7-b). 
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(a) 

 
(b) 

 
(c) 

Figure 7.6. NPC plots of (a) black vs. epoxy coated steel (b) black vs. stainless steel 

and (c) black steel vs. GFRP reinforced concrete as a function of discount rate and 

C/M ratio. 
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(a) 

 

(b) 

Figure 7.7. Sensitivity of (a) NPC and (b) breakeven year of GFRP reinforced 

concrete to the assumption of 𝐶𝐺𝐹𝑅𝑃 (r is fixed at 0.6% and C=1.5M). 
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As shown in Figure 7.8, increasing concrete strength (from 35 MPa to 60 MPa) 

led to a slightly higher initial/direct cost (~4%) in black or epoxy-coated steel reinforced 

concrete. However, this increase was reimbursed with an improvement in the overall 

life-cycle performance of the structure, by means of postponing corrosion-induced 

damages and thus extending the service life of the RC tank (by 25 years in both black 

steel and epoxy-coated steel reinforced concretes). In case of corrosion-free 

reinforcement (GFRP or stainless steel), it is suggested that the additional cost of high-

concrete strength may be recompensed by the superior durability performance gained 

from the use of high-strength concrete. 
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(a) 

 

(b) 

Figure 7.8. Effect of concrete strength on life cycle performance of (a) black steel 

and (b) epoxy coated steel reinforced concrete (considering the baseline scenario 

where 𝑟 = 0.6%, 𝐶 = 1.5𝑀, and 𝐶𝐺𝐹𝑅𝑃 = 0.8𝐶). 
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It is emphasized that the cost benefits associated with the use of corrosion-

resistant reinforcement are most pronounced in the case of traditional concrete mixtures 

(i.e., using 100% ordinary Portland cement as binder). Here, the LCCA results were 

obtained without considering supplementary cementitious materials (SCMs) in the 

concrete mixture (baseline scenario); these showed a significant life-cycle cost gap 

between black steel and the corrosion-resistant reinforcements. Figure 7.9 

demonstrates the effect of using some common SCMs on the life-cycle performance of 

the black steel RC structure. Using Class F fly ash at 20% OPC replacement level 

(common replacement range is 15–25% [270]) increased the diffusion decay index (𝑚) 

from 0.2 to 0.36 [211], and thus extended the major-repair milestones by ~8 years as 

well as the ultimate service life by 25 years. Likewise, using ground granulated blast 

furnace slag (or ‘slag’) in the concrete mix at 35% OPC replacement level (common 

replacement range is 20–50% [270]) resulted in an 𝑚 value of 0.4 [211] as well as a 

major repair event every 30 years (compared to 𝑚 = 0.2 and scheduled major repairs 

every 16–17 years in the baseline scenario). Using silica fume at 5% OPC replacement 

level (common replacement range is 5–10% [270]) resulted in a higher degree of 

concrete chloride impermeability (with 𝐷28 = 5.13 × 10−12 compared to 1.17 ×

10−11 in the traditional mix [211]), leading to an approximately 10-year extension in 

the scheduled major repairs. These results are in line with previous studies showing the 

effects of SCMs in improving the durability performance of structural concrete 

[271,272]. On average, the concrete mixtures incorporating SCMs (shown in Figure 

7.9) resulted in an approximate 100-year life-cycle cost saving of 25% for the black 

steel-RC structure (compared to the traditional 100% OPC concrete mix). 
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Figure 7.9. Effect of using SCMs on the life cycle performance of black steel RC 

structure (considering the baseline scenario where r=0.6%, C=1.5M, and w/cm ratio 

is fixed at 0.47). 

 

  



  

145 

 

7.6 Conclusions 

This effort investigated the cost benefit of using non-corrosive reinforcement in 

structural concrete. Life-cycle cost analysis (LCCA) was performed on an RC water 

chlorination tank with different reinforcement materials (black steel, epoxy-coated 

steel, stainless steel, and GFRP). Based on the study results, the following conclusions 

are drawn: 

 Using corrosion-resistant reinforcement improves the long-term cost performance 

of the structural concrete. The NPC values obtained for epoxy coated and stainless 

steel reinforced concrete were 11% and 25% lower than that of the black steel 

reinforced counterpart, respectively. The GFRP-reinforced concrete achieved the 

best cost performance with an NPC 43% lower than that of the conventional design.  

 Stainless steel outperformed the conventional steel after 50 years following initial 

construction, particularly due to reconstruction of the black steel alternative. 

Reconstruction at Year 65 was also the breakeven point between stainless and 

epoxy coated steel reinforcements. However, GFRP reinforcement achieved a 

lower NPC (compared to black steel) at Year 35 following construction, particularly 

due to corrosion repairs. 

 Results were sensitive to the assumption of the discount rate (𝑟). Considering 𝑟 ≥

5.15% made the GFRP reinforcement not economically viable in the long term (i.e., 

with NPC higher than that of the black steel). The crossover point between the black 

and stainless steel reinforcements occurred at 𝑟 = 1.95%. Epoxy coated steel was 

less economic than black steel at relatively higher 𝑟 values (≥ 6.0%). 

 Results were sensitive to the assumption of construction costs. Stainless steel 

became more economic than epoxy coated and black steel reinforcements only by 

assuming a reference construction cost of 𝐶 ≥ 0.55𝑀 and 𝐶 ≥ 0.15𝑀, 
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respectively. Moreover, increasing 𝐶 led to higher values of 𝑟 at the crossover 

points between black steel and corrosion-resistant reinforcements. 

 Despite it resulting in higher initial costs, increasing the concrete strength extends 

the service life and reduces the future repair demands for steel reinforced concrete; 

and thereby improves the overall life-cycle performance of RC structures. 

 The cost benefits of non-corrosive reinforcement are most pronounced when 

supplementary cementitious materials are not used in the concrete mixture. Using 

fly ash, slag, or silica fume significantly improves the durability performance of 

black steel-RC structure, and thus reduces the life-cycle cost gap between black 

steel and corrosion-resistant reinforcements. 

The above findings and specifically the numbers here are solely based on the 

assumptions, the data, and the methods implemented herein. Future studies are required 

to justify the cost benefit of alternate reinforcement materials for concrete considering 

other cases and assumptions. Finally, it is emphasized that the current study solely 

assesses the cost savings of non-corrosive reinforcements from an economic standpoint: 

future studies to investigate the environmental/ecological savings that can be achieved 

with the use of corrosion-resistant reinforcements in various concrete structures are 

critical. 
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CHAPTER 8: SUMMARY AND FUTURE OUTLOOK 

8.1 Summary 

This thesis aimed at verifying the safe and economic utilization of seawater, 

recycled concrete aggregate, and GFRP-reinforcement to produce sustainable and 

efficient concrete structures. The research program includes five core studies conducted 

to investigate the effectiveness of the proposed combination (i.e., seawater + RCA + 

GFRP) in structural concrete. Based on the results of these studies, the following 

conclusions have been drawn: 

 In the first study (Chapter 3), two concrete mixtures were compared; namely, 

freshwater and seawater-mixed concretes. It was concluded that the use of seawater 

had a notable effect on the fresh concrete properties. Mechanical performance of 

seawater concrete was slightly lower than that of the freshwater-mixed concrete. 

The permeability performance of hardened concrete in the two mixtures was 

similar. Accordingly, remedial measures were proposed based on lab trials to 

improve the properties of seawater concrete. 

  Likewise, the second study (Chapter 4) investigated the performance of plain 

concrete mixed with seawater and recycled coarse aggregates at 100% replacement 

level. The results suggest that the use of seawater and RCA together has negative 

effects on concrete performance. As compared to the reference/conventional 

mixture, the seawater-mixed recycled-aggregate concrete showed approximately 

5% lower density, 25% lower slump flow, 50% lower setting time, 35% lower 

strength gain, 10% higher drying shrinkage, 60% higher water absorption, and 

100% higher charge passed (in rapid chloride permeability test). Consequently, 

strategies to improve the performance of such concrete, such as a reduction in the 

water-to-cementitious materials ratio and the use of chemical admixtures, are 
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suggested. These strategies, however, may somewhat reduce the “green” aspect of 

the proposed seawater-mixed concrete with RCA. 

 The third study (Chapter 5) reports the results of an experimental study on the 

flexural performance of seawater-mixed recycled-aggregate concrete beams 

reinforced with GFRP bars. Twelve medium-scale reinforced concrete (RC) 

beams (150 × 260 × 2200 mm) were tested under four-point loading. The test 

variables included the mixing water (seawater/freshwater), aggregate type 

(conventional/recycled), and reinforcement material (black steel/GFRP). A 

wide range of flexural properties, including failure mode, cracking behavior, 

load-carrying capacity, deformation, energy absorption, and ductility were 

characterized and compared among the beam specimens. The results suggest 

that the use of seawater and RCA in concrete has insignificant effects on the 

flexural capacity of RC beams, especially if concrete strength is preserved by 

adjusting the mixture design. Indeed, altering reinforcement material had a 

strong influence on the flexural capacity and performance of the tested 

specimens: the GFRP-RC beams exhibited higher load-carrying capacities (on 

average 25%) but inferior deformational characteristics as compared to their 

steel-reinforced counterparts. Theoretical predictions were obtained for the 

flexural capacity, crack width, and deflection of steel- and GFRP-RC beams 

based on their corresponding design guides, and compared with the 

experimental results. 

 In the fourth study (Chapter 6), a life cycle cost analysis (LCCA) has been 

performed to establish the relative cost savings of structural concrete combining 

seawater, RCA, and GFRP reinforcement in high-rise buildings compared with 

the traditional RC concrete. The proposed combination of seawater, RCA, and 
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GFRP in structural concrete was found to achieve cost savings over a 20 to 30-

year period following initial construction. The life cycle cost (LCC) obtained 

for the proposed combination was approximately 50% less than that of the 

conventional counterpart (i.e., concrete with freshwater, natural aggregates, and 

black steel) based on a 100-year study period. Results were found to be highly 

sensitive to the assumed discount rate: the proposed combination achieved cost 

savings only with a real discount rate (𝑟) of 5.9% or higher. The differences in 

concrete mixture cost, however, appeared to have insignificant influence on the 

ultimate LCCA results compared to those obtained from altering the 

reinforcement material. 

 The fifth study (Chapter 7) carried out a life-cycle cost analysis on structural 

concrete with more focus on the reinforcement material and considering a 

special type of RC structure (water chlorination tank). A comparison was 

established between four concrete reinforcing materials, namely, black steel, 

epoxy-coated steel, stainless steel, and GFRP through a 100-year analysis 

period. The results of this study suggest that the use of non-corrosive 

reinforcement helps achieve a considerable long-term cost saving. LCCA 

showed that GFRP becomes more economical than black steel in 35 years 

following construction. The net present cost (NPC) obtained for the GFRP-

reinforced concrete was approximately 43% lower than that of the black steel 

reinforced concrete. The use of stainless steel also had a potential advantage but 

was less cost-effective than GFRP, with a 50-year payback period and an NPC 

25% lower than that of the conventional design. Epoxy coated steel also shows 

a long-term cost benefit when compared to black steel, with approximately 11% 

reduction in NPC and 15-year extension in the service life. Sensitivity analyses 
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were performed to assess the effects of the analysis period, discount rate, 

construction costs, concrete strength, and the use of supplementary cementitious 

materials on the LCCA outcomes. 

8.2 Future Outlook 

If future building codes and standards were to permit seawater for mixing and 

curing concrete, and if recycled aggregates could be used without pre-washing with 

freshwater, we could save critical resources, especially in coastal areas where the 

impact of rapid infrastructure growth and climate change are most pronounced. Indeed, 

the technology developed over the last two decades has facilitated the use of FRPs to 

replace steel in RC structures especially when durability is of concern. Accordingly, 

this research promotes the use of a more sustainable concrete that utilizes non-corrosive 

reinforcement to save critical resources. 

Nonetheless, the current thesis merely represents a step forward towards 

completely verifying the proposed combination (seawater + RCA + GFRP) in RC 

structures from technical, economic, and environmental standpoints. Based on the 

limitations of this research, the following topics are encouraged for future studies: 

(i) Investigate the structural performance of seawater-mixed recycled-aggregate 

concrete but with the use of other composite materials (e.g., Basalt-FRP). 

(ii) Shear, torsional, and fatigue behaviors of seawater-mixed recycled-aggregate 

concrete beams with FRP reinforcement. 

(iii) Long-term behavior of seawater concrete elements (decks, girders, pile caps, etc.) 

reinforced with FRP composite materials. 

(iv) Life cycle assessment of structural concrete of the proposed combination 

(seawater + RCA + GFRP).  
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