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ABSTRACT 

 

KHAN, MUHAMMAD ASIF., Doctorate : January : 2020, 

Doctorate of Philosophy in Electrical Engineering 

Title: Framework for Content Distribution over Wireless LANs 

Supervisors of Dissertation: Ridha, Hamila. 

 

Wireless LAN (also called as Wi-Fi) is dominantly considered as the most pervasive 

technology for Intent access. Due to the low-cost of chipsets and support for high data 

rates, Wi-Fi has become a universal solution for ever-increasing application space 

which includes, video streaming, content delivery, emergency communication, 

vehicular communication and Internet-of-Things (IoT).   

Wireless LAN technology is defined by the IEEE 802.11 standard. The 802.11 

standard has been amended several times over the last two decades, to incorporate the 

requirement of future applications. The 802.11 based Wi-Fi networks are 

infrastructure networks in which devices communicate through an access point. 

However, in 2010, Wi-Fi Alliance has released a specification to standardize direct 

communication in Wi-Fi networks. The technology is called Wi-Fi Direct. Wi-Fi 

Direct after 9 years of its release is still used for very basic services (connectivity, file 

transfer etc.), despite the potential to support a wide range of applications. The reason 

behind the limited inception of Wi-Fi Direct is some inherent shortcomings that limit 

its performance in dense networks. These include the issues related to topology 

design, such as non-optimal group formation, Group Owner selection problem, 

clustering in dense networks and coping with device mobility in dynamic networks. 
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Furthermore, Wi-Fi networks also face challenges to meet the growing number of Wi-

Fi users. The next generation of Wi-Fi networks is characterized as ultra-dense 

networks where the topology changes frequently which directly affects the network 

performance. The dynamic nature of such networks challenges the operators to design 

and make optimum planifications. 

In this dissertation, we propose solutions to the aforementioned problems. We 

contributed to the existing Wi-Fi Direct technology by enhancing the group formation 

process. The proposed group formation scheme is backwards-compatible and 

incorporates role selection based on the device’s capabilities to improve network 

performance. Optimum clustering scheme using mixed integer programming is 

proposed to design efficient topologies in fixed dense networks, which improves 

network throughput and reduces packet loss ratio.  A novel architecture using 

Unmanned Aeriel Vehicles (UAVs) in Wi-Fi Direct networks is proposed for 

dynamic networks. In ultra-dense, highly dynamic topologies, we propose cognitive 

networks using machine-learning algorithms to predict the network changes ahead of 

time and self-configuring the network. 
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CHAPTER 1 : INTRODUCTION 

 

Wireless Local Area Networks (WLANs) also known as Wi-Fi (Wireless Fidelity) has 

become a choice of communication in homes, offices and public areas due to the cost-

effective deployment of Wi-Fi networks, its large-scale implementation and 

availability of Wi-Fi devices e.g. smartphones, consumer electronics and industrial 

sensors. 

Today almost all digital devices such as laptops, smartphones, personal digital 

assistants (PDAs), notebook and tablets come with pre-installed Wi-Fi chips. Due to 

its growing inception in the market, new attractive applications have found Wi-Fi as a 

potential candidate technology. Hence, Wi-Fi is being used in modern Internet-of-

Things (IoT) networks, transportation and medical applications. 

1.1 Motivation and Background 

Wi-Fi has experienced enormous growth in the last two decades. The first standard of 

Wireless LANs, the IEEE 802.11 [1] was released in 1997 which defines the Physical 

(PHY) and Medium Access Control (MAC) layers and supported low data rates of up 

to 2 Mbps. The standard was proceeded by subsequent amendments [2-10] for 

enhanced supports. These legacy WLAN standards [2, 3, 11] were designed to 

support best-effort services which were common in that era.  

However, there has been an increasing trend in multimedia-based applications causing 

a dramatic increase in video traffic. According to Cisco VNI (Visual Networking 

Index) released in February 2019 [12], video traffic will be 79% of total mobile data 

traffic by 2022, whereas an average smartphone will generate 11GB of mobile data 
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per month with more than 60% of traffic via Wi-Fi networks. There are also 

staggering predictions about the number of Wi-Fi-enabled mobile devices. It is 

predicted that mobile data traffic will be growing much faster than traffic over the 

fixed networks, due to the wide availability of smartphones and ubiquitous wireless 

networks e.g. 4G or Wi-Fi. The VNI report forecasts 5.7 billion mobile users and 12.3 

billion mobile-connected devices by 2022. 

The rapid increase in multimedia-based services and applications over wireless 

devices have brought new challenges to existing wireless networks. These 

applications require special treatment from the wireless networks in terms of 

bandwidth and Quality of Service (QoS).  In addition to QoS requirements by such 

applications, there is a new paradigm shift in terms of Wi-Fi usage. Wi-Fi, beyond the 

traditional home and office networking solution, is now used as a common method of 

Internet access and content distribution in large geographical areas such as sports 

stadiums, convention centres, airports, metros, and shopping malls.  

Wi-Fi is also enjoying direct connectivity solutions using Wi-Fi Direct [13] for simple 

applications such as content sharing, however, the direct communication between 

devices encounters several challenges. Wi-Fi Direct at this stage supports only small 

networks and simple data sharing applications. 

1.2 Research Problem 

The deployment of dense networks, the growing use of multimedia contents and 

direct communication between devices, are the new paradigms where existing WLAN 

standards face severe challenges. 
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In dense networks, the access point (AP) has insufficient capacity to serve a large 

number of devices. As wireless is a shared medium, hence the performance degrades 

with the increasing number of devices. To reduce the congestions on APs, device-to-

device (D2D) networking is introduced using Wi-Fi Direct technology. However, the 

Wi-Fi Direct technology has several shortcomings in terms of scalability and 

connection establishment delay. The specification of Wi-Fi Direct [13] defines the 

mechanism of how to form network clusters but leaves the selection of the cluster 

head (“Group Owner” in Wi-Fi Direct terminology) unaddressed. The cluster head 

selection is of crucial importance for performance and lifetime of the network. 

Moreover, the cluster formation (“group formation” in Wi-Fi Direct terminology) 

mechanism is also very limited and does not support scalability to be deployed in 

large D2D networks. 

In dense WLAN networks, the coverage regions of APs overlap, which causes 

unnecessarily frequent inter-BSS handovers. These undesired handovers cause 

connection disruptions which limit the overall performance of the network and affect 

the quality of service. Secondly, the association of users in overlapping BSS is also a 

challenge to balance the load on the access points for optimal performance. 

1.3 Research Objectives 

This dissertation aims to investigate the most recent developments in WLAN. The 

study systematically reviews the legacy and recent standards for WLAN networks, the 

limitations of these standards in future networks and the state-of-the-art solutions to 

these problems.  The goal of this research project is to design a framework, which 

addresses the aforementioned issues. The framework covers the physical and link 
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layers of the OSI reference model in addition to novel schemes using cross-layer 

design.  

The following research objectives have been defined for this work. 

a) Designing dense Wi-Fi networks using device-to-device (D2D) 

communication techniques such as Wi-Fi Direct. 

b) Choosing efficient relaying schemes to realize multi-hop networks. 

c) Proposing optimal clustering schemes in ultra-dense scenarios using Wi-Fi 

Direct for cluster formation and re-formation. 

d) Proposing novel architecture to cope with user mobility in highly dynamic and 

dense networks. This includes the use of UAVs. 

e) Designing self-organizing cognitive networks using machine learning 

techniques. 

1.4 Main Contributions 

There are several important areas where this research makes an original contribution. 

The study offers some important insights into the existing WLAN standards (medium 

access techniques, traffic prioritization), cooperative communication and D2D 

networking protocols for reliable and efficient multicasting. The issues related to the 

standard Wi-Fi Direct technology has been addressed. A comprehensive study has 

been presented to explain these issues and their impact on network performance. 

These include missing criteria for the selection of Group Owner (GO), the lack of 

scalability due to inefficient group formation mechanism and group reformation 

mechanism. 

This research has the following specific contribution to the body of knowledge: 
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 A GO selection scheme has been proposed to select the best GO among a set 

of devices based on the device’s capabilities such as RSS, battery life and the 

number of neighbours. 

 An enhanced group formation scheme is proposed to reduce the group 

formation delay. The enhanced group formation scheme also incorporates the 

possibility to select a backup GO for group reformation. 

 Group Owner selection and clustering of dense Wi-Fi Direct networks using 

Mixed Integer Programming (MIP) are proposed termed as “optimal group 

formation”. The optimal group formation also supports multiple groups’ 

formation using multiple GOs and devices’ allocation to the selected GOs. The 

optimal scheme is also used to enhance multicast traffic. 

 A novel scheme is proposed to use Unmanned Aerial Vehicles (UAVs) for 

highly dynamic networks to cope with devices’ mobility including both GO 

and clients’ mobility. 

  Cognitive network architecture is proposed to solve the handover prediction 

and access point (AP) selection problem in dense networks involving 

overlapping BSSs (OBSS). The proposed cognitive network architecture is 

based on machine learning algorithms to implement complex prediction 

functions in ultra-dense, highly dynamic systems. 

 The aforementioned contributions are validated using realistic simulation 

approaches and results are validated by comparing with other state-of-the-art 

schemes. 

1.5 Thesis Organization 
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The dissertation has been organized into the following chapters: 

CHAPTER 1 gives a brief overview of the dissertation. The chapter begins with the 

motivation and contextual background, formulates the problems, outlines the research 

objectives and presents the contribution of this dissertation. 

CHAPTER 2 presents a historical overview of WLAN technology and outlines the 

characteristics of next-generation WLAN (NG-WLAN) networks. It also covers, in 

details, the device-to-device (D2D) paradigm in WLAN networks. 

CHAPTER 3 covers the major portion of this dissertation. It includes three important 

contributions mainly related to Wi-Fi Direct: the group owner election, enhanced 

group formation and optimal clustering scheme in ultra-dense networks.  

CHAPTER 4 presents a novel UAV-aided network architecture i.e. to deploy UAVs 

(Unmanned Aerial Vehicles) in highly dynamic dense Wi-Fi networks for efficient 

network topologies. 

CHAPTER 5 outlines the state-of-the-art in machine learning (ML) applied to Wi-Fi 

networks. It explains how ML techniques can be used to efficiently solve two 

challenging problems that cannot be efficiently solved using traditional analytical 

approaches. 

CHAPTER 6 draws conclusions, provides a brief summary and critique of the 

findings. It also discusses the implication of the findings to future research works in 

this area.   
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CHAPTER 2 : LITERATURE REVIEW 

 

Wireless Local Area Networks (WLANs) which are more commonly known as Wi-Fi 

(Wireless Fidelity) networks are based on IEEE 802.11 family of standards. Since the 

first draft of the 802.11 standard [1] released in 1997, there has been a huge 

development to support new applications and services. Besides a series of 

enhancements in 802.11 standard introduced by IEEE for infrastructure networks, Wi-

Fi Alliance has developed an infrastructure-less device-to-device (D2D) architecture 

for direct communication in Wi-Fi networks. 

This chapter covers the following topics: 

 Wireless LANs and the IEEE 802.11 standards 

 Cooperative Relaying schemes for D2D communication 

 Wi-Fi Direct specification for D2D networking 

 UAV-Aided communication in Wi-Fi networks 

 Self-Organizing Networks (SON) using Machine Learning techniques 

 Multicasting in Wi-Fi 

2.1 Network Architecture 

Figure 2.1 illustrates the network architecture of Wireless LANs. The basic entity of a 

Wi-Fi network is called “Basic Service Set” (BSS). A BSS consists of an Access 

Point (AP) and one or more Wi-Fi-enabled devices called stations (STAs). Two or 

more BSS’s connect to a wired network to form an Extended Service Set (ESS). 
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Figure 2.1 WLAN architecture. 

 

2.2 The IEEE 802.11 Standards 

The 802.11 standard has been evolved through a series of developments and 

improvements. The first release of IEEE 802.11 [1] that defines the PHY and MAC 

layers supports very low data rates of up to 2 Mbps. The legacy WLAN standard does 

not efficiently support multimedia transmission, because of several reasons: (i) the 

transmission rates impose bottleneck on the maximum achievable rate regardless of 

the efficiency of MAC layer protocol, (ii) support for only best-effort services (traffic 

prioritization is not supported) and (iii) inefficient and unreliable multicast 

transmissions. These issues were addressed by the subsequent amendments to the 

802.11 standard, which mainly focused on the PHY layer. The IEEE 802.11b [3] 

increased the supported data rates to 11 Mbps. The data rates were further increased 
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to 54 Mbps in 802.11a [2] and 802.11g [3] and finally to 250 Mbps in 802.11n 

standard. 

The legacy WLAN standards IEEE 802.11 use Distributed Coordination Function 

(DCF) for medium access. DCF was designed for best-effort services and lack support 

for QoS required by video and voice traffic. Later in 2005, IEEE approved IEEE 

802.11e [4] standard that introduced a new channel access technique called Enhanced 

Distributed Channel Access (EDCA). EDCA divides incoming traffic streams of 

different priorities into four access categories (AC) with different contention windows 

assigned at MAC layer. The four access categories are AC_VO, AC_VI, AC_BE and 

AC_BK representing AC for voice, video, best effort and background traffic 

respectively. EDCA provides the delay-sensitive voice and video traffic more 

frequent access to the shared wireless medium to satisfy their performance needs. The 

traffic classification scheme using EDCA is presented in Figure 2.2. 

The assignment of different priorities in EDCA is implemented using different 

contention window size. The contention parameters can be tuned to optimal values for 

improved performance [14]. 
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Figure 2.2 EDCA channel access scheme. 

 

To support higher data rates required by high throughput multimedia applications the 

IEEE 802.11n [6] standard was proposed. The 802.11n increased data rates 

tremendously up to 600 Mbps using Multiple Input, Multiple Output (MIMO) 

technology. The 802.11n also introduced some enhancements at the MAC layer e.g. 

Aggregate MAC Service Data Units (A-MSDU), MAC Protocol Data Units (MPDU) 

and Block Acknowledgement (BA). The 802.11n extensively increased data rates, 

however; the standard has some limitations inherited from its predecessor standards. 

The legacy and 802.11n standard support only one-to-one communication in 

Infrastructure mode at both uplink and downlink. To overcome this limitation, IEEE 

802.11ac [9] was developed to allow Access Point (AP) to send multiple independent 

(eight) streams to multiple devices at the downlink simultaneously using Multi-User 

MIMO. 
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In order to allow efficient and robust transmission of multicast flows in Wireless 

LAN, the IEEE 802.11aa standard [8] is proposed. The 802.11aa standard defines new 

mechanisms to support robust audio and video transmission: (i) Stream Classification 

Service (SCS), which provide intra-flow prioritization for graceful degradation of 

video quality (ii) interworking with IEEE 802.1AVB [15] for end-to-end reservation, 

(iii) Overlapping Basic Service (OBSS) management for coordination between AP’s 

and (iv) Group Addressed Transmission Service (GATS) for efficient multicasting. 

The intra-AC stream classification service of 802.11aa standard is illustrated in Figure 

2.  

 

 

 

Figure 2.3 Intra-AC streams classification in IEEE 802.11aa. 

 
 

The 802.11aa standard defines different mechanisms for link-layer multicast 

transmission; however, it does not provide any guidelines on which of these 

AIFS [3]
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mechanisms shall be used in a given scenario. Table 2.1 summarizes a historical 

overview of developments and improvements in the 802.11 standard. 

 

Table 2.1 Summary of IEEE WLAN standards. 

 

IEEE Standard Year Purpose 

802.11 [1] 1997 The first standard that specifies the PHY and MAC layers of the 

Wireless LAN technology, FHSS and DSSS 

802.11a [2] 1999 54Mbps, 5GHz band, OFDM 

802.11b [16] 1999 11Mbps, 2.4GHz, DSSS only. 

802.11g [3] 2003  54Mbps, 2.4GHz standard. For transmission over short distances 

802.11e [4] 2005 Quality of Service support for WLANs.  

802.11-2007 [5] 2007 Include amendments a, b, g, e 

802.11n [6] 2009 High throughput improvement using MIMO, 250Mbps 

802.11aa [8] 2012 QoS enhancement 

802.11-2012 [7] 2012 Include amendments n, aa and others 

802.11-ac [9] 2012 Very high throughput, MU-MIMO, wider channels, 5GHz, 

433Mbps 

802.11-2016 [10] 2016 Revision of IEEE 802.11-2012 

802.11ax [17] 2017 High Efficiency WLANs 

 

2.3 Cooperative Relaying 

Cooperative relaying is used to increase reliability; data rates and coverage range by 

allowing nodes to receive or recover data from surrounding nodes. Cooperation 

among nodes improves the overall system capacity to meet the Quality of Service 

(QoS) requirements of the given application or service. 

Cooperative relaying can provide several advantages in communication networks: 
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 Re-transmission of lost packets 

 Increased throughput 

 Increased coverage augmentation 

 Cooperative multicasting 

When the feedback channel from the source to the destination is not implemented or 

suffered from significant fading, the source may send the data packets through a relay 

node. In the case of Wireless LAN, the channel between the AP and the relay node is 

shared between the AP and relay nodes and hence the time slots are divided between 

the AP and relay. In [18, 19], the optimal time allocation between the source and 

relays is proposed.  

When multicasting is used, the multicast group members can be elected as a relay, 

such as illustrated in Figure 2.4. However, such implementations require several 

considerations. If the nodes with the best links to the source are selected as relays, this 

will result in higher data rates on source-relay channels. Whereas, if the relay-

destinations channels are more faded causing lower rates selection on relay-

destination channels. Such a situation will result in bottlenecks at relay nodes. 

Moreover, authors in [20] stated that QoS can be improved by allowing end nodes to 

receive data from both relay and source thus exploiting diversity. 

Relay selection can be implemented in several ways. In [21], the relay is selected by 

the nodes by monitoring “Service Request Message (SRM)” packets sent by the relay 

to AP. The relay is selected based on the highest transmission rates. However, the 

performance of relay in this scheme can be degraded when the source to relay channel 

is faded such that it can no longer support high data rates. 
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Figure 2.4 Multicasting with cooperative relaying. 

 

Another problem of using the relay nodes in Wireless LANs is the limit on the 

number of relays in the same wireless range due to limited wireless channels, the so-

called social channels. If the relay uses the same channel as the AP, the channel is 

shared between the AP and relay on a time basis, which can limit the overall system 

performance. It is proposed in [21] to assign different channels to each relay in the 

same interference range. In [22], the authors proposed to assign different sub-carriers 

to relays in the same interference range to transmit data at the same time. If relay uses 

Omni-directional radios, then selecting spatially separated relays can be useful to 

minimize the number of relays [23]. 

The number of relays required decreases if the transmit power of relays increases 

[24]. The authors in [24] also showed that decreasing the number of relays resulted in 

improved video quality because of increased bit rate. 

Authors in [25-27] extended the cooperation among nodes such that instead of using 

selected relays, all nodes receiving data can forward the received data if the nodes 
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experience SNR higher than a specified threshold value. Similarly, each node receives 

multiple copies of the same data packet. This is analogous to Multiple Input – 

Multiple Output (MIMO) diversity system. In [28], authors used Maximum Ratio 

Combining (MRC) at the relay node to combine signal received from the source and 

another relay, amplify and transmit to the receiver. The receiver then combines the 

signal from two different relays using the MRC scheme. 

The increase in the emergence of multi-home devices that are connected to long-range 

networks such as 3G/4G and short-range networks such as WLAN, several solutions 

are proposed. In [29], authors studied the performance of a dual-hop network with 

fixed gain relay over Nakagami-m fading channel. The authors also consider the 

mobility of the relay and destination nodes, while the source is considered as a fixed 

node. The performance was measured using outage probability and bit error rate. 

In [30], the authors presented the closed-form expressions for Average Outage 

Duration (AOD) of multi-hop regenerative systems. Average Outage Duration (AOD) 

is defined as the time in seconds on average that any of the relays in the multi-hop 

system remains in outage i.e. the received SNR drops below a pre-defined threshold. 

The model can be applied to any fading channel including Rayleigh, Rician and 

Nakagami. The results show that the relayed path has a smaller AOD than the direct 

path. Moreover, the performance can be further improved if the number of relays 

increases at a fixed distance. For high values of transmit power, the number of hops 

becomes less relevant. It is worth noting that such an evaluation of the outage 

duration should be carefully treated. The increasing number of relay nodes will 

introduce transmission delay due to regeneration of the transmitted symbols at each 
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relay node [31]. Furthermore, AF relaying can outperform the DF protocol if the relay 

is close to the destination.  

In [32], authors presented the concept of multi-user diversity (MUDiv) and an 

estimation of the amount of feedback required to share feedback information 

(Channel States Information - CSI) among users with the solution to reduce feedback. 

The model used the assumption of i.i.d. Rayleigh fading channels. The authors also 

proposed a threshold optimizing scheme to attain a certain level of the outage. 

In [33], the authors investigated the optimal allocation of power over relay paths for a 

given power budget assuming Rayleigh fading channels. The authors provided closed-

form expressions for outage probability and optimal power allocations to source and 

relay nodes. The authors also evaluated the relay path using the proposed power 

allocation and concluded that the AF relaying system can outperform the DF relaying 

without power optimization. In [34], the authors approximated the ergodic capacity of 

MIMO Rayleigh fading channels in low SNR regimes. Closed-form expressions for 

the ergodic capacity assuming full CSI at both transmitter and receiver are derived. 

The authors also proposed opportunistic transmission in the low SNR region, called 

ON-OFF Transmission. Further studies of the performance of such relaying networks 

can be found in [35-40]. 

2.4 D2D Networking using Wi-Fi Direct 

In the current deployment of Wi-Fi infrastructure mode, devices connect to a common 

Access Point (AP) to connect to other Wi-Fi devices. 
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Wi-Fi Alliance 1 introduced in 2010 the Wi-Fi Direct technology to enable Wi-Fi 

devices to directly connect to each other without connecting to an AP. Wi-Fi Direct, 

initially called Wi-Fi Peer-to-Peer (Wi-Fi P2P), is built upon the IEEE 802.11 

Infrastructure mode and offers a direct, secure and rapid device-to-device 

communication. The recent Wi-Fi P2P Technical Specification was released in 2016 

(version 1.7).  

Direct communication between devices i.e. D2D communication can bring several 

potential benefits. Direct communication between nodes will suffer from reduced 

delay as compared to relayed path through AP. This also leaves more space for other 

devices to transmit thus reducing queuing and contention delay for other devices in 

the network. The Wi-Fi Direct is becoming an interesting and suitable candidate for 

communication in several application domains including content distribution, 

resource sharing, emergency communication, alert dissemination, online gaming, 

proximity-based advertising and social networking. Wi-Fi Direct enables Wi-Fi 

devices such as smartphones, laptops, smart TVs, printers, cameras and other 

appliances to inter-connect quickly and conveniently without incorporating an Access 

Point (AP).  Wi-Fi Direct is built on the infrastructure mode of WLAN. Wi-Fi Direct 

connections are secured with Wireless Protected Access - 2 (WPA2) [41]. Wi-Fi 

Direct supports the same high data rates as in Wi-Fi (up to 250 Mbps). The range of 

Wi-Fi Direct connection is 200 meters (this is theoretical range and practical range 

might be nominal of this).  The specifications also require 1:1 connection mandatory 

                                                 

 

 
1 http://www.wi-fi.org/ 
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for Wi-Fi Direct certified devices, whereas keeping 1:N connection optional feature. 

In the subsequent sections, we provide a detailed overview of Wi-Fi Direct features. 

The functional entity of Wi-Fi Direct architecture is called a "P2P Group" that is 

functionally equivalent to a Basic Service Set (BSS) in Legacy Wi-Fi network. A P2P 

Group consists of a P2P Group Owner (P2P GO) and zero or more P2P Clients. The 

P2P GO (sometimes referred to as "GO") is also called a Soft-AP. AP functions are 

implemented within Wi-Fi P2P devices. A P2P device can dynamically take the role 

of an AP or client. The roles of P2P Devices (i.e. P2P GO and P2P Client) are usually 

negotiated before creating a P2P Group and remain fixed while the P2P Group is 

active. Figure 2.5 illustrates the different roles of P2P Devices. 

Device Discovery is a mandatory feature to be supported by all P2P Devices. Prior to 

forming a P2P Group, a P2P Device runs the Device Discovery procedure to detect 

the presence of other P2P Devices in its wireless range. The procedure consists of two 

distinct phases: Scan and Find. In the Scan phase, the P2P Device performs traditional 

Wi-Fi scan (passive scan) through all supported channels in order to collect 

information about the surrounding devices, P2P Groups and legacy Wi-Fi networks. 

Once the Scan phase is completed, the device enters into the Find phase. In the Find 

phase, the P2P Device alternates between two states: Search and Listen. In the Search 

state, the P2P Device sends one or more Probe Request (PREQ) frames on the social 

channel namely channels 1, 6 and 11 in the 2.4 GHz band. 
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Figure 2.5 Wi-Fi direct architecture. 

 

In the Listen state, the P2P Device dwells on one of the social channels (1, 6 and 11) 

called the Listen channel and waits for Probe Request (PREQ) frames from other P2P 

Devices. Thus, the success of the Find phase is that when two devices come to a 

common channel to communicate. It is noticeable that the P2P Device Discovery 

process can induce some delay to let a P2P Device discovers all P2P Devices in its 

vicinity. This delay, termed as "Device Discovery delay", can be relatively high if 

several P2P Devices are simultaneously performing Device Discovery in the same 

wireless range. Figure 2.6 illustrates the P2P Device Discovery procedure in Wi-Fi 

Direct. 

 



  

   

20 

 

 

 

Figure 2.6 Device discovery procedure in Wi-Fi direct. 

 

Service Discovery is an optional procedure in Wi-Fi Direct. The procedure starts after 

the Device Discovery and prior to the Group Formation procedure. It allows a P2P 

Device to connect to other P2P Devices only if the latter offers the intended service. 

Using the Service Discovery procedure, a P2P Device advertises available services 

using link-layer Generic Advertisement Service (GAS) protocol. Wi-Fi Alliance has 

defined a set of standardized services supported by Wi-Fi Direct such as Play, Send 

and Print. 

Following a successful Device Discovery (mandatory procedure) and Service 

Discovery (optional procedure), P2P Devices can establish the P2P Group. During the 

Group Formation, the device that will act as GO is determined. As described in Fig. 3, 

three types of P2P Group Formation schemes are possible in Wi-Fi Direct: (1) 

Standard Group Formation (2) Autonomous Group Formation and (3) Persistent 

Group Formation. 
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In Standard Group Formation, presented in Fig. 3(a) two P2P Devices negotiate the 

role of the P2P GO. The GO Negotiation is a three-way handshake. During the 

handshake, the two devices send to each other a randomly chosen numeric value 

called "Intent value". The Intent value ranges from 0 to 15, and it measures the desire 

of the P2P Device to be the P2P GO. The P2P Device sending the higher Intent value 

shall become GO. In case both P2P devices send equal GO Intent values, a tie-breaker 

bit is used for decision and the device with tie-breaker bit set to 1 shall become GO. 

Fig. 4 illustrates the Intent value comparison between two P2P devices during 

Standard Group Formation. 

The P2P Device selected as P2P GO shall start a P2P Group session. The other P2P 

Device can then connect to the P2P GO to obtain credentials and exchange data. 

Similarly, other P2P Devices and legacy Wi-Fi devices can join the P2P Group as 

clients. 

In Autonomous Group Formation, depicted in Fig. 3(b) the role of GO is not 

negotiated. Instead, a P2P Device announces itself as GO and starts sending Beacons. 

This process is much similar to the legacy Wi-Fi in which an AP directly sends 

Beacons into the network to become discoverable. The Autonomous Group Formation 

is simpler and faster than Standard Group Formation. 

In Persistent Group Formation, depicted in Fig. 3(c), a P2P Device sends an invitation 

to another P2P Device, which was previously connected to it in a P2P Group, in order 

to re-instantiate the P2P Group. This is accomplished using the P2P Invitation 

Request and P2P Invitation Response frames. The role of each P2P Device shall 

remain the same as in the previously formed P2P Group. To establish a Persistent 

group, the P2P Devices must declare the P2P Group as Persistent during the Standard 
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or Autonomous formation of the group. A flag bit inside the P2P Beacons, Probe 

Response and GO Negotiation frames is used to indicate that the P2P Group is 

Persistent or not. If the flag is not set during Group Formation procedure, the P2P 

Devices cannot re-instantiate a Persistent group in future and must start a Standard or 

Autonomous group. 

The Wi-Fi Direct specification defines the Standard and Persistent Group Formation 

procedures only between two P2P Devices. Other P2P Devices can only join, as 

clients, an already-formed P2P Group. 

Legacy Wi-Fi uses power-saving scheme using Sleep and Active modes for Wi-Fi 

STAs (clients). Most of the traditional APs are permanently connected to a regular 

power source, and thus, they have no need for any power-saving feature. However, in 

Wi-Fi Direct, the P2P GO, which acts as a Soft-AP, is a battery-powered device and 

have a limited lifetime. Hence, Wi-Fi Direct introduces two novel schemes for power 

saving in the P2P Devices. These schemes are (1) Opportunistic Power Save (OppPS) 

and (2) Notice of Absence (NoA).  

In OppPS scheme, the GO can save power when its clients are in the Sleep mode. The 

GO announces its presence period called "CTWindow". At the end of the CTWindow, 

if all nodes are in Sleep mode, the GO can also go to Sleep mode until the next 

Beacon.  

 

 

 

 

 



  

   

23 

 

 

 

Figure 2.7 Group formation schemes. 

 

However, at the end of CTWindow, if one of the P2P Client nodes is in Active mode, 

then the GO must remain active until the next Beacon. 

In the NoA scheme, the GO announces via Beacons and Probe Response frames, an 

"absence period". During the absence period, its clients cannot access the channel, 

thus the GO shut down its radio to save energy used in transmission or reception. The 

absence period is announced in Beacons using NoA schedule, consisting of four 

parameters:  

1. Duration - the length of absence period,  

2. Interval - the time between two consecutive absence periods,  

3. Start Time - the start time of the first absence period after the current Beacon, 

and  

4. Count - the number of absence periods in the current NoA schedule.  

The Wi-Fi Direct specification [13] does not define the values of these parameters. 

Wi-Fi Direct requires all P2P Devices to implement Wi-Fi Protected Setup (WPS) 

[42] in order to secure the connection establishment process and communication in 
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the P2P Group. In WPS scheme, the P2P GO implements the internal Registrar 

whereas the P2P Client implements Enrollee. The WPS scheme works into two 

phases. In phase 1, the internal Registrar generates and issues the network credentials 

to Enrollee. In phase 2, the Enrollee (P2P Client) reconnects to the internal Registrar 

(P2P GO) using the new credentials. 

Wi-Fi Direct is primarily designed to enable device-to-device communication for 

short-range (SR) communication without any existing infrastructure. In this section, 

we discuss several issues and challenges of Wi-Fi Direct implementation and 

applications. We also highlight the potentials of Wi-Fi Direct and comparison with 

other SR technologies. 

 Energy Efficiency 

Wi-Fi Direct devices will more likely run on batteries and therefore energy efficiency 

is an important factor. Although the protocol includes two new power-saving schemes 

(i.e. OppPS and NoA) for P2P GO as discussed in Section 2.1.5, energy efficiency is 

still a challenge in Wi-Fi Direct. The OppPS scheme can save energy only in low 

traffic conditions whereas the NoA scheme can be implemented to save energy in 

various traffic conditions. However, NoA scheme requires the computation of the 

optimum length of absence periods. Larger duration of absence periods will save 

more energy but will result in less throughput and vice versa. 

 GO Selection and Clustering 

Wi-Fi Direct defines the Group Formation procedure to be used between two P2P 

Devices. The Wi-Fi Direct specification does not define the mechanism when 

multiple P2P Devices simultaneously start Device Discovery and Group Formation. 
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As per the current Group Formation procedure, such a situation will result in a 

formation of several P2P Groups, with most of the groups consisting of two devices. 

This is not desired in several applications like content-centric networks (CCN).  

 Multi-hop and Scalability 

Wi-Fi Direct currently supports single-hop communication. Using P2P Concurrent 

mode, a P2P Client in one P2P Group can serve as a P2P GO in another P2P Group. 

An example of such topology is a laptop being a P2P Client in one P2P Group and 

simultaneously connected to a printer in another P2P Group. The P2P Concurrent 

Device can be used as a relay node by becoming a GO for another set of devices to 

form a multi-hop network. This relay node will be responsible to receive and forward 

packets between the AP and the P2P Clients. The detailed operation of concurrent 

P2P device is not specified in the Wi-Fi P2P specification. However, it can increase 

the scalability of the Wi-Fi Direct network. 

 Load Balancing 

When defining cluster size, the important parameter to consider is how many clients 

can be better served by the P2P GO. Even if the best GO is selected, the 

characteristics of the traffic sent by devices cannot be estimated in several 

applications, hence we need some kind of load balancing mechanism to implement on 

P2P GO in order to increase the throughput and reduce the end-to-end delay. 

Examples of load balancing techniques are given in [43-45]. 

 Coping User Mobility 
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The current applications of Wi-Fi Direct are only limited to static environments, 

where users have very limited movement. However, the random mobility of users can 

lead to the formation of very unstable P2P Groups. The connection breaking and 

Group Formation delays might not be desired in some application. Therefore, the 

mobility of both P2P GO and P2P Clients is a challenging problem. Mobility 

parameter can be considered during the GO election, in order to avoid tearing down of 

the P2P Group when P2P devices move. However, in several multi-hop scenarios, 

mobility can be opportunistically used to provide services. For instance, the 

dissemination of local marketing advertisements [46] can be extended to exploit the 

user's mobility to spread the number of messages sent to the target users. Similar 

applications can be found in alert dissemination as in [47, 48]. 

2.5 Dynamic Topologies and UAV-Aided Architectures: 

UAVs in communication networks are preferred due to their mobility, flexibility, and 

adaptive altitude [49]. Authors in [50] proposed the 3D placement of UAVs to 

maximize the total coverage area using circle packing theory. The normalized results 

obtained in this study exhibits a general coverage performance versus the number of 

UAVs deployed in the network. Authors in [51] formulated the placement of the base 

station in 3-dimensional space as a Mixed-Integer Non-Linear Problem (MINLP), 

with the objective to maximize the coverage of the base station. The proposed scheme 

considers cellular networks and it uses the Air-to-Ground (ATG) model proposed by 

ITU in [52] which is a function of the altitude of the UAV and the horizontal distance 

between UAV and mobile stations. In [53], authors used reinforcement algorithm to 

find the optimum placement of the UAV in 3D space to increase the coverage and 
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throughput. In the proposed scheme, an aerial base station is deployed to assist a 

number of ground base-stations. In case, the QoS on a ground base station is not met 

due to user mobility, it triggers the aerial base station to find and move to the 

optimum location in the air and take over the respective ground base station to serve 

users connected to it. In [54], authors studied the optimum placement of UAV-aided 

relay along the altitude to improve the reliability of dual-hop communication 

networks. Three performance metrics, bit error rate, outage probability and total 

power loss are studied, and numerical approximations are provided. However, the 

study is limited to a single user connected to UAV-aided relay. Moreover, the study 

considers a numerical approximation of the physical layer metrics, which might not 

exhibit the actual network performance and the QoS, delivered to the end-user. 

Authors in [55] showed that the end to end network throughput with UAVs as mobile 

relays can be significantly improved with optimum trajectory design. The authors 

performed Monte-Carlo simulations of the physical-layer model only. 

Unlike cellular networks, UAVs in SR communication networks such as IoT and Wi-

Fi networks are placed at very low altitude due to short communication range (5-10 

meters usually). Apart from the range limitation in Wi-Fi networks, the altitude in 

UAV placement is also considered less significant in Wi-Fi networks. For instance, 

according to [52], the coverage increases by 1-2% for each meter of altitude increase. 

Hence, slight changes in UAV altitude poses less impact on the coverage of Wi-Fi 

networks. The authors in [52] further demonstrated that by decreasing the UAV 

altitude, the SNR does not improve significantly. 

UAV-based communication in SR communication networks has been studied in [50, 

56, 57]. Authors in [49] stated that UAVs can be used in SR communication networks 
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such as IoT scenarios [58, 59] where the devices cannot communicate over long 

distances. Three potential benefits of UAV communication in SR communication 

networks are discussed in the state-of-the-art, i.e. improved coverage, high throughput 

and energy efficiency. In [57], the authors propose the use of UAV communication to 

extend the coverage of Wi-Fi networks. Authors in [56], propose to deploy UAVs as 

Wi-Fi hotspots to extend the coverage of the cellular networks. The UAVs are placed 

in 3D space such that it maximizes the aggregated SNR of all nodes. The study 

claimed up to 44% throughput gain. However, the authors did not consider the 

mobility of nodes. Authors in [60] investigated the throughput performance of point-

to-point aerial links in 802.11n Wireless LANs. The results show that throughput is 

not improved significantly. However, the authors in [61] further investigated the use 

of UAVs in infrastructure Wi-Fi networks and evaluated network throughput. The 

results obtained in [61] show a significant increase in the network throughput of IEEE 

802.11n. The results also show that the mobility of users greatly affects the 

transmission rates and thus the network throughput. 

Authors in [62] studied the throughput of UAV-aided wireless networks as an 

optimization problem. The aim is to maximize the minimum average throughput of all 

users by jointly optimizing the UAV trajectory and OFDMA resource allocation. A 

recent study on the UAV positioning in Wi-Fi networks is conducted in [63]. The 

authors proposed a Tabu search algorithm to determine the optimal position for the 

UAVs to improve network throughput. The study report 26% improvement in the 

average network throughput using the proposed scheme for UAV positioning. 

One of the benefits of UAVs in Wi-Fi networks is the potential to reduce energy 

consumption. The first logical reason to reduce energy consumption is UAV networks 
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is the reduction in transmit power of the devices if the distance between them is 

shortened. Authors in [64] show that the total transmit power of the devices can be 

minimized by placing the UAVs in the centre of the optimal clusters. Secondly, at 

short distances, the frame loss can be reduced which decreases the retransmissions, 

thus resulting in energy efficiency [65]. Authors in [66] further investigated the 

energy efficiency in an IoT network. The authors showed that the average transmit 

power of devices can be reduced by the optimal deployment of the UAVs. Authors in 

[50] studied the UAV-aided Internet-of-Things (IoT) to enable energy-efficient 

networks. The study considered K-means clustering algorithm to optimally cluster the 

network devices and find the optimal location of the UAVs. The study shows a 

reduction in total energy consumption. 

2.6 Cognitive Networks 

The large set of network parameters, the dynamic network topology, and the 

unpredictable behaviour of the wireless channel offer big challenges in designing 

optimal WLAN networks. In fact, very accurate and scalable analytical models may 

not characterize such complex systems. Recently, new cognitive network 

architectures using sophisticated learning techniques are increasingly being applied to 

such problems. In this chapter, data-driven machine learning (ML) schemes are 

proposed that efficiently address well-known problems in WLAN networks, i.e. 

throughput estimation, handover prediction and access point (AP) selection. 

Recently, a new centralized architecture has been proposed in the literature [67-69] 

based on Software Defined Network (SDN) [70] and Cognitive Networking (CN) [69, 

71]. Software-Defined Networks or SDN refers to the type of networks in which the 
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control and data forwarding parts are separated. In such architectures, the network 

devices such as switches, routers and access points act as non-intelligent data 

forwarding devices while the intelligent functions such as data routing are 

implemented in a central controller also called the SDN Controller. On the other hand, 

cognitive networking [69] refers to the network paradigm in which the networks 

automatically learns its behaviour and respond to network changes by actively taking 

decisions and planning network resources to achieve an end to end performance. 

Cognitive networks can be realized using both distributed and centralized 

architecture. A novel approach to realize cognitive networks is to adapt data-driven 

machine learning (ML) algorithms to address state-of-the-art challenges [72-74]. ML 

algorithms can be used for both network design [75-77] and network performance 

evaluation [78-81]. 

Several studies have been carried out to demonstrate the significance of machine 

learning in wireless communication in a range of applications [72-78, 80-84]. 

Supervised learning algorithms such as regression models [85], K-Nearest Neighbors 

(KNN) [86], and Support Vector Machines (SVM) [87, 88] can be applied in channel 

estimation, user localization [89] and energy learning [90]. Similarly, Bayesian 

learning [91] can be applied in multiple-input, multiple-output (MIMO) for channel 

learning [92] and spectrum sensing using Gaussian Mixture Models (GMM) [93], 

Expectation-Maximization (EM) [94] and Hidden Markov Model (HMM) [95]. 

Unsupervised learning algorithms such as K-means [96, 97] clustering can be used to 

build optimal topologies in Device-to-Device (D2D) networks for energy efficiency 

and overall network efficiency [98]. Principal Component Analysis (PCA) [99] and 

(ICA) [100] can be efficiently utilized in applications of anomaly detection, fault 
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isolation, and intrusion detection. Multi-Layer Perceptron’s (MLPs) [101, 102] as a 

sub-class of Artificial Neural Networks have been applied to several problems in 

next-generation wired and wireless networks in several applications [72, 73]. 

The literature review presented in this chapter provides a deep understanding of the 

state-of-the-art in the respective areas. The following chapters present the original 

research conducted. 
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CHAPTER 3 : ENHANCED GROUP FORMATION IN WI-FI DIRECT  

 

In this chapter, we identify the issues related to the standard group formation 

procedure in the Wi-Fi Direct protocol that limit the performance of the protocol in 

several applications. Following the identification of these issues, we present our 

proposed modifications to improve network performance. 

3.1 Group Owner Election 

The P2P GO negotiation procedure starts between two devices where one becomes a 

GO. The criterion for GO is a single byte numeric number called Intent Value that 

ranges from 0 to 15. Each P2P device sends an Intent Value to other devices in its 

range through GO negotiation frames. The device that sends a higher Intent Value 

becomes GO. The Wi-Fi Direct specification does not define any mechanism to select 

Intent Value, which leaves a room for developers to implement their own schemes to 

compute Intent Value. In the following section, different approaches are discussed to 

compute Intent Value. 

3.1.1 Intent Value Computation: 

The Intent Value shows the willingness of a P2P device to become a GO in the P2P 

group. The device sending a higher Intent Value shall become GO. While forming a 

P2P group, a P2P device must send the Intent Value attribute in the GO Negotiation 

Request and GO Negotiation Response frames. The Intent Value attribute contains a 

1-byte Intent Value that corresponds to decimal values of 0 to 15. The first bit is a 

Tiebreaker which is used when both P2P devices send the same Intent Value in the 

GO Negotiation. The Intent Value is a useful parameter and shall be carefully chosen. 
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The more useful approach to choose Intent Value is based on the device capabilities to 

serve as GO because once a device becomes GO, it shall serve all associated P2P 

client devices for communication. All data distend to P2P clients in a given P2P group 

must be routed through the GO. For example, in the case of video content distribution, 

all the data is first received by the AP and then forwarded to the GO, which forward 

to the destination P2P client in the group. Similarly, devices in the same P2P Group 

also communicate with each other via GO. Thus, the GO shall be responsible for all 

data forwarding and works as Soft-AP. The capabilities of a P2P device depend on the 

application. In this section, various parameters to compute Intent Value are discussed: 

 Battery life – P2P devices, including the GO, are battery-powered devices. If 

the battery life is not considered in electing a GO, there is a probability that a 

P2P device having a low value of the remaining battery is elected as GO. The 

GO being the most active device in the P2P group would exhaust soon and the 

P2P group will be broken. 

 Processing capability – The device that becomes GO shall be equipped with 

enough processing power and large memory to better serve the connected 

clients. The processing power and memory requirements for GO might 

become more significant when the P2P group consists of a large number of 

nodes and the group is intended for multimedia application. In simpler 

applications, e.g., data transfer between two mobile devices, or connecting a 

laptop to the printer, the processing requirement becomes less significant. 

 RSSI – The Received Signal Strength Indicator (RSSI) indicates the quality of 

the connection between two devices. The data rate of the wireless link is badly 
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affected by low RSSI. If the P2P group is used for content distribution, the 

strong connection between the AP and the GO is more crucial. With 

multimedia traffic e.g. video streaming applications, it would be almost 

impossible to stream live video if the GO receives a very weak signal from the 

access point. The RSSI of GO to the AP and GO to group clients both have a 

significant impact on the P2P group performance. 

 The number of connected devices – If the P2P group is intended to connect a 

large number of devices, then it is important to elect as GO the P2P device that 

has more devices in its range to connect as clients. There should also be a limit 

on the maximum number of nodes in a P2P Group. The GO is a battery-

powered mobile device with limited processing capabilities and memory. It 

may not be capable to serve a large number of devices. Using such constraints, 

this becomes a problem to identify the optimum size of the P2P group and the 

optimum number of P2P groups from a given pool of P2P devices. This 

becomes a classical cluster optimization problem. Several clustering 

algorithms exist to cope with such a problem [97, 103-105]. However, in this 

work, we are interested in considering one or more of these parameters to 

compute Intent Value based on the application. Node’s degree is a commonly 

used parameter instead of the number of neighbours. Node’s degree is 

computed in different ways i.e. the number of neighbours, mean value of 

distances to all neighbouring nodes. 

The battery life parameter becomes more significant when the group is intended for 

longer duration e.g. a group of people connecting to Internet AP through a P2P device 

as GO. If the device with a low battery is elected as GO, the GO will soon be 
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exhausted, and the group will be eliminated. A new group formation would be 

required. 

The device with longer battery life in the aforementioned scenario guarantees a longer 

life of the P2P group. However, what if the P2P device with longer battery life is 

having a weak internet connection with the access point or this device has very low 

processing capabilities? Electing such device would lead to poor services for all group 

clients. If the RSSI value indicates a very poor connection, it may lead to connection 

tear down between GO and AP. The P2P group might be intended to serve a large 

number of nodes. In this case, the battery power, good processing capability and 

reliable radio connection are not enough. There is a possibility that a device with a 

more remaining battery and better connection to AP becomes a GO, but this GO has 

only one device in its radio range. Furthermore, the number of such small P2P group 

might be less significant than forming larger P2P groups having a greater number of 

nodes. 

On the contrary, there is another case when a single large P2P group is formed, and 

the elected GO might suffer from network overhead. From the above discussion, it is 

concluded that the Intent Value that defines the desire or the capability of a P2P 

device to become a GO shall be computed by considering the combined effect of all 

these parameters (each parameter is scaled on the range 0 to 5). A simple approach to 

compute Intent Value is shown in Algorithm-1 below: 

The computation of Intent Value is explained in the previous section. The Intent 

Value is defined in the Wi-Fi Direct specification as “desire” of the P2P device to 

become GO. For instance, when a P2P device wants to connect to another P2P device 

it will more likely form an autonomous P2P group. 
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However, in several applications where more than two devices are in a shared 

wireless range and group formation is intended, then the role of GO would be 

negotiated automatically by the application, and not by the end-user. In this case, the 

P2P device that becomes GO would be compromising on its resources including 

battery power, processor, memory and overall performance of the applications using 

the particular service for which the P2P group is formed. It is discussed earlier, that 

choosing the Intent Value randomly is not a good approach and it can lead to the poor 

performance of the applications. In the previous section, we proposed a solution to 

compute the Intent Value based on the device’s overall capabilities. 

3.1.2 GO Selection 

Algorithm 3.1: Intent Value Computation. 
 
Inputs:  RSSI, RSSI_T, RSSI_W, BAT, BAT_T, BAT_W, NBR, NBR_T,    
                          NBR_W // _T represent Threshold, _W represent Weight parameter. 
Outputs: Intent Value 
IF RSSI < RSSI_T: 
 RSSI = 0; 
 ELSE 
  RSSI = RSSI * RSSI_W; 
ENDIF. 
IF BAT < BAT_T: 
 BAT = 0; 
 ELSE 
  BAT = BAT * BAT_W; 
ENDIF. 
IF NBR < NBR_T: 
 NBR = 0; 
 ELSE 
  NBR = NBR * NBR_W; 
ENDIF. 
Intent Value = RSSI + Battery + Neighbors 
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The next step after Intent Value computation is the GO negotiation procedure in 

which two devices will decide on the role of GO-based on their Intent Value (standard 

group formation). The Wi-Fi Direct specification restricts the GO negotiation 

procedure to two devices i.e. only two interested devices can form a P2P group where 

one become GO and then the GO will announce its presence by sending beacons like 

an access point. Other P2P devices and legacy Wi-Fi stations can join the group later 

as clients. This limitation has also several implications on the performance. Let say, a 

set of N devices intend to form a group for a particular service. The group formation 

decision is fully automatic and shall be managed by the application. Theoretically, the 

probability of each device to become a group owner is 1p N  , where, however, in 

the standard group formation, the GO negotiation takes place between two devices 

only. Thus, the two devices which enter into the GO negotiation phase will have 

increased probability to become GO, each one has 0.5p  . If the GO negotiation 

completes before the other devices enter the GO negotiation phase, it is more probable 

that the rest (N-2) devices will receive beacons from the GO and will join the existing 

P2P group. Thus, the standard group formation increases the probability of some 

nodes and decreases or even eliminates the probability of other nodes to become GO. 

To improve the performance of the protocol, it is crucial to assign equal probability to 

each node. However, to do so the standard protocol functions shall be altered. The GO 

Negotiation is a three-way handshake between two devices, which should be re-

structured as an election procedure between all participating nodes in a common 

wireless range. All nodes must have equal probability in the election if the Intent 
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Value is equal. If devices compute the Intent Value using Algorithm-1 proposed in the 

previous section, the probability distribution is according to the Intent Value. 

 

 

The proposed GO Election process provided an intuition to illustrate the benefits of 

electing the most capable GO, instead of the randomly chosen intent value parameter. 

Section 3.3 provides an optimal scheme to perform the GO selection in Wi-Fi Direct. 

3.2 Enhanced P2P Group Formation 

In opportunistic networks and collaborative networking, wireless peers have to 

discover each other in a short time and then discover what kind of services are 

provided by each peer. If peers are interested in a published service by a discovered 

peer, then they can be aggregated into groups, and share/consume the advertised 

service (video streaming, software updates, etc.). Using Wi-Fi Direct technology, 

devices can dynamically organize themselves to form a P2P group. In order to 

establish the P2P group, P2P devices have to first discover each other and then 

Algorithm 3.2: GO Election Process. 
 
Inputs: Number of Nodes, Node’s Intent Values 
Outputs: GO Index 
FOR i = 1 to Number of Nodes: 
 Do: 
     Node[i] sends GO Negotiation Request to Node[i+1] 
     Node[i+1] sends GO Negotiation Response to Node[i] 
     IF Intent Value[i] > intent_value[i+1]: 
  Node[i+1] is disqualified. 
  ELSE IF: 
   Intent Value[i+1] > intent_value[i]: 
   Node[i] is disqualified. 
     END IF 
     i = i + 1; 
END FOR 
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negotiate the role that each device shall assume. We propose and evaluate a new 

method to set a GO Intent that best describes the P2P device capabilities. In this 

thesis, we first provide an overview of the Wi-Fi Direct technology and we describe 

in detail its GO negotiation and group formation procedures. In addition, we propose 

a new approach to accelerate the group formation procedure in Wi-Fi Direct 

technology.  

As mentioned earlier, the standard group formation procedure requires a 3-way 

handshake for the GO negotiation and other messages exchanges in order to form a 

group within two devices discovering each other. In addition, the GO negotiation is 

limited to two devices, which can lead to the election of a GO that is not necessarily 

the best candidate within its neighbours. To overcome these limitations, we propose a 

new group formation procedure. 

3.2.1 Proposed Solution 

The new procedure consists of eliminating the 3-way handshake of the GO 

negotiation, and including all required information, to form a group, in the already 

defined Wi-Fi Direct frames: Probe Request and Probe Response frames. Our method 

consists in inserting the device GO Intent and the list of already discovered devices 

(and their corresponding GO Intent) in the P2P Information Element (IE) attributes 

available in the Probe Request and Probe Response frames. Therefore, when a device 

receives the Probe Request or the Probe Response frame from a second device, it can 

easily determine which of the device is more capable of being a GO without a need 

for a GO negotiation. The device with the highest GO Intent can start an autonomous 
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group formation and invite all discovered devices to join its group. Figure 1 is a state 

diagram that describes the proposed P2P group procedure. 

This method offers P2P devices the ability to have an idea about discovered 

neighbours’ capabilities. In addition, by using the Probe Request and Probe Response 

frames, the proposed method will be backwards compatible with P2P devices that do 

not implement the proposed method. By eliminating the GO negotiation, the group 

formation between two devices can be accelerated. One of the most interesting 

features provided by the proposed method is the ability to select the best GO from 

more than two neighbour devices, which is not possible with the current state of the 

Wi-Fi Direct specification. Another important feature of the proposed method is that 

each device can build a list of neighbour devices with their corresponding Intent. In 

such way, when the actual GO leaves the group or does not have the highest Intent 

anymore, all peers have already a prior knowledge of which device will be elected as 

a replacement of the actual GO. The description of this backup GO is detailed in the 

following section. 

3.2.2 Backup Group Owner (BGO) 

In the current Wi-Fi Direct specification, when a GO device leaves a P2P group, then 

the P2P group is broken, and a new P2P GO negotiation has to be made. There are 

two cases where the actual GO of a P2P group have to be replaced by another device: 

i) the GO leaves the P2P group or ii) the GO’s Intent value is no more the highest 

within its neighbours (due to the joining of a device, with a higher GO Intent, to the 

already created P2P group). Making a new (conventional) P2P group formation is 
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time-consuming and does not necessarily elect the device with the highest Intent 

value. 

 

 

Figure 3.1 Device state diagram. 

 

Our proposed P2P group formation method addresses this issue. In fact, all devices 

have a list of all discovered devices and their Intent values. Thus, all devices have 
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already knowledge about the device with the second highest Intent value within their 

neighbours. We call the second highest Intent value device as a backup GO. 

When clients of a P2P group notice that the actual GO is no more reachable or does 

not have the highest GO Intent value any more, they update their discovered list and 

start a new P2P group formation procedure. The backup GO becomes the device with 

the highest Intent value and thus elected as new GO, as described in Figure 3.2. The 

newly elected GO starts a new (autonomous) P2P group and invites all peers in its 

discovered devices list. 

 

 

 

Figure 3.2 Device state diagram for BGO selection. 

 

3.2.3 Experimental Evaluation 

This section portrays the performance of our proposed P2P group formation 

procedure, and the efficiency of the introduction of the backup GO. 
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The test-bed consists of an Ubuntu-server virtual machine with several virtual 

wireless interfaces. Each virtual wireless interface is attached to a different P2P node. 

We created virtual network interfaces using mac80211_hwsim [106]. The 

mac80211_hwsim driver is a Linux kernel module and is used for testing MAC 

functionality and userspace tools such as wpa_supplicant/hostapd. The 

wpa_supplicant module is an implementation of the WPA Supplicant component. It is 

used for controlling the wireless connection and it allows the use of Wi-Fi Direct 

[107]. Throughout our experiments, we assume that all devices have identical 

capabilities (but different Intent values) and we do not take into account the 

improvement/drop of the per-device throughput/battery. In addition, we presume that 

all devices are discoverable by each other. Furthermore, in order to automatize the test 

execution, we always pre-provision devices with a Wi-Fi Protected Setup (WPS) PIN. 

We analyze the required time to establish a P2P group in the standard scheme. The 

group formation procedure consists of several steps. First, devices (A and B) need to 

discover each other. The device discovery time is random as specified by the Wi-Fi 

Direct specification. Once device A discovers device B, they start a GO negotiation. 

Device A sends a GO negotiation request to device B, and device B replies with a GO 

negotiation response (with success status). Device A replies with a GO negotiation 

confirmation with a success status. The device with the highest GO Intent (device A 

for example) starts the group formation by activating the AP-mode. Device B tries 

then to connect to device A (the GO).   Figure 3.3 shows examples of delays when 

two devices try to form a group and connect. 

Figure 3.3 depicts the elapsed time in each phase (discovery/negotiation) of a device 

(elected as a client). Time zero is the start of the finding phase. dev_found bars 
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represents the moment when it discovers another device (during the finding phase). 

go_neg_success is the moment when the device receives a GO negotiation response, 

and the negotiation is successful. grp_started represents the moment when the group 

is successfully formed, and the client is connected to the GO.  

 

 

 

Figure 3.3 Device discovery and group formation time. 

 

Seventy (70) tests were performed to measure the discovery/group formation 

procedures. For the sake of clarity, only 9 of these tests are shown in Figure 3.3. The 

Cumulative Distribution Function (CDF) of delay in each P2P group formation phase 

is depicted in Figure 3.4. 

Figure 3.3 and Figure 3.4 show the randomness resulted from the Wi-Fi Direct 

discovery algorithm. In average, the device discovery time requires 1070ms. The time 

elapsed to negotiate the GO and form a group can vary from 850ms to 9000ms and is 

in average equal to 2198ms (the median is equal to 1958ms). The time required to 
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form a group once the GO negotiation is finished successfully is in average equal to 

903ms (the median is equal to 873ms). 

As depicted in Figure 3.3 and Figure 3.4, devices spent more than 50% of the time 

during the GO negotiation phase once they discovered another device. The evaluation 

shows that there is room for improvement if the procedure of the GO negotiation is 

combined with the device discovery phase as described earlier. The next section is an 

evaluation of the proposed method for the P2P group formation. 

As already explained in the studies [108], with the current state of Wi-Fi Direct 

specification, it is hard to manage a variable number of nodes joining the same group. 

P2P group formation delays can increase rapidly when the number of neighbour 

devices increases. In the next sections, we evaluate our proposed P2P group formation 

for the following number of devices: two devices, and five devices. 

 Two Devices: To evaluate the proposed P2P group formation procedure, we start 

by measuring the delay performance of P2P group formation between two 

devices. Figure 3.6 shows the CDF of the required time to form a P2P group 

between two devices. Dashed-lines represent the conventional P2P group 

formation (using a P2P GO negotiation). Solid lines represent our proposed P2P 

group formation. The results confirm the fact that the proposed method is faster 

than the conventional P2P group formation between two devices. The median P2P 

grouping time is improved by 20% when the proposed P2P group formation 

procedure is used. 

 Five Devices: The evaluation of the P2P group formation in the case of five 

devices is a complex task due to the randomness of the device discovery 

algorithm. Several combinations can be obtained when devices have to make a 
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GO negotiation with the first discovered device. Most of the time, two P2P groups 

are formed. The formed group that contains three (or more) devices has a high 

probability that its GO is not actually the device with the highest GO Intent. As an 

example, if we consider three devices A, B and C, with respective GO Intent equal 

to 1, 2 and 3. If devices A and B discover each other and form a P2P group before 

discovering device C, then the GO will be device B (with an Intent equal to 2). 

Device C will join later the created P2P group. In this case, device C will have a 

higher GO Intent (equal to 3) than the GO (device B with a GO Intent equal to 2). 

The complexity of Wi-Fi Direct to manage a variable number of nodes is well-

detailed in [109]. In our proposed P2P group formation, discovered devices (and 

their GO Intent) are shared between neighbours during each Probe 

Request/Response frames exchange. If a device within an already created P2P 

group discovers another device (out of the group) with a higher GO Intent than the 

current GO, then it will notify all other peers of the group and switch to the new 

P2P group created by the discovered device. To test the proposed method, each 

device will proceed as described in the case of two P2P devices. Once the GO is 

elected, the latter has to invite all discovered devices to join him. For this purpose, 

in our experiments, the GO will sequentially invite discovered devices so that it 

does not cause any joining failure, i.e. the next device will be invited just when the 

already invited device has successfully joined the P2P group. Figure 3.6 shows 

the CDF of the elapsed time of each device trying to associate with the created 

P2P group. The solid line with no marker represents the moment when a first 

device is discovered. Device dev0 was selected as a group owner (with the highest 

GO Intent equal to 7). The other devices have a smaller GO Intent than dev0. 
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Obtained results show how the proposed P2P group formation method can be very 

efficient to accelerate the grouping of multiple devices. The elapsed time to form a 

P2P group with 5 devices is equal on average to 8000ms. 8s to form a P2P group, 

using our proposed method with 5 devices, is almost three times faster than the 

conventional Wi-Fi Direct P2P group formation procedure. 

 Evaluation of BGO: In this section, we evaluate the latency of re-grouping a 

broken P2P group. We assume that the GO of a P2P group formation has left (or 

turned off). The backup GO takes the lead, becomes a GO (autonomous P2P 

group formation) and invites all other peers to join him. Figure 3.7 shows the 

CDF of the elapsed time regrouping all devices. The red solid line, with no 

marker, is the time elapsed creating a new P2P group since the backup GO has 

been disconnected from the former GO. Dashed lines represent the moment when 

a device has received an invitation from the GO (former backup GO) to join the 

newly formed P2P group. The experiment shows that having a backup GO is very 

useful when the P2P group is broken. Short times are required to regroup the 

devices of a broken P2P group. Contrary to the conventional P2P group formation 

of Wi-Fi Direct, regrouping devices of a broken P2P group requires a new GO 

negotiation, and the newly elected GO is not necessarily the best amongst its 

neighbours.  
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Figure 3.4 P2P group formation phases. 

 

 

 

Figure 3.5 Group formation delay (two P2P devices). 
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Figure 3.6 Group formation delay (five P2P devices). 

 
 

 

 

Figure 3.7 Group formation using BGO. 
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3.3 Optimal Clustering Scheme  

Earlier works on Wi-Fi Direct clustering and group formation are typically based on 

heuristics, which do not guarantee optimum performance. Furthermore, the selection 

of multiple GOs (in dense networks) has not been rigorously investigated in the 

literature. In this section, a modified group formation scheme is proposed which 

formulates the GO selection problem as an optimization problem which is solved 

using Mixed Integer Programming (MIP) [110]. The GOs are selected based on link 

capacities with the objective to maximize the overall network throughput. In multicast 

applications, the proposed scheme is implemented such that the total packet loss ratio 

of the network is reduced.  

3.3.1 Proposed Scheme 

In a given set of STAs randomly located in a shared wireless range and an AP that has 

a limitation on the maximum number of associated STAs, and hence can only connect 

a small number of STAs. It is readily possible to use Wi-Fi Direct to select one or 

more number of STAs as intermediate devices and connect the remaining STAs to 

these intermediate devices. 

The proposed scheme eliminates the 3-way handshake in the GO negotiation, which 

takes place between two P2P devices only. The proposed scheme preserves the intent 

Value attribute defined in the Wi-Fi Direct specifications [13] to select the GO, 

however, the highest intent Value is now selected by the device selected by the 

proposed scheme. We propose to modify the standard functionality of the P2P devices 

as illustrated in Figure 3. In the proposed state diagram of the P2P device, each P2P 

device when receives a Beacon frame from the AP, it records the SNR of the link to 
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the AP. Each P2P device also sends P2P Request frames that are received by other 

P2P devices in its range. A P2P device on receiving the P2P Request frame records 

the MAC address and the SNR to the sender of the P2P Request frame. All the P2P 

devices, which receive the P2P Request frames, reply with the P2P Response frames. 

The sender of the P2P Request frame after receiving the P2P Response frames from 

all its neighbours, record the MAC addresses with their respective SNR values. This 

device then sends a second P2P Request frame and insert its complete neighbours' list 

(i.e. MAC IDs and SNR values). By this way, all P2P devices share their complete 

neighbours’ lists. A P2P device on receiving neighbours lists from its neighbours, 

combine these lists into a master adjacency matrix. The master adjacency matrix 

contains a list of SNR values from each P2P device to every other P2P device in the 

network. Every device then runs the GO selection algorithm to determine the best 

GO. If a device determines itself as the best GO, it sets its intent Value to 15, 

otherwise zero. The device with the highest GO intent then starts an autonomous 

group formation and invites all the discovered devices to join the newly created P2P 

group. 

3.3.1.1 Assumptions: 

The implementation of the proposed scheme assumes the following listed conditions 

to be always true. 

 Each device shall always enable the "PROBING" feature, i.e. each STA 

constantly sends Probe Request frames and Probe Response frames (in 

response to Probe Request frames). 

 In the proposed scheme, the Probe Request and Probe Response frames are 

sent with the maximum achievable transmit rates in order to calculate the link 

data rates used in the proposed scheme. 
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The proposed scheme aims to select a subset of STAs to act as relays between the AP 

and GO thus creating one or more clusters called as P2P groups. A P2P GO for each 

P2P group is selected to connect the STAs in the P2P group to the AP. We discuss 

two cases for the selection of candidate GOs: 

 Optimal selection in which the selection is based on the link quality of both 

links (AP-GO and GO-STAs links), and 

 Sub-optimal selection in which the selection of GO is based on the link quality 

of first hop (AP-GO) only. 

For comparison purpose, we also consider a third case involving the worst selection of 

GO in which the GO have poorest link quality over both hops (AP-GO and GO-

STAs). In the subsequent parts of this section, the GO selection schemes are 

presented. 

3.3.2 System Model 

Consider a Wi-Fi network where C and G denote the set of Wi-Fi clients (or STAs) 

and candidate GOs respectively. Let n C and m G denote the total number of 

STAs and candidate GOs respectively. It is assumed that STAs are randomly placed 

around an AP. Each STA in the network computes the SNR to all the discovered 

devices using P2P Request and Response frames, in an array jN , where j is the 

index of the node. 
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Where, 0 1, , ...id id are the MAC addresses of the devices and 0 1, ,..S S are the 

respective SNR values to these nodes. The first value in the array ( 0S ) denotes the 

SNR to the AP. Furthermore, the length of the array jN  is different for each node, as 

each node has a different number of neighbours. Each Node shares this array using 

the Probe Request to all its neighbours. Each node on receiving the Probe Request 

frame reply with the Probe Response frame, in which he sends his own neighbours 

list. Once the discovery phase is completed and all nodes have shared their 

neighbours’ lists, the next step is to transform the neighbour’s lists in the appropriate 

form required in the MIP. Each node creates two arrays, a 1D array iS  and an n n

array i jS . The iS  array contains the Signal-to-Noise Ratio (SNR) of each link between 

the AP and STAs. 
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The i jS  array contains the SNR values of each link between the STAs. 
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Although the SNR parameter is well known and easily measurable, it is not a good 

estimate of the actual link data rates in Wi-Fi networks. In practical Wi-Fi 
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implementations, rate adaptation algorithms [111, 112] are used instead of simple rate 

selection based on SNR. Hence, the iS  and i jS  matrices are converted into actual 

rates i.e. iU  and i jU  . The matrices iU and i jU are used in the optimization problem 

for GO selection. 

3.3.3 GO Selection Algorithms 

3.3.3.1 Single GO Selection 

Consider the case when the AP has a limit on connecting number of clients denoted as

k . If the AP has already connected ( 1k  ) STAs and can connect a maximum of one 

more STAs, the proposed scheme shall select a single GO from the set of remaining 

STAs (denoted as n) as illustrated in Figure 3.8. The goal of the GO selection is to 

maximize the total throughput of the network. The network throughput depends upon 

(i) the application generation rates ( jD ), (ii) the achievable link rates of STAs to AP (

iU ) and (iii) the achievable link rates of each STA to its neighbouring STAs ( i jU ). 

 

 

 

Figure 3.8 Network topology for GO selection. 
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In several real-world scenarios’ users run different applications such as streaming 

audio and videos, web browsing, online gaming etc. 

 If all STAs are running the same application, the application on each STA 

transmits at equal rates. STAs has "Equal Demands" i.e. jD  becomes trivial. 

 If STAs are running different applications, the data generation rates are 

unequal i.e. STAs has "Unequal Demands" and jD  shall be incorporated in 

selecting the optimal GO. 

Due to the restriction on the number of GO (only one), the GO selection is formulated 

as an un-capacitated location problem with the objective to maximize the network 

throughput. To formulate the problem, two decision variables are defined: 
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Where ijX and iY are both binary variables. 

The objective function is defined as a function which maximize the total link rates 

over both hops, i.e. the link rate on AP-GO link ( iU ) and the sum of link rates of GO-

STAs links ( i jU ). It is mathematically formulated as: 

 
1 1 1

max
m n m

i i ij ij
i i j

U Y U X
  

 
 

 
    (6) 

Subject to: 
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1
n

i
i

Y j C


    (7) 
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1

1
m

ij
i

X j C


    (8) 

 0,1 ,ijX i G j C     (9) 

 0,1iY i G    (10) 

Constraint (7) ensures that only one GO can be selected. The constraint is explicitly 

required in the case of single GO selection. Constraint (8) ensures that every STA j 

can only connect to one GO. 

In addition to the aforementioned optimal selection scheme, two other selection 

schemes are also presented. A sub-optimal selection and worst GO selection: In the 

suboptimal selection of GO is also considered which maximize the link rates of the 

AP-GO link ( iU ) only. It achieves higher data rates on the AP-GO link only. The 

objective function for sub-optimal selection eliminates the second part of the 

aforementioned optimization in Equation (6) and limits to the first part 
1

max
m

i i
i

U Y



only. This type of sub-optimal selection is applicable to all other schemes in the 

subsequent sections of this paper. In the worst GO selection, optimization problem 

always minimizes the Equation (6). The worst GO selection scheme is used for 

comparison to assess the maximum possible benefit of the optimal selection. The 

three GO selection schemes, sub-optimal, optimal and worst GO selection are 

illustrated in Figure 3.9.  

The MIP produces a full adjacency matrix *
ijX  and matrix *

iY . The *
ijX and *

iY matrices 

are of the same shapes as ijX  and 1D matrix iY . Each element in *
iY equal to 1 

indicates the index of the node which is selected as GO. 
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(a)      (b)    (c) 

 

Figure 3.9 Single GO selection (a) sub-optimal GO (b) optimal GO (c) worst GO. 

 

3.3.3.2 Multiple GO Selection 

For a large set of STAs, a single GO may not be capable to meet the demands of all 

STAs; hence, multiple GOs need to be selected to form several P2P groups. The 

multiple GO selection problem is illustrated in Figure 3.10. In multiple GO selection 

problem, the achievable link data rates between GO and AP impose an Upper bound 

on the amount of data that it can serve without delay or losses. Hence, this upper 

bound shall be applied as a constraint to formulate a constrained optimization problem 

for multiple GO selection. In a P2P group that connect N P2P clients to the GO, each 

device can roughly utilize 1=N of total transmission time and hence the channel 

capacity. Given the channel capacity for a single user j to GO i  is i jU , the total GO 

throughput can be calculated as: 

 
1

N
DL DL
i ij

n

U U


   (11) 
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The objective of the optimization problem is a function that maximize the achievable 

channel capacity (or achievable data rates) over two hops i.e. AP-GO links ( iU ) and 

GO-STA links ( i jU ). The problem can be exactly formulated as: 

 
1 1 1

max
m n m

i i ij ij
i i j

U Y U X
  

 
 

 
    (12) 

Subject to: 

 
1

1
m

ij
i

X j C


    (13) 

 
1

( ) ,
m

ij j ij i i i i
j

X D U U Y DY i G j C


        (14) 

 0,1 ,ijX i G j C      (15) 

 0,1iY i G    (16) 

Constraint (13) ensures that each STA can only connect to a single GO. Constraint 

(14) ensures that the sum of effective throughput of STAs connected to a GO i shall 

be equal or less than the GO effective throughput to AP. 

3.3.3.3 GOs Selection for Multicast Applications: 

In typical Wi-Fi implementation, multicast traffic is sent at the lowest available rates 

in the AP. The lowest rate is chosen to ensure the reliability of the transmission as the 

multicast traffic is not acknowledged by the recipients. This leads to severe 

degradation of the achievable network throughput. In a classic downstream content 

distribution scenario, which involves contents delivery to a number of STAs, let 

denote the lowest link rate of an STA j  to a candidate GO i  by a new variable r . 
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  (a)         (b)    (c) 

 

Figure 3.10 Multiple GOs selection (a) sub-optimal (b) optimal (c) worst GO. 

 

The proposed scheme aims to maximize the minimum transmit rate between the GO 

and STAs. The optimization problem is known as "Max-Min" problem. The modified 

Max-Min objective function is defined as: 

 max( )r  (17) 

Subject to: 

 
1

1
m

ij
i

X j


   (18) 

 ,ij iX y i G j C      (19) 

 0,1 ,ijX i G j G      (20) 

 0,1iY i G    (21) 

Constraint (19) specifies that each STA can connect to only one GO. Constraint (20) 

forces that every GO must connect at least one STA. The data rate to send multicast 

traffic over AP-GO link is selected based on the SNR of the link, whereas the constant 

multicast rate is used at the GO to send multicast traffic to the clients. The multicast 
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rate is selected as the minimum rate supported by an STA, which is connected to the 

GO. 

3.3.4 Simulation Results 

To implement the proposed scheme, we deployed a single access point (AP) and n = 

10 Wi-Fi stations (STAs). Each node in the simulation model is identified by its

_node id . The AP ( _node id = 0) is positioned at (25, 25, 10), whereas the STAs (

_node id = i ; where 1,2,...i ) are randomly positioned at ( , ,i i ix y z ). The coordinates 

of STAs ( , , )i i ix y z  are randomly chosen from Uniform and Gaussian (Normal) 

distributions. The positions of the AP and STAs remain fixed throughout the 

simulation. The optimization problems are solved in the convex optimization tool 

CVXPY [113, 114]. The proposed scheme explained in the previous section is 

evaluated using ns-3. 

3.3.4.1 Throughput Performance 

The proposed scheme is first evaluated for improvement in the overall network 

throughput. A network of 10 STAs is deployed where the STAs are randomly 

distributed in an area of 50x50 (m2). The AP is located at position (25, 25, 10). In the 

first scenario, a single STA is selected as GO and the remaining STAs are connected 

to the GO to form a P2P group. The GO also associate to the AP to cross-connect the 

STAs to the AP. Three different simulations are performed. In each simulation, GO is 

selected using the Optimal, Sub-optimal and Worst selection schemes as defined in 

Section VII-A. In the second scenario, 20 STAs and 2 GOs are selected in each 

simulation using the Optimal, Sub-optimal and worst selection. The purpose is to 

evaluate the significance of the proposed scheme in dense networks using a higher 
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number of GOs. Other parameters related to application, MAC and simulation 

parameters are given in Table 3.1. 

The throughput gains for the three GO selection schemes are presented in Figure 3.11 

considering single GO. It can be observed that the worst selection of GO can 

significantly degrade the throughput performance. As the worst GO is the one, which 

has poorest link quality to the AP as well as to the STAs in the network, it is using 

lower MCS values for transmissions. The throughput is also more random and 

varying over time. On the other hand, the proposed optimal selection provides a more 

stable and higher throughput over time. The sub-optimal selection is relatively higher 

than the worst case, whereas lower than the optimal selection. The average throughput 

of the network is 8.97 Mbps, 8.53 Mbps and 7.49 Mbps for optimal, sub-optimal and 

worst GO respectively. 

Thus, the optimal selection of GO has the potential of achieving a throughput gain of 

19.8% as compared to the worst selection. The throughput performance of the 

proposed scheme using multiple GOs is given in Figure 3.12. The throughput gain of 

the proposed scheme is more evident for multiple GOs. In this scenario, the 

throughput using the optimal and sub-optimal selection is increased by 1:8x and 1:6x 

as compared to the worst selection respectively. 
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Table 3.1 Simulation parameters. 

 

Parameter Single GO Multiple GOs 

No. of APs 1 1 

No. of GOs 1 2, 3 

No. of STAs 5, 10, 15 … 30 10, 15, 20 … 50 

Position of AP Fixed Fixed 

Distribution of STAs Random Random 

Transmit Power (dbm) 16 16 

Transmit gain 0 0 

Receive gain 0 0 

Channel 1 1, 6, 11 

Propagation Model Lognormal Lognormal 

Transmit Antennas 1 1 

Receive Antennas 1 1 

MAC standard 802.11n 802.11n 

Payload size (Bytes) 1400 1400 

Application rate (Mbps) 1 1 

Simulation Time (s) 100 100 

 

 

 

Figure 3.11 Network throughput (Mbps) using a single GO. 
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Figure 3.12 Network throughput (Mbps) using multiple GOs. 

 

3.3.4.2 Throughput versus Number of STAs 

The performance of the proposed scheme is further investigated by changing the 

number of users in the network. When the number of STAs in the network is 

increased, the network performance is impacted in two ways. Firstly, the increase in 

the number of STAs increases the traffic volume in the network, which will increase 

the throughput to some extent. However, as the network becomes saturated, the 

throughput begins to decrease. The point of interest in this evaluation is the time 

duration of non-saturation. If the GO can maintain better connection qualities over all 

links, higher data rates are used, and saturation can be avoided for relatively a higher 

number of STAs.  

In Figure 3.13, the performance of the proposed optimal and sub-optimal selection is 

compared against the worst selection of GO. The number of STAs in the network is 

increased from 5 to 30 and throughput is computed. It can be observed that the 

throughput decreases in the worst GO case when the network has more than 10 STAs. 



  

   

64 

 

The throughput is minimum at 30 STAs, which indicates a congestion state. In 

comparison, in the sub-optimal GO selection, the throughput increases significantly, 

until the network has 15 STAs and remains nearly constant until 20 STAs. A slight 

reduction in throughput is observed after the number of STAs increases from 20 to 30. 

The performance of the optimal selection provides the highest throughput gain, as 

expected, for all number of STAs than the sub-optimal and worst cases. For 5 to 15 

STAs, the difference in throughput for optimal and sub-optimal selection is little, 

however, it increases afterwards. The optimal throughput decreases when the number 

of STAs decreases than 20. The rationale behind the better performance of the optimal 

selection scheme at a relatively higher number of STAs is the capability of the GO to 

attain higher data rates for a large subset of STAs connected to it. The capability is 

relatively less in sub-optimal selection. 

The better performance of the optimal GO selection is evident in Figure 3.13; 

however, it is further investigated using more than one GOs. Intuitively, if a single 

GO optimally selected improve the throughput gain due to the capability to attain 

higher data rates, then the performance should become much better with an increased 

number of GOs. More precisely, while increasing the number of STAs, the higher 

number of GOs shall push the saturation point towards the right in a similar 

illustration. To verify the impact of the higher number of GOs in the network of 

different size, the proposed optimal selection scheme is evaluated at 1, 2 and 3 

number of GOs, while increasing the number of STA from 10 to 50. The results are 

presented in Figure 3.14. It can be observed that the higher number of GOs not only 

increases the throughput but also pushes the saturation point towards a higher number 

of STAs.  
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Figure 3.13 Average network throughput versus the number of stations. 

 

 

 

Figure 3.14 Average network throughput versus the number of stations. 

 

3.3.4.3 Throughput versus STAs Distribution 

In real Wi-Fi deployments, user’s distribution varies in different scenarios. To show 

the impact of user distribution on the performance of the proposed scheme, the three 

GO selection schemes are first evaluated with STAs positions following a uniform 
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random distribution. Furthermore, three independent scenarios with area sizes of 

50x50, 70x70 and 100x100 (m2) are simulated and throughput is computed to validate 

the performance of the proposed scheme. The results are presented in Figure 3.15.  

It can be observed that the proposed scheme using optimal selection produces the 

highest throughput gains in all scenarios as compared to the sub-optimal and worst 

selection schemes. This validates the benefit of the proposed scheme. Another 

observation is that the throughput gains decreases with increasing the area size. The 

reason behind this is that, by increasing the size of the area, the inter-STAs distances 

increases and consequently the attained data rates are decreased. To further quantify 

the results, the average throughput gains in all scenarios are computed. The results 

report the optimal selection achieves average throughput gains of 6.5% and 17.5% as 

compared to the sub-optimal and worst selection respectively. Similarly, the sub-

optimal selection scheme achieves 10.3% higher throughput gain as compared to the 

worst selection scheme. The proposed scheme is then evaluated with STAs positions 

distributed as a Gaussian random variable. Thus, a higher number of STAs are located 

closer to the AP. Three scenarios with different values of the Scale-parameter i.e. 50, 

70 and 100 are deployed. The simulation results are presented in Figure 3.16.  The 

analysis of results shows that the optimal selection achieves average throughput gains 

of 7.9% and 19.8% as compared to the sub-optimal and worst selection respectively. 

Similarly, the sub-optimal selection achieves 11.1% higher throughput gain as 

compared to the worst selection of GO. 
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Figure 3.15 Network throughput using the uniform distribution of STAs. 

 

 

 

Figure 3.16 Network throughput using the normal distribution of STAs. 

 

3.3.4.4 Throughput versus Packet Loss using Multicasting 

The proposed scheme for GO selection using multicast traffic is explained earlier. 

Multicasting can increase throughput dramatically, however at the cost of packet loss. 

The proposed scheme aims to benefit from the multicasting to achieve a higher 

throughput without compromising packet loss. The performance of the proposed 
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scheme is first evaluated by computing the throughput gains for a single GO using 

unicast and multicast traffic in two different scenarios. In the first scenario, the 

positions of STAs are distributed as a uniform random variable, whereas in the second 

scenario, the positions of STAs are following Gaussian distributions. The throughput 

gains are computed for a different number of STAs and results are presented in Figure 

3.17 and Figure 3.18. The dramatic throughput for multicast traffic as compared to 

unicast traffic is evident in both figures. It is a very likely result as multicasting can 

achieve a similar throughput performance since all STAs in the multicast group 

receive the same data. The relative benefit of the proposed scheme using multicast 

traffic increases as the number of STAs increases in the network. The only reduction 

in the throughput is the packets lost at some STAs which shall reflect in the figures. 

The analysis of throughput gains in Figure 3.17 shows that the proposed scheme with 

multicast can increase throughput by 8% as compared to unicast.  

The throughput gain increases by 2.1x when the number of STAs increases to 30 

STAs. Similarly, Figure 3.18 show throughput gain of 1.97x for 30 STAs, when the 

positions are Gaussian distributed. 
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Figure 3.17 Network throughput with multicast (STAs uniformly distributed). 

 

 

 

Figure 3.18 Network throughput with multicast (STAs normally distributed). 
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In Figures 14 and 15, the packet loss ratio (PLR) of the proposed scheme using 

unicast and multicast traffic is evaluated using positions of STAs as uniformly and 

Gaussian distributions respectively. The figures show an incredibly higher PLR (%) 

for multicast traffic as compared to unicast traffic. The rationale behind high packet 

loss is well known in the literature, which is caused by lack of acknowledgements in 

multicasting. However, the packet loss ratio is significantly controlled for a lower 

number of STAs (i.e. 2.8% and 2.3% for uniform and Gaussian distributions 

respectively). 

 

 

 

Figure 3.19 PLR using unicast and multicast traffic (STAs uniformly distributed). 
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Figure 3.20 PLR using unicast and multicast traffic (STAs normally distributed). 
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CHAPTER 4 : UAV-AIDED WI-FI NETWORKS 

 

The use of unmanned aerial vehicles (UAVs) in future wireless networks is gaining 

attention due to their quick deployment without requiring existing infrastructure. 

Earlier studies on UAV-aided communication consider generic scenarios and very 

few studies exist on the evaluation of UAV-aided communication in practical 

networks. The existing studies also have several limitations and hence an extensive 

evaluation of the benefits of UAV communication in practical networks is needed.  

In this chapter, we propose a UAV-aided Wi-Fi Direct network architecture. In the 

proposed architecture, a UAV equipped with a Wi-Fi Direct Group Owner (GO) 

device, the so-called Soft-AP is deployed in the network to serve a set of Wi-Fi 

stations. We propose to use a simpler yet efficient algorithm for the optimal 

placement of the UAV.  

Wi-Fi Direct lack efficient group formation mechanism in the standard Wi-Fi Direct 

to quickly deploy a Wi-Fi Direct network [108, 115-117]. The efficient group 

formation involves the selection of the most capable device in the network as the 

Group owner (GO) or Soft-AP to improve the network throughput which extends the 

coverage by connecting more devices and increase network lifetime. The selection of 

the best candidate device as GO and enhancement of group formation scheme is 

proposed in [118] and [108] respectively. 

These and other state-of-the-art proposals which focus on the efficient group 

formation and intra-group communication aim to select the best device from a pool of 

Wi-Fi Direct enabled devices as the P2P GO. However, although the selected GO is 

instantly capable to meet the requirements of the network, it is a user-owned device 
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Figure 4.1 UAV-aided Wi-Fi direct network architecture. 

 

and subject to mobility. The mobility of the user handling the GO device can cause 

significant disruption of the group connections, achieve poor throughput if it moves to 

low SNR regions and has battery constraints. Hence, a logical desire is that the GO 

device shall be owned and fully controlled by the network to cope with these 

challenges. 

 Recently, researchers have proposed the use of UAVs (Unmanned Aerial Vehicles) 

in future communication networks [54], [119]. UAVs in communication networks are 

favoured for their advantages such as reduced cost due to on-demand operation, more 

swift and flexible deployments, and controlled mobility [120]. The use of UAVs as 

network relay has been proposed in [54, 55, 121]. Similarly, UAVs as a means to 

extend network coverage has been proposed in [119, 122]. Earlier studies on UAV-

aided communication focus on the UAV placement and trajectory optimization 

problems in generic network scenarios. Very few studies are found in the literature 

that study the UAV-aided communication in practical networks such as Wi-Fi, 
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cellular and IoT networks. The existing studies on UAV-aided Wi-Fi networks have 

several limitations. Hence, it motivates us to further investigate the potential benefits 

of UAV aided communication in Wi-Fi and other short-range (SR) communication 

networks. 

4.1 UAV-Aided Wi-Fi Direct Architecture 

Consider the case where a P2P GO is installed over a UAV that connects several Wi-

Fi clients (STAs) to form a single P2P Group. All the STAs are mobile and hence 

they randomly move in the network. The random movement of the STAs tends to 

increase the distance between the UAV and the STAs large enough so that to cause 

de-association of the STAs from the network. To avoid STA's de-associations and 

maintain a relatively strong network connection to all nodes, it is desired that the P2P 

GO shall be placed in a location, which reduces the distances to all Wi-Fi stations. 

Furthermore, when the STAs move around and change their relative positions, the 

UAV shall automatically re-calculate the new optimum location and relocate 

immediately. Two distinct cases are discussed: 

4.1.1 UAV Moving in 3D Space 

Consider the scenario in Figure 4.2; a number of STAs are deployed randomly in the 

Euclidean plane. A UAV initially located at the position ( , , )x y zC  can move freely in 

3D space. This scenario is common and can be applied in several applications i.e. 

Internet connectivity and content distribution in large conference halls and exhibitions 

centres.  
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Figure 4.2 Placement of UAV in 3D space. 

 

The optimal placement of the UAV which involves the minimization of the sum of 

distances to a set of points is a classical problem in operational research and location 

theory known as Weber Problem [123]. In the proposed model, initially, all the STA's 

are randomly placed at locations   ,  , i i i ip x y z  , where i is the index of STA. 

The initial position of the P2P GO is  , ,x y zC . Our goal is to find an optimal position 

 
*

, ,x y zC in space for the P2P GO to maintain a fair connection with all STA's and 

achieve higher aggregate throughput at the cost of less energy consumption. The 

Euclidean distance between the UAV and each STA is calculated in Equation (22) 

[124]: 

 2 2 2( , ) ( ) ( ) ( )x x y y z zd C p C P C P C P        (22) 
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Where, xC  , yC  and  zC  are the coordinates of the P2P GO, and  xP ,  yP and  zP are 

the coordinates of an STA iP in 3D space. The Euclidean distance in Equation (22) 

can be modified to compute the weighted Euclidean distance in  Equation (23) [125] 

to address the axis scales. 

 2 2 2'( , ) [( ) ( ) ( ) ]x x y y z zd C p w C P C P C P        (23) 

The equation (23) is also referred to as “weighted l2-norm” or more generally “klp-

norm” in [126] where k  refers to the weight iw  . A minisum location model using 

weighted Euclidean distances between P2P GO and each station is given in Equation 

(24) [127]: 

 
1

( ) ( , )
n

i i ii
f C w d C p


   (24) 

Where, iW is the weight assigned with each station. For more distant stations, the 

weights iW can be assigned higher values so that the UAV can be moved closer to 

serve better these stations. The equation (24) is known as the Weber Equation. To find 

the optimum location for the UAV is the same as to reduce the sum of distances to all 

STAs. The optimum location finding implies the minimization of the Weber Equation 

(24) and this distance minimization problem is called the Weber problem (also known 

as the Fermat-Weber problem). Weber problem is an unconstrained optimization 

problem which can be written as in Equation (25) [125]: 
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
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  (25) 
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A well-known approach to solve this optimization problem in Equation (25) is known 

as Weiszfeld algorithm, presented in Algorithm (1). The Weiszfeld algorithm is an 

iterative approach based on the first-order necessary conditions for a stationary point 

of the objective function. The convergence of the Weiszfeld algorithm has been 

proved in [128]. It is worth mentioning that the Weiszfeld algorithm has a serious 

implication, if any of the Pi accidentally lands in a vertex C. However, it can be 

solved with a simpler modification as proposed in [129]. 

4.1.2 UAV Moving along a Straight Path 

In the last section, we assumed that the UAV can move freely in space along any 

direction and we aimed to find a point (C*) in 3D space which has the minimum sum 

of distances to all Wi-Fi stations. In this section, we consider a special case, where the 

UAV cannot move freely. Instead, the movement of UAV is restricted to only a 

straight path. The straight path represents a line in Euclidean space and is illustrated 

in Figure 4.3. A practical application of UAV mobility restricted to a fixed straight 

path can be UAV deployments in large indoor exhibition centres, conference halls and 

sports arena. The UAVs movement is usually restricted due to several barriers and 

hence these can be safely deployed to move along hazard-free straight paths to avoid 

collisions with other objects. 

The optimal placement of UAVs with path barriers in the aforementioned example 

can be formulated as a special case of the unconstrained optimization problem in 

Equation (25), which is referred to as an optimization problem with distance 

constraints i.e. with a barrier or forbidden region. Constrained optimization problems 
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Figure 4.3 Placement of UAV along a straight path. 

 

with barriers are studied in [130, 131]. To find the optimal point over the straight path 

that minimizes the sum of distances to all points in the networks, we are using the 

modified Weiszfeld algorithm proposed in [128]. 

The proposed method uses “Weighted Euclidean distance” between STAs, which is 

slightly different from Equation (23). The weights assigned to each axis is set equal to 

the inverse of the variance or the allowed scale to move along the respective axis as 

given in Equation (26) [125]. 

 2 2 2'( , ) ( ) ( ) ( )x x x y y y z z zd C p w C P w C P w C P        (26) 

4.1.3 Multiple UAVs Placement 

In Sections 4.1.1 and 4.1.2, we discussed the problem of finding an optimum location 

for a single UAV. However, in most practical scenarios, such as dense networks in 

sports stadiums and large exhibition centres, multiple UAVs have to be deployed to 

form several network clusters. In this section, we discuss the case of multiple Wi-Fi 
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Direct networks (called as P2P groups) as shown in Figure 4.1 using UAVs each 

equipped with a P2P GO device. We keep the same assumption as in the case of 

single UAV, that the Wi-Fi stations are initially associated with the GO. However, 

due to the mobile nature of the stations, the deployed UAVs have to frequently move 

to the optimum locations to maintain strong connections. This problem is primarily 

studied as “multiple facility location” problem in location theory [132], and most 

recently known as clustering [96, 97] in machine learning. The multiple UAVs 

placement problems can be solved using two different approaches. Firstly, by 

considering each P2P group independently and placing a UAV in each P2P group, 

using the single facility location problem as discussed in Section III-A and III-B. This 

approach is significant if the requirement is to avoid connection loss for the stations. 

However, if the temporary network connection loss is not a problem; a more useful 

approach is to use a combined approach to place multiple UAVs at optimum 

locations. The logical benefit of the second approach is that each STA is 

independently allocated to the closest UAV than to the rest of the UAVs in the 

network.  

The problem of placing k UAVs in optimum locations is similar to forming k  

clusters or P2P groups. Given 1 2, , .. nP p p p  Wi-Fi stations and k  k UAVs, the 

multiple facility location problems are to determine the locations 

* * * *
1 2, , .. kC C C C   for the UAVs and the allocations of  1 2, , .. nX X X X  

stations to each UAV, such that the total sum of distances of each station to its 

assigned UAV is minimized. It can be represented mathematically [133]: 
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1 2 1 2, ,.. , ,..

1

min min
k k

i k

k

i j j
C C C X X X

j p X

w C X
 

    (27) 

The optimization problem given in Equation (27) can be solved using k-median 

clustering [134]. The k-median clustering algorithm can be used to partition the set of 

Wi-Fi stations into k clusters and finding the optimal locations for the UAVs in each 

cluster. The k-median clustering process is given in Algorithm 4.1. 

4.2 System Model 

To evaluate the performance of the proposed scheme, four distinct scenarios are 

created. In Figure 4.2 and Figure 4.3, the placement of single UAV is controlled in 

3D and 1D space respectively using Algorithm 1. The proposed placement of the 

UAV in both cases is expected to improve network throughput and coverage while 

simultaneously achieve energy efficiency. To evaluate the performance of the 

proposed scheme, two other typical use cases are modelled. In the first case, the P2P 

GO is kept fixed, which is equivalent to a fixed access point (AP) in legacy Wi-Fi. In 

the second case, the P2P GO is implemented as a randomly moving device in a 3D 

space equivalent to a user-owned P2P GO device offering network connections. The 

four distinguished cases: (i) fixed mobility, (ii) random mobility, (iii) controlled 

mobility in 3D space and (iv) controlled mobility along a straight path (1D) are 

modelled. The performance of the proposed scheme is further investigated with the 

increasing number of UAVs (1, 2 and 3) with their optimal placements in 3D space 

and 1D space respectively using Algorithm 1. 
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4.2.1 Single UAV 

In this scenario, thirty (30) Wi-Fi STAs are placed in the 300 x 300 (m2) grid. The 

UAV is initially placed at position (100, 100, 15) and then it is allowed to move or 

remain fixed according to the mobility model. In the fixed UAV scenario, the UAV 

remained fixed throughout the simulation at position (100, 100, 15). This is identical 

Algorithm 4.1: UAVs Placement in 3D/1D Space. 
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to the fixed access point in legacy Wi-Fi networks. In the random mobility 

(unrestricted) UAV scenario, the UAV is allowed to move freely in the network 

during the simulation. This is identical to the P2P GO being a user-owned device. 

In the controlled mobility (3D) case, the UAV is allowed to move in 3-dimensional 

space; however, the mobility is controlled i.e. after each time T, the UAV is moved 

towards the new position computed using Algorithm 1. 

Lastly, in the controlled mobility (1D) case, the movement of the UAV is restricted to 

a single dimension (X-axis) i.e., movement along a straight path (X, 100, 15). 

Furthermore, the movement along the X-axis is controlled using Algorithm 1. 

4.2.2 Multiple UAVs 

Two distinct scenarios are considered with two UAVs and three UAVs. In both cases, 

thirty (30) Wi-Fi stations are placed in the 300 x 300 m2 grid. In the first scenarios, 

the two UAVs are initially placed at positions (100, 100, 15) and (150, 101, 15) 

whereas, in the second scenarios, a third UAV is placed in the network at (200, 102, 

15) and then their positions are updated using the proposed scheme. Similar to the 

single UAV case, the placement of all UAVs is controlled using Algorithm 1. 

4.3 Simulation Results 

The system model described in Section 4.2 is evaluated in network simulator-3 (ns-3) 

[135]. We choose ns-3 for several reasons. Firstly, ns-3 is a well known and de-facto 

standard for performing networks simulations. Secondly, ns-3 is open-source software 

and it provides full access to the protocol stack. It is enriched with trace sources, 

which provide access to low-level protocols and network parameters that are usually 
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not accessible in other network simulators. Additionally, ns-3 based simulations are 

more realistic due to its Linux-like protocol stacks. 

We used the Minstrel rate control algorithm [111] which is the default rate control 

algorithm in the Linux kernel. The minstrel rate control algorithm is originated from 

MadWifi project [136]. The project was initiated to develop Linux drivers for 

Wireless LAN cards based on Atheros chipsets. The Minstrel algorithm keeps track of 

the probability of successfully sending a frame of each available rate. Minstrel then 

calculates the expected throughput by multiplying the probability with the rate. This 

approach is chosen to make sure that lower rates are not selected in favour of the 

higher rates (since lower rates are more likely to have higher probability). 

In Minstrel, roughly 10 percent of transmissions are sent at the so-called look-around 

rate. The purpose of using the look-around rate is to force the algorithm to try a higher 

rate than the currently used rate, thus automatically selecting higher data rates when 

the SNR increases. To evaluate the energy performance of the network, we use the 

“Wi-Fi Radio Energy Model” of ns-3 which computes the energy consumption of a 

Wi-Fi interface in each state of the PHY layer (Idle, Busy, Transmit, Receive, Channel 

Switching, Sleep, Off). The default values of these parameters are defined in [137]. 

The simulation configurations listed in Table 4.1. We used three performance metrics 

over which the performance of the proposed scheme is evaluated, i.e. the number of 

associated stations, network throughput and energy efficiency. The performance over 

these metrics is evaluated and separately presented in the subsequent subsections. 

4.3.1 Number of Associated Stations 
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A primary benefit of the proposed scheme is to increase the number of associated 

stations and maintain fair connections to all clients by moving the UAV to the optimal 

location.  

 

Table 4.1 Simulation parameters. 

 

Parameter Value 

Area (m2) 300 x 300 

No. of UAVs 1, 2, 3 

No. of STAs 30 

STAs mobility Model Random waypoint 

UAVs mobility model Fixed, Random, Proposed Algorithm 

WLAN standard 802.11n (5GHz) 

Propagation Model Log-distance propagation loss model 

Application Type CBR 

Payload size 1462 Bytes 

Application data rate 1024 Kbps 

Battery model Wifi Radio Energy Model of ns-3 

Simulation duration 600 seconds 

 

 

As the network consists of mobile nodes, the network topology, as well as the 

parameters, are always changing. The quality of the wireless signal (i.e. SNR) 

degrades as the stations move away from the GO. However, the GO constantly moves 

to the optimal location determined by the proposed scheme. When the UAV moves to 

the new optimum location, the distance to each STA is reduced, thus avoiding stations 

to de-associate from the GO. The proposed scheme does not guarantee 100% STAs 
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association; however, the association ratio can be much improved using the proposed 

scheme. 

The performance of the proposed scheme is evaluated to investigate the STAs 

association as shown in Figure 4.4.  

 

 

 

Figure 4.4 Number of associated stations (single UAV). 

 

Fig. 5 shows that the number of stations associated with a single GO. The STAs are 

initially placed randomly following a uniform distribution whereas the UAV is placed 

at (100, 100, 15). The STAs in the communication range connects to the GO whereas 

some of the STAs outside the coverage of UAV are not associated. The STAs in all 

cases are randomly moving which changes the network topology at different instants 

of time. In the case of fixed GO, the STAs are frequently de-associated when they 

move far away from the GO, reducing the number of associated stations. At the same 

time, other distant STAs, initially not associated with the GO, may come closer and 

connect to the GO. The frequent movement of STAs is causing unpredictable 

association of STAs. A similar behaviour can be observed in the case of randomly 
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moving GO where both the GO and the STAs are moving. On the other hand, the 

proposed scheme controls the movement of the UAV such that it periodically moves 

the UAV to an optimal location where the distance to all STAs is minimized. As the 

objective is to minimize the distance to all STAs, the distance to some STAs initially 

closer may increase. However, the overall STAs association improves. In the case of 

UAV movement over a straight path (1D), the proposed scheme cannot place the 

UAV at the optimal location due to mobility constraint; however, it tends to move the 

UAV to a sub-optimal location to reduce distances to the STAs. It can be observed in 

Figure 4.4, that the STAs association ratio using such proposed scheme with 

restricted mobility is still better than the fixed and randomly moving GO cases. The 

analysis of the simulation results shows that on average, the GO moving in 3D space 

can maintain 13% more connectivity than Fixed GO and 23% more than the randomly 

moving GO. In the case of GO moving in 1D; the values are reduced to 8% and 18% 

respectively. The stations association in the network in case of multiple UAVs is 

investigated by deploying a different number of UAVs (1, 2 and 3) in the network. 

The aim is to further strengthen the claim of the proposed scheme by investigating the 

impact of using multiple UAVs. 

The simulation results of STAs association with multiple UAVs using the proposed 

scheme in 3D and 1D mobility are reported in Figure 4.5 (a) and (b) respectively. 
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(a) 

 

(b) 

 

Figure 4.5 Number of associated stations using multiple UAVs (a) 3D (b) 1D. 

 

It can be easily observed in Figure 4.5 that the increasing number of UAVs in the 

same network can significantly improve the connectivity of network devices. The 

improvement in UAVs with 3D placement is expectedly greater than with 1D 

placement. The average association of STAs, using 3D movement is increased by 

12% and 28% for increasing number of UAVs to 2 and 3. For 1D movement, the 

percentage improvement is reduced to 9% and 24% for 2 and 3 UAVs respectively. 

The presented results were expected, as increasing the number of UAVs can increase 

the chance of STAs to connect to one of the 2 (or 3) UAVs deployed in the network. 
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4.3.2 Network Throughput 

Network throughput is a widely used metric to evaluate network performance. 

Increasing the received power or more specifically the received SNR directly 

increases the transmission throughput and consequently improve the application-layer 

performance [58]. The UAV-aided network is simulated to evaluate the network 

throughput in Megabits per seconds (Mbps). Figure 4.6 illustrates the total network 

throughput using the four distinct scenarios i.e. fixed UAV, randomly moving UAV, 

proposed scheme with 3D placement and proposed scheme with 1D placement.  

 

 

 

Figure 4.6 Network throughput (single UAV). 

 

By inspecting Figure 4.6, it can be observed for all the four cases that the throughput 

increases abruptly when the simulation starts in the first couple of seconds. The 

reason for this increase is that STAs in the coverage of UAV connect in this time and 

start receiving data. In the case of fixed and randomly moving cases, when all the 

STAs are connected, the throughput does not increase further. There are slight 

variations in the instantaneous network throughput that indicates the connection status 

or the link quality of one or more STAs is changed. When STAs are disconnected, the 



  

   

89 

 

throughput is decreased and vice versa. Similarly, one or more distant STAs with poor 

links quality can also vary the throughput. In the case of the proposed scheme (3D and 

1D), at time 10 seconds, the UAV has moved to the optimal location in the network 

that further increases the throughput. The rationale behind the high throughput in the 

proposed scheme is that by reducing the distance between the UAV and the randomly 

moving stations, higher SNR values can be achieved, which directly map with the 

selection of high MCS index, thus increasing higher data rates. Additionally, the 

selection of higher SNR depicts the quality of the wireless channel that reduces the 

number of retransmissions to further improve the throughput. It can also be noticed in 

the graph, that the improvement in throughput is relatively less in the case of UAV 

moving along a straight path (1D) as compared to the 3D case. The reason is that in 

the 1D case, the proposed scheme only ensures sub-optimal placement of the UAV. 

This causes an increase in the throughput relative to fixed and random use cases, but 

throughput is still less than the 3D case. Another clear observation in Figure 4.6 is the 

relatively fewer variations in the network throughput using the proposed scheme (3D 

and 1D). The reasons for the relatively more constant throughput using the proposed 

scheme is that STAs association, as well as the link quality, is maintained when the 

UAV is placed at the optimal location. The retransmissions are also reduced which 

further smooth the throughput. The analysis of the results obtained shows the 

significance of the proposed scheme over both 3D and 1D placement of GO. The 

throughput using the proposed scheme relative to fixed GO is increased by 35% and 

15% for 3D and 1D deployments respectively. The throughput relative to randomly 

moving GO is increased by 54% and 31% using the proposed scheme with 3D and 1D 

movement of GO respectively.  
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We further investigated the impact of increasing the number of UAVs on network 

throughput. We deployed a different number of UAVs (1, 2 and 3) in the network and 

computed the network throughput with the same simulation parameters. The obtained 

results were analyzed that show that by increasing the number of UAVs to 2 and 3, 

the throughput is increased by 21% and 34% in 3D case, and 28% and 35% in 1D 

case. 

It is worthy to note that the throughput gain in the 1D case is greater than the 3D case. 

However, it should not mislead the reader that the proposed scheme with 1D 

placement outperforms 3D placement. Instead, the reason for this contrasting 

behaviour is that the gain is relative to a single UAV case and the increasing number 

of UAVs with 3D placement does not connect more stations as compared to 1D 

placement. However, the actual throughput is still higher in the 3D case for an equal 

number of UAVs as depicted in Figure 4.7. 

 

 

(a) 
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(b) 

 

Figure 4.7 Throughput versus no. of UAVs (a) 3D (b) 1D. 

 

4.3.3 Energy Efficiency 

In Wi-Fi networks, energy efficiency can be achieved in several ways: Firstly, by 

reducing the transmit power of the radio transmitter at the sending station; secondly, 

by using higher data rates at constant transmit power; and lastly by reducing the 

number of retransmissions and packet loss. Wi-Fi Direct offers additional algorithms 

known as OppPS and NoA to further save energy. The proposed scheme in Section III 

constantly reduces the sum of distances between the GO and the STAs to achieve a 

higher signal to noise ratios (SNR). With higher SNR, higher transmission rates can 

be achieved, and the retransmissions of frames are significantly reduced. Ultimately, 

the energy consumed to transmit the user data can be reduced. To evaluate the energy 

efficiency of the proposed scheme, we used the metric called “energy consumed per 1 

megabit of user data” measured in Joules. The proposed metric precisely calculate the 

energy consumed in the transmission of the actual user data. A similar metric “energy 

consumed per frame'' is used in [138]. The energy performance of the proposed 
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scheme is evaluated and compared against the fixed and randomly moving GO. The 

results are shown in Figure 4.8.  

 

 

 

Figure 4.8 Energy efficiency (single UAV). 

 

The energy consumption increases abruptly in the first few simulation seconds despite 

the fact that more control frames are communicated in the STAs association phase. 

However, the cumulative size of the control frames is less, and the impact is 

negligible in terms of the proposed metric. When all the STAs in coverage associated 

with the GO, the energy consumption does not vary abruptly, however, variations can 

be observed throughout the simulation duration. The variations for fixed and 

randomly moving GOs are higher as compared to that of the proposed scheme. To the 

best of our understanding, the higher variations in the fixed and random cases are 

caused by more frequent changes in data rates and the higher number of re-

transmissions caused by low links quality. In contrast, relatively fewer variations in 

energy consumption are observed when the proposed scheme is used. We believe that 

the Variations can be further reduced if the STAs connected to the GO have similar 

quality of connections to the GO. It can be logically concluded that the proposed 
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scheme is more efficient in saving energy than fixed GO as well as randomly moving 

GO. Furthermore, the energy efficiency is more evident in the case of 3D placement 

of P2P GO, whereas little improvement is achieved for the GO restricted to move 

along a straight path. The detailed analysis of the obtained results shows that the 

energy consumption using the proposed scheme as compared to the fixed GO is 

reduced by 30% and 14% for 3D and 1D deployments respectively. Furthermore, the 

energy consumption relative to randomly moving GO is reduced by 28% and 12% 

using the proposed scheme with 3D and 1D movement of GO respectively. 

The impact of different number of UAVs in the network is also studied. The energy 

consumption of the network in case of multiple UAVs is investigated by deploying a 

different number of UAVs (1, 2 and 3) in the network. The results are plotted in 

Figure 4.9.  

A clear observation is that the variations in energy consumption are reduced with an 

increasing number of UAVs. This strengthens our explanation stated earlier that the 

possible cause of these variations in the higher variations in fixed and random UAV 

placement are frequently varying data rates and re-transmissions in the network. With 

an increasing number of UAVs, the impact of both these parameters is reduced. The 

analysis of the results obtained shows that by increasing the number of UAVs to 2 and 

3, the energy consumption of the network is reduced by 14% and 33% in 3D case, and 

10% and 27% in 1D case. Our understanding is that the energy consumption of the 

network is highly impacted by the distance between the UAV and clients, which 

reduces more when we placed three (3) UAVs in the network. 
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(a) 

 

(b) 

 

Figure 4.9 Energy efficiency versus the number of UAVs. (a) 3D (b) 1D. 

 

4.3.4 Comparison with the State-of-the-Art 

To further support the benefit of the proposed scheme, we performed a simulation-

based comparison of our proposed scheme with two similar solutions proposed in 

[139] and [63]. In [139], the authors proposed to use a constrained K-means algorithm 

proposed in [140] for UAV placement and then assign devices to the UAVs. The K-

means based algorithm divides the set of network devices into small clusters and 

optimally place the UAVs at the centres of each cluster. The authors argued that by 

placing the UAV at the centre of the cluster, the sum of squared distances between 
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UAVs and its assigned devices is minimized which would reduce the total energy 

consumption. In [63], the authors proposed a solution to place UAVs such that the 

total network throughput is maximized. The authors proposed an algorithm that is 

based on Tabu search to position UAV such that all associated STAs are within the 

transmission range of the UAV. To ensure that no STA lose the coverage, the UAV is 

restricted to move only in a fixed circular region called “containing region'' of the 

UAV. The authors further restrict the movement of the UAV to a grid of points inside 

the containing region called “candidate UAV positions''. To search for the optimal 

UAV position (i.e. grid point) inside the containing region, the authors used a Tabu 

search method [141]. The algorithm starts with a random initial solution and 

iteratively improves it by changing its position to a new grid point inside the 

containing region. A number of positions are evaluated, and the best is chosen to 

place UAV. To avoid the previously searched non-optimal grid points, the algorithm 

maintains a list of previously visited positions. We simulated the above two 

algorithms in ns-3 using the aforementioned system model to compare the 

performance of our proposed scheme. For a fair comparison, we used the same set of 

parameters (e.g. number and positions of STAs, mobility model of STAs, transmit 

power, propagation model, application type, and packet size parameters etc.). Figure 

4.10, Figure 4.11 and Figure 4.12 illustrate the performance comparison of the 

proposed scheme against the two algorithms. In Figure 4.10, the three schemes are 

evaluated to maintain STAs association.  
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Figure 4.10 Comparison of STAs association. 

 

It can be observed that all the three schemes maintain connectivity of the STAs 

throughout the simulation, however, [63] outperform (i.e. maintains 100% 

connectivity of its associated STAs). It is because the algorithm in [63] is designed to 

restrict the movement of UAVs to the containing circle so that all the associated STAs 

remain in the coverage. Furthermore, the proposed scheme outperforms [139] at some 

instants in the simulation due to the constrained distance used in the algorithm (Eq. 3).  

In Figure 4.11, the three schemes are compared for the throughput gain of the overall 

network. Both instantaneous (left) and cumulative throughput (right) values are 

plotted. The figure (left) shows that the proposed scheme outperforms [139] and [63]. 

One possible reason for this improved performance of the proposed scheme is that it 

inherently considers the distant STAs in calculating the optimal location of the UAV. 

This minimize the distance fairly to all STAs, which results in improved quality of all 

the links. Similar to the proposed scheme. the algorithm in [139] using K-means, also 

moves the UAV to the centre of the cluster periodically, thus achieves almost equal 

throughput gain. On the contrary, [63] uses Tabu search to move the UAV in a grid 
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and takes relatively longer time to find the optimal location, which degrades the 

performance. 

Furthermore, as the STAs are constantly moving around, the algorithm [63] rarely 

achieves optimum performance. The impact of STAs mobility over throughput 

performance is also highlighted by the authors in [63]. The analysis of the average 

throughput gain of the three schemes shows that the proposed scheme achieves 5% 

and 31% more throughput gain as compared to [139] and [63] respectively. A 

comparison of the energy efficiency of the three scheme is then presented in Figure 

4.12.  

The Tabu search based scheme [63] show poor performance in terms of energy 

efficiency. It was expected because the UAV in this scheme search all the grid points 

including several non-optimal grid points before it reaches the optimal location. In 

such non-optimal locations, the achievable data rate of the UAV is dropped, and the 

number of retransmissions increases in the network, which consume extra energy to 

transmit the same data several times. Unlike, the proposed scheme as well as the 

algorithm in [139] constantly move the UAV only to the optimal location (without 

searching through the non-optimal space) when the STAs change their positions.  
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Figure 4.11 Comparison of network throughput. 

 

 

 

Figure 4.12 Comparison of energy efficiency. 

 

The analysis of results shows that the proposed scheme achieves the maximum energy 

efficiency. The average energy consumption of the proposed scheme is 9% less than 

[139] and 29% less than [63]. Although, the proposed scheme provides a simpler 

solution to UAV-aided communication in Wi-Fi networks. However, some challenges 

in terms of practical implementation are worthy to discuss. In order to optimally place 
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UAV, the UAV requires the current location of devices. The location information i.e. 

GPS coordinates of the client devices can be acquired at the application layer, which 

will require user agreement. Alternatively, location estimation algorithms such as 

RSSI and Angle-of-Arrival (AoA) based location estimation can be applied. Another 

challenge is the communication between the UAV and the controller. For instance, 

using only Wi-Fi interfaces, the UAV might leave out of the communication range of 

the controller. However, this problem can be addressed if the UAV and the controller 

are equipped with a cellular interface. The dual interfaces can leave a negative impact 

on the battery life of the UAV. Alternatively, highly directional antennas can be used 

to enable nearly LOS communication between the UAV and controller at large 

distances.  
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CHAPTER 5 : COGNITIVE WI-FI NETWORKS 

 

In this chapter, we propose data-driven, machine learning based cognitive Wi-Fi 

networks to dynamically design efficient topologies. In cognitive networks, the 

network responds to network changes and reconfigure itself to improve the overall 

performance. Section 5.4.3 proposes a novel handover prediction scheme, which 

accurately and timely predicts inter-BSS handover using Received Signal Strength 

(RSS) to avoid unnecessary connection disruption in overlapping regions. In Section 

5.4.4, ML-based algorithms are first employed to accurately predict the transmission 

throughput in Wi-Fi networks. The predicted throughput information is then used to 

perform intelligent decision making in several network function such as access point 

selection. 

5.1 Handover Selection Problem 

Handover prediction refers to the problem of anticipating about the connection state 

of a mobile device associated with an AP. Handover prediction can play a key role in 

providing seamless connectivity in next-generation networks. It brings several 

potential benefits; Firstly, the accurate prediction of the handover event allows to 

timely initiate the transfer of connection to a new AP to reduce handover delay. 

Secondly, it prevents unnecessary handovers (i.e. Ping-Pongs) to avoid connection 

disruptions in highly dynamic networks. Handover prediction can be challenging in 

some cases. Figure 5.1 illustrates different scenarios of inter-BSS handover in Wi-Fi 

networks.  
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Figure 5.1 Handover prediction scenarios. 

 

A Wi-Fi user travels from point A to point E (follows the trajectory shown as red, 

dashed line). When it passes through the region where the radio coverage of AP-1 and 

AP-2 overlaps, the received signal strength (RSS) drops below the threshold value 

and it starts scanning for an alternate connection. In the meanwhile, as it moves a bit 

further to point D, it discovers AP-2 with a stronger signal. It de-associates from AP-1 

and associates to AP-2. The user continues to move and follows the trajectory from 

point E to G (dashed blue line) and thus again passes through an overlapping region 

of AP-2 and AP-3. At point F, the user changes the association to AP-3 and back to 

AP-2 when it moves a little further. The user moves ahead and follows the third 

trajectory from point G to H, and changes the association to AP-1 when it approaches 
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to point H. At Point H, the user cannot move further towards AP-1 due to hindrance 

and the signal form AP-2 becomes stronger with a slight movement in any direction. 

From the above discussion, it becomes obvious that there are some cases where the 

handover shall not take place despite the signal strength drops slightly below the 

threshold level to avoid ping-pong effect. 

5.2 Access Point Selection Problem 

When a Wi-Fi device is located in the transmission range of more than one AP, it can 

associate with either one as shown in Figure 5.2. By default, a station associates to the 

AP from which it first receives a beacon or a probe response frame. However, in 

practice, such kind of automatic association of stations can cause performance 

degradation.  

 

 

 

Figure 5.2 Overlapping BSS. 

 

The optimal selection of an access point in dense WLAN networks is crucial for 

network performance. The legacy methods for user’s association are (i) Strongest 
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Signal First (SSF) and (ii) Least Loaded First (LLF). Both the SSF and LLF 

association methods have shortcomings. For instance, In SSF scheme, a station 

associates to the AP from which it receives a stronger radio signal, however, if the AP 

is over-utilized, the association of more stations can cause congestion and increase 

packet loss as well as packet end to end delay [142-144]. On the other hand, in LLF 

scheme, the selection of the least loaded AP provides APs load balancing, however, it 

may force a station to associate with a distant AP, and thus the station suffers from 

poor connection quality. To address these shortcomings of SSF and LLF schemes, the 

authors in [145] propose a new metric for AP selection named as “potential 

bandwidth”, and is defined as, “the MAC layer bandwidth that an end-host is likely to 

receive if it were to affiliate with a given access point”. The new metric takes into 

account the signal strength as well as the AP load and additionally the contention on 

the wireless medium. However, the technique in [145] may not achieve the desired 

performance if the APs uses different beacons frequencies. It is, therefore, necessary 

to devise an AP selection strategy that improves the overall network performance 

while meeting the demand of the new user. 

5.3 Cognitive Networking 

Recently, new architectures are being proposed in the literature [67-69] based on 

Software Defined Network (SDN) and Cognitive Networking (CN) paradigms. SDN 

[146, 147] refers to the type of networks in which the control and data forwarding 

functions are separated. In these architectures, the network devices such as switches, 

routers and access points act as non-intelligent data forwarding devices while the 

intelligent functions such as data routing are implemented in a central controller also 
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called as the SDN Controller. On the other hand, cognitive networking [69] refers to 

the network paradigm in which the networks automatically learn and respond to 

network changes by actively taking decisions and planning network resources to 

achieve an end to end performance. Cognitive networks can be realized using both 

distributed and centralized architectures. A novel approach to realize cognitive 

networks is to adapt data-driven machine learning (ML) algorithms to address 

challenges in future ultra-dense and dynamic networks [72-74]. ML algorithms can be 

used for both network design [75-77] and network performance evaluation [78-81]. 

This chapter proposes a centralized network architecture using an SDN controller that 

uses machine-learning algorithms to solve the two aforementioned network problems. 

Firstly, it anticipates the handover event that is likely to occur and to decide whether 

the handover is actually required. The proposed scheme reduces the likelihood of 

unnecessary handover decisions in Overlapping BSS (OBSS) in ultra-dense 

deployment. Secondly, it solves the AP selection problem by predicting the post-

selection network throughput to choose the best AP. Throughput is a significant 

metric to measure user experience. The prior knowledge of future throughput can help 

the network to avoid network congestion and thus plays a vital role in AP selection. 

The proposed scheme can be used to develop large frameworks and testbeds for real-

time monitoring and network diagnostic to boost the QoS in Wi-Fi networks. 

5.4 Proposed Scheme 

5.4.1 Architecture 
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The proposed scheme consists of four components: SDN controller, feature extraction 

module, datasets, and machine learning module. Figure 5.3 illustrates the functional 

architecture of the proposed scheme.  

 

 

 

Figure 5.3 Proposed scheme. 

 

The SDN controller constantly collects network data consisting of several parameters 

of interest such as device’s capability, supporting rates, battery status, position and 

speed information, Wi-Fi channel being used, packet arrival rates, average throughput 

and frames retransmission ratios. The network attributes constitute raw data that is 

then processed to extract useful features. In the feature extraction module, some 

attributes are directly used as features, whereas some new features are also created 

from the raw data. For instance, the number of associated clients to an AP is directly 

used as a feature, whereas the inter-arrival time of the packets is a feature that is 

computed from the packet-arrival times of two consecutive packets. The features are 

then combined to form ML-ready datasets that are used by ML algorithms to 
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implement end-to-end learning. Two types of datasets are created namely design 

datasets and evaluation datasets. The design datasets are used to predict a design 

parameter e.g. the AP for the association. Other examples include the maximum 

number of nodes served by AP, transmit power of access points and the optimum 

channel to be used etc. The evaluation datasets are used for evaluating the network 

performance in the current conditions e.g. transmission throughput. Other examples 

include average packet end-to-end delay, packet inter-arrival rates, network 

congestion and channel access delay. 

5.4.2 Functional Overview 

The SDN controller continuously monitors the network triggers. Three types of 

triggers are used by the controller i.e. (i) topology change, (ii) performance 

degradation and (iii) periodic triggers. A new user sending association request to an 

AP corresponds to the first type of trigger. The lower network throughput or increase 

in the packet end-to-end delay than a pre-defined threshold level corresponding to the 

second type of trigger. Periodic triggers are activated at regular intervals regardless of 

any change in the network state. The activation of any of these triggers automatically 

run the appropriate ML model. The ML model at fixed intervals imports the required 

ML ready dataset from the stored datasets to update itself. When triggered, the ML 

model can thus generate an accurate output. The output of the ML model is used by 

the SDN controller to implement a control action. The operation of the proposed 

scheme to predict handover and AP select the best AP is explained as follow: 

5.4.3 Handover Prediction Scheme 
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Handover prediction is solved as a binary classification problem using supervised 

learning techniques. The raw data for handover prediction consists of time series of 

RSS values of beacon frames received from APs. To be used in supervised learning, 

the time series are transformed into a dataset that can be readily used in supervised 

learning. Figure 5.4 illustrates the proposed handover prediction scheme.  

 

 

 

Figure 5.4 Handover prediction scheme 

 

Each device constantly monitors received signal strengths and records the RSS values 

in beacon frames in an RSS REGISTER. The RSS REGISTER is then shared with the 

controller every second. The controller copies the values from the RSS REGISTER 
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into a database of raw data. Each time an RSS REGISTER is received, it is appended 

to the previous data. The raw data is then accessed by the feature extraction module, 

which transforms the raw data into ML-ready dataset.  

The ML-ready dataset consists of several features as depicted in Table 5.1. Each row 

in the dataset consists of 13 columns. Columns 1 to 10 contains per-second average 

RSS values for 10 seconds. Column 11-13 contain the statistics calculated based on 

the first 10 columns i.e. mean, minimum and maximum. Each row in the dataset is 

calculated by applying a unit (1 second) shift to the previous column. The controller 

constantly monitors the current association of the device. 

 

Table 5.1 Dataset for handover prediction. 

 

Features Class 

 

Columns 1-10 

 

11 

 

12 

 

13 

 

1 

RSS0, RSS1,  … RSS9 Min RSS Max RSS Mean RSS 1 = Handover 

0 = No Handover 

 

The method defines two RSS thresholds denoted as T1 and T2. T1 refers to the RSS 

level that is significantly low but still supports an ongoing connection despite if RSS 

drops below it. Whereas, T2 refers to the RSS level which is the minimum level to 

support a connection. If RSS drops slightly below the threshold, the connection will 

be terminated. The controller sends the first trigger when the received signal strength 

of the device drops below the threshold T1. The first trigger indicates the possibility of 



  

   

109 

 

a handover in the next couple of seconds and hence a proactive measure is necessary. 

The trigger activates the machine-learning module to run the algorithm at each time 

step to predict the probability of handover in the next time step. It is worth noticing 

that the first trigger is significant to reduce unnecessary processing by continuously 

running the ML algorithms when the device lies in good coverage. Once the trigger is 

generated, the ML module runs the trained model to predict whether handover should 

take place or not? The ML module periodically imports the most recent feature vector 

from the dataset, run the model and predict the handover. The dataset is updated by 

appending the prediction decision for the given feature vector to improve the future 

learning process and prediction accuracy. When the handover is detected for a given 

feature vector, the handover process is initiated. After completing the handover, when 

the RSS from the new AP is increased and becomes higher than T1, the controller 

sends another trigger to the machine-learning module to stop running the prediction 

process. If at any time, the RSS drops below the second threshold T2, a handover is 

initiated without running the ML model, and the dataset is updated by appending the 

handover decision to the given feature vector. 

5.4.4 Access Point Selection Scheme 

The AP selection problem is addressed by the proposed scheme using a multi-criteria 

online learning technique as illustrated in Figure 5.5. 
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Figure 5.5 AP selection scheme. 

 

When an AP receives an association request from a Wi-Fi station (STA), it forwards 

this request to the SDN controller. The SDN controller checks if the dataset is 

available to use a machine-learning algorithm to choose the best AP to offer 

connection to the new user. Initially, when the network is first deployed, the dataset is 

not available. Hence, the controller uses the default algorithm (i.e. SSF or LLF) to 

select the AP. The controller computes the per BSS throughput for the given network 

parameters. Once, the dataset is populated with sufficient data points, any new 

association request is handled by the machine-learning model. The proposed scheme 

predicts the throughput for each AP in the overlapping BSS and returns the estimated 

throughput for each AP (if the new STA would be associated with this AP) to the 

controller. The controller then selects the AP that provides higher estimated 
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throughput, for connecting the requesting client. To create the dataset for throughput 

estimation, the controller constantly records the information such as the number of 

associated clients and packet information (e.g. timestamps, arrival time, packet size 

and signal to noise ratio etc.). A new feature, Inter-Arrival Time (IAT) is calculated 

from the timestamp and arrival time of each packet. The two features, Inter-arrival 

time and the number of clients connected to the access point are primarily selected to 

use in throughput estimation. Furthermore, new features are derived from the IAT 

values, using the statistics such as Minimum, Maximum, Mean, Variance, Skew and 

Kurtosis. The features are collected over a time window of fixed duration for the 

whole network. The structure of ML-ready dataset for throughput estimation is given 

in Table 5.2. 

 

Table 5.2 Dataset for throughput prediction. 

 

Parameters Features/Target Variable Derived Features Data-Type 

Associated STAs n_clients - Integer 

Timestamp 
IAT 

Mean, min, max, 

skew, kurtosis 
Float 

Arrival Time 

Arrival time 
Throughput - Float 

Packet Size 

 

For AP selection, the controller simultaneously collects other parameters to compute 

features to create a dataset. The structure of dataset used for AP selection is listed in 

Table 5.3. 
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Table 5.3 Dataset for AP selection. 

 

Parameters Features/Target 

Variable 

Derived Features Data-Type 

Associated STAs n_clients - Integer 

RSSI 
SNR 

Mean, min, max, skew, 

kurtosis 
Float 

Noise Level 

Queue Length 
Contention delay 

Mean, min, max, skew, 

kurtosis 
Float 

Timestamp 

Packet Arrival time 
Throughput - Float 

Packet Size 

 

5.5 Evaluation 

The proposed scheme is implemented using ns-3 simulator [135] and Linux-based 

Mininet network emulator [148]. Mininet provides a sufficient level of flexibility and 

control over the network to dynamically implement new configurations. Additionally, 

it allows interactive simulation and user can add traffic and applications on devices as 

well as apply some topological changes during the simulation runtime, thus enabling 

users to create more dynamic scenarios. On the other hand, ns-3 is a de-facto standard 

for simulating wireless networks. It provides accurate models of the wireless channel. 

The recent version of ns-3 also supports indoor models where users can model 

buildings, floors, rooms and other parameters of the real world. To implement the 

proposed scheme for handover prediction, we performed extensive simulations in ns-3 

to acquire raw network data. Both indoors and outdoors, devices are deployed in the 

simulation. The raw data acquired is transformed into the dataset as given in Table 
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5.1. The datasets are then used in Mininet-based simulation to predict handovers using 

Random Forest (RF) algorithm. Random Forest (RF) [149] is a supervised learning 

algorithm employed in classification problems. It randomly selects features to build 

several decision trees and then averages the results. It is a relatively simpler algorithm 

and requires less time to build models. 

To implement the proposed scheme for AP selection, the controller is configured to 

simulate the two user association algorithms i.e. SSF and LLF in Mininet. The 

simulations include 3 APs and 50 STAs, randomly moving in the network and 

changing association controlled by these algorithms. The network traces are collected, 

and the dataset is created according to Table 5.3. The previously collected datasets are 

used to train the ML model to estimate network throughput. The STA-AP association 

with higher estimated aggregate throughput is then selected. 

The AP selection dataset involves the use of estimated throughput and hence it is 

necessary to evaluate the accuracy of the algorithms that estimate the throughput. To 

evaluate the accuracy of estimated throughput, we used two algorithms i.e. MLP and 

SVR due to their capability to better predict such metrics [83]. The raw traces, form 

the simulated network, are collected and transformed into useful features as listed in 

Table III to create the ML-ready dataset. The dataset is divided into training-

validation (70-30 %) splits. The two algorithms are trained with the training data and 

are then tested by applying to the unseen validation data. To further validate the 

statistical significance of the model, 10-fold cross-validation is used to avoid over-

fitting. 

5.6 Results and Discussion 
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The performance of the proposed handover prediction scheme primarily depends on 

the accuracy of the machine-learning model. Firstly, the prediction accuracy of the RF 

algorithm used for handover prediction is evaluated using the confusion matrix. A 

confusion matrix shows the percentage of correct and wrong predictions on data 

points of both classes in the dataset. The confusion matrix shown in Table 5.4 shows 

the accuracy of the RF algorithm. 

 

Table 5.4 Confusion matrix. 

 

 Predicted 

Handover 

Predicted 

No Handover 

Actual Handover 

 

92% 8% 

Actual No Handover 11% 89% 

 

 

It can be seen that the RF algorithm provides high accuracy to correctly predict the 

handover events. In the next step, the performance of the proposed handover 

prediction scheme is compared to other methods stated earlier to assess the overall 

performance. Figure 5.6 shows the performance of the proposed scheme versus two 

other handover prediction methods based on RSS forecasting method and travelling 

distance method [150].  
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Figure 5.6 Unnecessary handovers using the proposed scheme. 

 

The figure shows the number of unnecessary handovers (cumulative) overtime 

computed for the three methods. It can be seen that the proposed scheme outperforms 

the two methods by reducing the overall numbers of unnecessary handover. The 

analysis of results shows that the proposed scheme reduces the number of unnecessary 

handovers by approximately 60% and 50% as compared to the RSS method and 

travelling distance method respectively. 

The proposed scheme for AP selection problem is then evaluated which is based on 

the accuracy of throughput estimation. Hence, the accuracy of the machine learning 

algorithms i.e. MLP and SVR for throughput estimation are first evaluated. The 

predicted throughput versus actual throughput is plotted for both algorithms as given 

in Fig. V and V. It can be observed that the MLP model provides better accuracy (i.e. 

predicted values are much closer to the actual values) as compared to the SVR model. 

To further quantify the performance of both models, three performance metrics i.e. 

training time, Mean Squared Error (MSE) and R-squared are computed and the results 
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are listed in Table VII. The MLP based model requires long training time (1.59 

second) than the SVR model (0.211 seconds), however it provides better accuracy 

(i.e. less MSE for MLP = 0.067 as compared to SVR = 0.211) and better 

generalization to future predictions (i.e. higher R-squared for MLP = 0.974 as 

compared to SVR = 0.916). The better learning capabilities of MLP costs longer 

training time due to its complex design (hundreds of neurons arranged in several 

layers). 

 

Table 5.5 Complexity analysis. 

 

Parameter MLP SVR 

Training Time 1.59 0.211 

R-Squared 0.974 0.916 

MSE 0.067 0.156 

 

 

The MLP-based throughput estimation is then used in the AP selection problem. In 

AP selection, two performance metrics i.e. average BSS throughput and per-STA 

throughput are used to compare the throughput gain of the proposed scheme versus 

conventional AP selection schemes (i.e. SSF and LLF). The results are shown in 

Figure 5.7 (average BSS throughput) and  

 

Figure 5.8 (per-STA throughput).  
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It can be observed that the proposed scheme improves the average BSS throughput as 

well as per-STA throughput. The analysis of throughput gains reports an average 

improvement of 9.2% and 8% as compared to the SSF and LLF schemes respectively. 

 

 

 

Figure 5.7 Performance improvement using the proposed scheme 

 

 

 

Figure 5.8 Per STA throughput improvement.  
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CHAPTER 6 : CONCLUSIONS AND FUTURE WORKS 

 

In this dissertation, we investigated the current state of the Wi-Fi networks including 

the Wi-Fi Direct technology. The literature review in CHAPTER 2 reveals several 

areas of research to improve the performance of Wi-Fi networks in future 

communication scenarios. The Wi-Fi Direct technology has been recognized as a 

candidate technology to deploy in dense D2D communication networks. However, the 

study of Wi-Fi Direct specifications and the state-of-the-art has found several 

shortcomings in the standard specifications. The inherent limitations of Wi-Fi Direct 

technology have been discussed in Section 2.4. The first limitation of Wi-Fi Direct is 

the group formation schemes that do not allow more than two devices to 

simultaneously participate in the group formation procedure. We proposed a modified 

group formation scheme in Section 3.2 that is backwards compatible with the standard 

group formation scheme. The modified group formation scheme ensures that every 

P2P device in the network participates in the group formation. The benefit of this 

scheme is to provide equal chances to all devices to become the Group Owner (GO). 

To further ensure, that only the most capable devices are selected as GO, a device’s 

capability-based GO selection scheme is proposed in Section 3.1. In case of non-

availability of the GO device, a back-up GO (BGO) is also preselected in the 

enhanced group formation. 

The proposed group formation scheme in Section 3.2 is defined to create a single P2P 

group. In large networks, a single GO cannot serve all the devices. Hence, multiple 

P2P groups are to be created. To create multiple P2P groups in large networks, the 

problem becomes two-fold: firstly, the clustering of devices into multiple P2P groups, 
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and secondly the selection of GO for each cluster. The problem is solved using Mixed 

Integer Programming (MIP) in Section 3.3. 

The problems mentioned earlier in this section are related to fixed networks with 

limited or no device mobility. In dynamic networks, where the devices including the 

selected GOs might move away from the network frequently, the group formation 

procedure shall be reinstated so frequently. This leads to severe connection 

disruptions and longer delays that usually cannot be afforded in several applications. 

To cope with user mobility, a novel UAV-aided network architecture is proposed in 

Section 4.1. In the proposed network architecture, the GO device is deployed over a 

UAV while the mobility of the UAV is controlled. A modified Weiszfeld algorithm is 

used for controlling the mobility of single UAV whereas modified K-median 

algorithm is employed for multiple UAVs. It was shown that by minimizing the 

distance between the network device and the UAV, higher network throughput gains, 

higher number of device’s association and energy efficiency is achieved.  

Nevertheless, the aforementioned schemes in Section 3.3 and 4.1 offer a significant 

improvement in network performance, there are other challenges related to future Wi-

Fi networks. For instance, dynamic nature of the wireless channel, users running 

different applications, switching frequently between different services, frequent 

movement of users in overlapping coverage regions, interference between Wi-Fi 

users, and many other issues that exist are major challenges for network owners. The 

existing solutions for network management and optimizations do not guarantee the 

QoS delivered to the end-users. To cope with challenges, cognitive Wi-Fi network 

design is proposed in Section 5.4. The proposed scheme uses data-driven, machine-

learning algorithms to implement network monitoring and control functions. The 
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proposed scheme has been implemented to solve two known problems in dense 

networks i.e. handover prediction and access point selection. The algorithm not only 

looks at the current network stats but also learns from the past data to accurately 

decide precise action, thus enabling self-organizing networks. 

The findings of this study make significant contributions to current knowledge. 

However, further research work is needed for further investigation. Some possible 

extensions of the presented works are listed: 

 The selection of device parameters and the associated weights for the selection 

of GO need further investigation for different applications. 

 The proposed UAV-aided architecture is evaluated in ns-3. A further study to 

investigate the proposed architecture in real testbed would be an interesting 

contribution. 

 The cognitive network implemented and evaluated in this study uses small 

datasets created using network simulations. An excellent contribution will be 

the deployment of this and other similar schemes in real dense networks to 

acquire large datasets. 
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