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ABSTRACT We propose novel multi-order statistical descriptors which can be used for high speed object
classification or face recognition from videos or image sets. We represent each gallery set with a global
second-order statistic which captures correlated global variations in all feature directions as well as the
common set structure. A lightweight descriptor is then constructed by efficiently compacting the second-
order statistic using Cholesky decomposition. We then enrich the descriptor with the first-order statistic
of the gallery set to further enhance the representation power. By projecting the descriptor into a low-
dimensional discriminant subspace, we obtain further dimensionality reduction, while the discrimination
power of the proposed representation is still preserved. Therefore, our method represents a complex image
set by a single descriptor having significantly reduced dimensionality. We apply the proposed algorithm
on image set and video-based face and periocular biometric identification, object category recognition, and
hand gesture recognition. Experiments on six benchmark data sets validate that the proposed method achieves
significantly better classification accuracy with lower computational complexity than the existing techniques.
The proposed compact representations can be used for real-time object classification and face recognition

in videos.

INDEX TERMS Face recognition, image set classification, covariance features, dimensionality reduction.

I. INTRODUCTION
Classification using image sets has recently received sig-
nificant research attention from the computer vision com-
munity [1]-[14]. In image set classification, classifiers are
trained using representations learned from one or more image
sets containing arbitrary number of images to model a class.
This is different from the traditional single image based
classification scheme where single image representations are
used to train classifiers. The test stage involves assigning a
label to a query image set by maximizing a suitable similarity
index between gallery and test image set representations.
Such type of learning takes advantages from the availability
of complementary within class image variations, such as non-
rigid deformations, scale, pose and illumination variations,
offered by multiple images in a set. Therefore, compared
to single mug-shot based face recognition or object cate-
gorization in general [15]-[17], set based modeling offers
significantly more accurate recognition results.

Image set based classification is naturally applicable
to many challenging computer vision problems such as

video sequence face recognition [2], [18], action and activ-
ity recognition [19]-[22], video surveillance [23], person
re-identification in a network of cameras [24] and long-term
observations based classification [25], [26]. In general image-
set classification is also applicable to the scenarios where the
images in a set have significant variations without necessarily
having a strict temporal relationship [10].

Classification based on image sets is usually a two-step
process. The first step involves learning robust image set rep-
resentations by efficiently encoding the within set intra and
inter-sample dynamics. The second step is concerned with
defining a similarity or distance metric for comparing two
set representations. A classifier is then trained using the set
representations and comparison metric(s). Usually, the clas-
sification accuracy, computational efficiency and memory
requirements are strongly dependent on both the set repre-
sentation approach as well as the set to set similarity/distance
metric.

Learning efficient, compact and discriminative image set
representations is a challenging task. Current image set
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representation methods which are relatively more accurate
have higher computational burden [10]. On the other hand,
the more faster algorithms compromise on the accuracy and
robustness. In contrast, we propose an image set representa-
tion technique that is compact (memory efficient), accurate
and computationally very efficient. This is verified by our
experimental results on six benchmark datasets involving
different image set based classification tasks.

A. RELATED WORK

We roughly categorize the existing literature on image-set
classification into sample based set representation and struc-
ture based set representations methods.

The sample based methods rely on the similarity/
differences of individual set samples to define a set to
set similarity/distance index in a nearest neighbour based
approach. These methods also usually generate new sam-
ples from the existing ones using approximations techniques.
For example, Cevikalp and Triggs [9] proposed to model
image-sets as dense convex geometric regions in the feature
space. They represented image sets using their affine and
convex hull approximations. Gallery and probe sets were
then matched using the minimum distance between their
affine (AHISD) or convex (CHISD) hulls. For this pur-
pose, linear least squares and SVM based formulations were
adopted. Hu et al. [10] proposed to generate new intermediate
sample representations by using a sparse set of samples from
the two sets that are being matched. These intermediate sparse
approximated nearest points (SANP) were computed such
that they lie on the facet which is closest to affine/convex hulls
of the similar sets. Set classification was then performed by
simple nearest neighbour based approaches using the SANPs.
Similarly, Yang et al. [27] used £, regularized affine hulls to
represent sets and computed regularized nearest points (RNP)
from these representations. RNP is shown to be computa-
tionally efficient than SANP. Due to their inherent sample
matching based mechanism, the accuracy of the sample based
techniques is strongly affected by the presence of outlier
samples in a set. Furthermore, the sample based algorithms
also have relatively higher computational cost due to the
approximation process and the constraints imposed on the
nearest sample-based matching mechanism.

The structure based methods represent image sets using set
structure computed from the linear subspaces [28], [29], mix-
ture of subspaces [13], [30] and non-linear manifolds [7], [8],
[11], [31], [32]. Set matching is done using the structural sim-
ilarity measures such as subspace to subspace distance [29],
manifold to manifold distance [8], [31] or by defining ker-
nel function on the manifolds [11], [32], [33] for distance
computation. For example, Kim et al. [29] represented an
image set using linear subspace learned with PCA and formu-
lated set matching as a discriminative learning problem using
canonical correlations between the sets. Wang ez al. [31] used
multiple linear subspaces to represent a single image set. Set
samples were divided into disjoint and correlated clusters
and each cluster is then represented using linear subspace.
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FIGURE 1. An overview of the proposed algorithm including the feature
extraction, learning the discriminative basis, training the classifiers and
testing the probe sets.

Canonical correlation similarity measure is then used as a
similarity index in a nearest neighbour based framework
for set matching. Wang and Chen [8] also used multiple
linear subspaces to represent a single image set. However,
they performed discriminative learning on these representa-
tions for improved accuracy. Set matching is then performed
in the embedded discriminative space. Harandi et al. [32]
used Grassmannian manifolds theory and presented image
sets as points on the Grassman manifold (linear subspaces).
Set matching is then formulated as a discriminative kernel
based classifier learning problem by defining suitable Grass-
mann kernels. Similarly, Wang et al. [11] used theory from
Reimannian manifolds for image set representation and clas-
sification. They used covariance features for image set rep-
resentation and performed discriminative learning on the
Reimannian kernels computed from the set representations
for set matching. Structure based methods are efficient, how-
ever, they need large number of samples in image sets for
better structure estimation. The accuracy of structure based
techniques usually depends on the structure estimation meth-
ods used. Another factor is the number of images available in
a set for detailed and correct structure learning.

In the current manuscript, we extend image set classi-
fication algorithms by proposing a new image-set repre-
sentation which is more accurate under certain conditions.
In addition, we extend classification technique to incorporate
an efficient and more accurate Kernel Linear Discriminant
Analysis (KLDA) as classifier. KLDA has consistently exhib-
ited more accuracy over MLDA. The proposed algorithm is
shown in Fig. 1. We also perform comprehensive experiments
to test the robustness of the proposed algorithms to noisy
image-sets and to the presence of outliers in the image-sets.
Furthermore, our implementation of the proposed algorithm
has been optimized to yield significantly more speedup than
previously reported results. The proposed algorithm is 21,
42 and 716 times faster than CDL [11], DCC [29] and
SANP [10] approaches while consistently achieving more
accuracy than all of these algorithms.

Due to the inherent simplicity, high accuracy and
significant speedup, the proposed algorithm may become
a baseline for the performance comparison of the future
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research in image-set classification. Some preliminary results
were published in [12]. In this paper, two more types of
image-set representations and classifiers are proposed which
makes four variants. We compare the recognition rate (clas-
sification accuracy) and the execution time of the proposed
algorithms with ten state of the art image-set classification
algorithms. Experimental results demonstrate that the pro-
posed algorithm can achieve significantly better classification
accuracy at lower computational complexity than the existing
techniques.

Il. PROPOSED ALGORITHM

Given training image sets, the proposed algorithm uses a
three-step process to build an image set classifier. In the first
step, we represent image sets using an efficient and compact
feature vector. In the second step, we learn a discrimina-
tive subspace and project the feature vectors into that space
to achieve dimensionality reduction. Finally, a classifier is
trained in the learned discriminative low dimensional space.
This increases accuracy and at the same time reduces memory
consumption and CPU time. In the test stage, a probe image
set is first represented using our proposed feature representa-
tion and then projected to the discriminative subspace where
it is classified into one of the gallery classes by the learned
classifier.

A. MODELING IMAGE SETS AND DISTANCE
MEASUREMENTS

An image x € R? with d dimensional feature representation
may be considered as a point in a d dimensional space and an
image-set is then a point-cloud in that space. We hypothesize
that the point-cloud of a given class has its unique properties
that can be modeled to uniquely represent that class. If the
point-cloud follows a multivariate Gaussian distribution with
the following density function

P(x|, T) = el E ()

1
€
(zn)d/2|2|1/2
Instead of evaluating P(x|ux, ¥), Mahalanobis distance may
also be used to compute the distance of an image-set y from
a Gaussian distribution as

Ay, 2) =y —pl"=7 1y — pul. )

Similarly, the distance between two point clouds hav-
ing Gaussian distributions can be computed using the
Kullback-Leibler (KL) divergence

Axi(PIP) = ~1og 2 1 Lpyry = & 3

ki (Pjll z)—z Og@JFE r( zH/)_E’ 3)

where Y;; = EjE;] + E;l(uj — mi(uj — ,ui)T. Since

KL divergence is asymmetric, it is not a metric:

Agi(PjlIP)) # Agi(Pi||Pj). Moreover, KL divergence does
not follow the triangular inequality.

Another method to compute distance between two point
clouds is to compare their sample covariance matrices.
However, these types of representations do not follow the
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Euclidean geometry but exist rather on a Riemannian man-
ifold. Therefore, methods from Reimannian geometry are
used for computing distances such as the affine invariant
distance A [34]

d
AELZ) = | D In?a(5i 5, “)
p=1

where 2,(Z;, ;) denotes the Eigenvalues of the system of
equations obtained from the determinant |[AX; — X;| = 0.
Ay is a metric on the Riemannian manifold over the
space Sym™(d,R) of real semi-positive definite matrices.
Moreover, it is also invariant to affine transformations and
inversions.

Another metric for such comparisons is the the log
Euclidean distance measure Ay [35]

Ae(Zi, %)) = [11og(Zi%; Dlr, (5)

where || - ||r denotes the Frobenius norm of a matrix. Given
the eigen decomposition of a SPD matrix ¥ as & = UAU T,
we can define its logarithm by log ¥ = U log(A)U . Note
that both A and A, have high computational cost due to the
computation of exponential and logarithm for the high dimen-
sional covariance matrices. Moreover, these methods ignore
the important parameters ; and u; in distance computation.

For images spanning R¢, the corresponding Riemannian
manifold will span Rdz, which grows exponential with the
growth of image size. For example, images in R!00x100,
the corresponding covariance matrix will span R10° space.
The covariance matrices are symmetric, therefore has @
unique elements. Instead of directly extracting these unique
elements, we propose to apply Cholesky decomposition [36]
and compute a lower triangular matrix capturing the struc-
ture and information of a regularized covariance matrix. The
choice of Cholesky decomposition is motivated by the work
of Hong et al. [37]. They showed that Cholesky decom-
position is more efficient for distance computation com-
pared to the previously used affine-invariant or log-Euclidean
Riemannian metrics.

Subsequently, we enrich the compressed second order
statistic ¥ with the first order statistic u, using two feature
level fusion approaches and thus we compute two different
descriptors for the image-sets. In the first approach, we add
the two statistics to obtain a compressed multi-order statisti-
cal descriptor representing an image-set. The dimensionality
of this descriptor is d(d + 1)/2. In the second approach,
we concatenate the first order statistic with the lower triangu-
lar matrix to obtain the second type of multi-order statistical
descriptor. The dimensionality of this descriptor is d(d+3)/2.
The dimensionality of the both proposed descriptors is fur-
ther reduced by using Multiple Linear Discriminant Analy-
sis (MLDA) and Kernel LDA (KLDA). At the test time, for
each test image set we compute both proposed descriptors
and transform these descriptors by the MLDA and KLDA
basis learned over the training sets. The LDA space is linear
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therefore linear classifiers, such as SVM, are trained to dis-
criminate one class from the others. We observe that in LDA
space nearest neighbour classifier also performs excellent.
The performance of linear classifiers is leveraged by the fact
that the learned representations are linear and discriminative.

B. THE PROPOSED MULTI-ORDER STATISTICAL
DESCRIPTORS

8
Let G = {Xj},_,
g image sets and N is the total number of images such that
N = Z/gzl nj, where n; is the number of images in the

7™ image-set: X = {xf}:i | € R4*" . The individual samples

e RPN be the gallery containing

of a set are described with d dimensional feature represen-
tations and denoted as x} € RY. The proposed approach is
generic and any feature representation may be used, for exam-
ple, the hand crafted features such as LPB and HoG or auto-
matically learned features such as deep CNN features.

The mean of an image-set X; is used to capture the

first order statistics w; = ,: l’ | x], and the covariance
J

matrix X; is used to capture the second order set statistics

1

1
Ernjlgw—mw—wT (6)
If the number of images is less than the dimensionality of the
feature vector, n; < d, then the covariance matrix ¥; € Rdxd
will become rank deficient and will be SPD. In this work,
we propose to decompose X; using Cholesky decomposition.
Cholesky decomposition yields a unique solution only if the
input matrix is positive definite. To ensure a unique decom-
position, all eigenvalues of the input matrix must be positive,
which we obtain by introducing a regularization term
Z?:l A I,

T

$i=5+ ™

where A; are the eigenvalues of %, I is an identity matrix
of the same size as that of ¥;, and T > 1 is a positive
constant. To simplify the analysis, in all experiments, we use
a fixed value of = 1000.00. Since SVD is computationally
expensive and efficiency is an important criterion of our
approach, we avoid SVD and add a fraction of the sum of
leading diagonal of the covariance matrix. The value of ) A,
is computed as Y Aj = trace(Z)). R

Applying Cholesky decomposition on X; we get
E = Aj x A where A; is a lower triangular matrix with
all dlagonal entries > O We obtain two types of multi-
order statistical descriptors from A; and w;. The first type
of descriptor is computed by adding 1, to each column of A;

Xj:Aj—i-/,lele, ®)

where 114 results in a matrix of size d x d with repeating

columns as p;. The feature vector Jj is obtained by applying
a function ¥ () on A to pick the upper triangular values
Aj(x,y) ifx>y

Fi=v(A) = - 9
7= VA 0 otherwise. ©)
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We rearrange F; as a vector F; €
type of descriptor we first arrange non-zero entries of A; in
to a vector #; and then concatenate u; with u;:

=[u unf1". (10)

The dimensionality of V; is 2a’(d + 3). Both F; and V); are
global descriptors therefore, the distance between two image-
sets X; and X; can be efficiently computed by computing the
distance between the corresponding descriptors F; and F;
in the Euclidean space. We have empirically observed that
the proposed descriptors are more discriminative than the
existing descriptors such as convex hull or affine hull
based image-set representations [9], [10] or manifold set
representations [8], [31].

C. MLDA FOR RANK DEFICIENT MATRICES

The multi-order descriptors obtained in the last section have
relatively large dimensionality. We further reduce the dimen-
sionality of these descriptors for computational efficiency
while maintaining the discrimination by using Multiple
Linear Discriminant Analysis (MLDA).

LetG, = {]-'kj}kmi T j=1 € RP*2 be the compact gallery rep-
resentation consisting of one feature vector for each image-
set. Here B = d(d +1)/2 for Fj and B = d(d +3)/2
for V;, ¢ is the number of object categories contained in the
gallery, m; > 1 is the number of image-sets in each category,
g =iy mj, and Fj; is the k™ feature vector of the j* class.
We intend to reduce the dimensionality of the F;; or V;; from
B toc — 1, by using MLDA.

MLDA may be considered as a generalization of the
Fisher Linear Discriminant Analysis (FLDA) which com-
pute ¢ — 1 discriminative directions for classification over
¢ classes. Therefore, our proposed features JFj; are pro-
Jected from the B dimensional input space to a ¢ — 1
dimensional discriminative feature space: fkj = W Fij-
The transformed gallery can thus be denoted by: G,, =
WTGp € R€~Dxg where W is the learned projection matrix
in B x (¢ — 1), learned by solving an optimization problem for
minimizing the intra-class scatter and maximizing the inter-
class scatter of 6,,.

Let S; denotes the intra-class scatter for the j™ category

mj

Sj= > (Fg— m)Fg — )" (1
k=1

where p; is the mean of the j™ category. The rank of the outer
product (Fi; — p j)(]-"kj — [Lj)T is one, therefore the rank of §;
will be upper bounded by m;: R(S;) < mj,. The total within-
class scatter is computed by the summation of the class-
scatter matrices S,, = Zj‘zl S; and the rank of S,, € RExB
is upper bounded by the sum of ranks of the individual class-
scatter matrices and therefore by the number of image-sets in
the gallery, which shows that S, is essentially a rank deficient

VOLUME 6, 2018



A. Mahmood et al.: Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification

symmetric matrix. The inter-class scatter matrix is given by
c
Sy = milw; — pllw; — 11" (12)

where u is the overall average of the gallery feature vectors
and p; is the mean of each class. The intra-class scatter
matrix Sy, is obtained by summation over ¢ rank-one matrices,
therefore it can have maximum ¢ non-zero eigenvalues.

The inter-class scatter of the transformed feature vectors
is §;, = WTS,W and intra-class scatter is §W = WTSs,w
Conventionally, W is computed such that the ratio Sh /§w is
maximized. Using the fact that the determinant of a matrix is
the product of its eigenvalues which also represents its scatter
therefore, the ratio of the determinants of the corresponding
matrices can be maximized

wTs,w
W* = arg max | bWl

_. 13
W WIS, W] (13)

W* is the set of generalized eigenvectors of S, and S,, corre-
sponding to the ¢ — 1 dominant eigenvalues:

SpW = AS,\W, (14)

where A contains eigenvalues on the leading diagonal while
the rest of the entries are zero. For a non-singular S,
W may be computed as the eigenvectors of S 1S,. Since
S, 1s rank deficient therefore it is not invert-able and the
traditional solution cannot be directly applied. If each image-
set results in an independent feature vector, the null space of
Sy will have (8 —g) x 8 dimensions. Therefore, minimization
process of intra-class scatter, W S,,W can find a W within
the null space of Sy, such that S,,W =0 and |WTS wW| =0,

yielding |Sb|/ |SW| — 00, without properly maximizing |Sb|

This degenerated case of LDA needs to be properly handled.
In other similar problems, regularization is applied on the
rank deficient matrix to make it positive definite. We con-
sider it an opportunity to reduce dimensionality of the fea-
ture space. Therefore, in the current work we propose to
reduce the dimensionality of features by using PCA such that
S, becomes full rank [38].

The rows of the gallery matrix G, are significantly larger
than the columns: 8 > g. The row-rank and column-
rank of a matrix are always the same therefore, the number
of linearly independent rows in G, are also < g. To remove
row redundancy, we propose to use PCA. To save computa-
tion time, we perform the PCA on G, using the Eigenfaces
algorithm [39]. We learn PCA basis such that the total scatter
§W + §b is maximized

U* = arg max WS, + Sp)¥| (15)

or (S,, + Sp)W = AW, which shows that W contains eigen-
vectors of Sy, + Sp.

Both scatter matrices S, and S, are transformed by ¥ as
given by WS, W and WS, W. The size of both projected
scatter matrices is (g — ¢) x (g — ¢), and the rank of ws,w
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is g — c. Transformation matrix @ is computed using these
reduced dimensionality scatter matrices

o [ OTW TS, wo| 16)
=argmax ——————.
S o TuTS, wo|
Solution is given as Generalized Eigenvalue problem
UISUd=AU'S, U, (17)

For a non-singular W 'S, W, ® is computed as eigen-vectors
of (WTS,¥) " LwTs,w). To compute a compact as well
as discriminative gallery representation, we transform the
gallery matrix G, with W = W 61, = (VO)'G,,
6,, € R¢™1*¢ is then used for test image set classification.
The test image-set is also projected on W& as follows:
Fpr = (W®)T F, and the distance of Fpr is independently
computed from each feature vector in the gallery 6,,

I, = min ( min (||.7:k/ Fpell2)), (18)

l<j<c l<k<
where [, is the estimated label of the probe image set and
[| - ||2 is the £, norm.

D. KERNEL LINEAR DISCRIMINANT ANALYSIS

In this section, we propose Kernel Linear Discriminant Anal-
ysis (KLDA) for dimensionality reduction [40] as well as
classification accuracy improvement. We want to reduce the
dimensionality of the features F; (or V) from 8 to ¢ — 1
using KLDA. We consider ¢ as a non-linear function that
maps the feature vectors Fy; € RA to a high dimensional
space

¢ R > H. (19)

Assuming the mapped data is centred [41], let Gj be the
gallery in the higher dimensional feature space G, =
o (Gp) = {d)(]:kj)}?ii’j:l. The kernel matrix K € R8*8
is defined using dot products between samples in the high
dimensional feature space K = Gy, Gj,. However, in prac-
tice, there is often no need to explicitly define the nonlinear
mapping ¢ and the kernel matrix K can be computed from a
kernel function in the input space.

Once K is known, KLDA intends to maximize the follow-
ing objective function

o KWKa
aTKKa
where ¢ = [y, ..., ocg]T, W € R8*8 is a matrix having
block diagonal structure: W = diag{WV, Wh, ..., W,}, and
W; e R"™*™ has all elements equal to 1/m;. The most
significant eigenvector of the following equation yields the

optimal o:

Opr = arg max (20)

(KK + e) " "M KWK)a = L, (1)

If the kernel matrix K is rank deficient, it is regularized by
adding a small € to the leading diagonal entries yielding
KK an invert-able matrix. By selecting the (¢ — 1) most
significant eigenvectors, a transformation matrix is obtained
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FIGURE 2. (a) HONDA/UCSD: Image samples from different image sets are displayed in rows. (b) CMU MoBo: Two image sets from each
class are displayed. (c) Youtube dataset: Two example image sets from each class are displayed.

o=[or,...,00—1]. Let F; € RP be the test feature vector in
the input space whose mapping in the feature space is ¢(F;).
The KLDA feature )V, € R¢~! in the discriminant subspace
is given by

Y, =a'G,F. (22)

KLDA is non-linear in the input space because of the non-
linear mapping ¢ between the input and the feature space.
Non-linear mapping can increase the discrimination ability of
a classifier, according to Cover’s theorem on the separability
of patterns [42]. Due to the possibly very high computa-
tional cost, the nonlinear mapping function ¢ is never imple-
mented explicitly [41], [43], [44]. For this purpose, kernel
functions are applied in the input space to achieve the same
effect of the computationally expensive nonlinear mapping.
The kernel functions allow to compute the scalar product
implicitly in H, without explicitly using or even knowing the
mapping ¢ [44]. However, for a given function to be a kernel
function, it must satisfy the Mercers condition [41], [44].
KLDA takes advantage of this kernel trick and computes the
inner products by means of a kernel function. The polynomial
kernel is one of the widely-used kernel function that fulfils the
Mercer’s condition and is given by [44]

k(Fig, Frry) = (Fig - Fp)P. (23)

where 8 is the order of polynomial.

lIl. EXPERIMENTAL EVALUATION

The two types of multi-order statistical descriptors and
two classifiers make four different combinations {F; +
MLDA, F; + KLDA, V; + MLDA, V; + KLDA}. We perform
extensive evaluation experiments to assess the performance
of these descriptors. We use six benchmark datasets for
face recognition, object categorization, periocular biometric
recognition and hand gesture recognition in our experiments.
These datasets include Honda/UCSD [45], CMU Mobo [46]
and Youtube celebrities’ datasets for holistic face identifi-
cation and are widely used in the literature to evaluate the
performance of image set classification techniques. We use
the MBGC v2 NIR video dataset for periocular biometric
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recognition. For the object categorization experiments we use
the ETH-80 [47] dataset. Hand gesture recognition experi-
ments are performed on the Cambridge dataset [48]. We com-
pare the multi-order statistical descriptors with 10 existing
object classification algorithms for classification accuracy
and execution time comparisons. Our experimental results
verify the superiority of the proposed descriptors over the
existing algorithms.

A. DESCRIPTION OF THE DATSETS

The Honda/UCSD dataset [45] contains 20 different sub-
jects distributed over 59 videos. We extracted the faces in
these video sequences using Viola and Jones method [49].
We re-sized the gray-scale images to 20 x 20 pixels and
applied histogram equalization to reduce illumination vari-
ations. Fig. 2-a shows cropped and re-sized face images from
Honda dataset.

There are 96 whole body video sequences of 24 different
persons (classes) in the CMU MoBo dataset. For our experi-
ments, we used [49] for automatically detecting and cropping
the facial regions. The video sequences on which the face
detector failed were manually processed for cropping the
faces. We filter the gray-scale face images with a circular
(8,1) neighborhood LBP filter [50] and re-size the LBP coded
images to 20 x 20. Note that this is different from [9]
where they used the histograms of the LBP features. The
feature dimension as a result of the LBP coding is smaller
d = 400 and achieves better classification accuracy in our
experiments. Some face images from the CMU-MoBo dataset
are shown in Fig. 2-b.

The Youtube Celebrities dataset [51] is one of the most
challenging benchmarks for evaluating image set classifica-
tion algorithms. This dataset is comprised of 1910 videos
of 47 different media celebrities such as film actors, actresses
and politicians etc. These videos were collected from the
Youtube website (Fig. 2-c). Each video sequence has different
numbers of image frames ranging from 8 to 400. Individ-
ual frames are low in resolution and has high compression
ratios due to which the quality is degraded and most image
frames are noisy. Moreover, large facial pose variations,
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FIGURE 3. Examples of periocular image sets belonging to two different
subject lasses (left and right) of the MBGC NIR v2 database.

(a)

(b)
(c)

FIGURE 4. (Left) ETH-80 object categories dataset. (a) Object categories
available in the dataset. (b) 10 different types of objects to represent each
category. (c) Individual image samples of a set from the cow category.
(Right) Cambridge Hand Gesture database. (a) Sample image frames
from nine gesture classes. Each column represents a different gesture
class. (b) Different illumination settings used to capture the database.

difficult illumination conditions and varying facial expres-
sions are present in the videos. For our experiments, we auto-
matically extracted face images in the video sequences by
applying [49] and re-sized them to 20 x 20 pixels. We then
computed the LBP histogram features of the gray-scale face
images using a cell size of 5. As a result, feature vectors of
d = 928 dimensions are obtained for each face image.
For LBP histogram feature extraction, we used the VLFeat
library [52].

We use the near-infrared (NIR) video sequences provided
by the MBGC portal challenge v2 [53] for periocular bio-
metric recognition. This dataset was captured while sub-
jects were walking through a portal towards the camera.
NIR illumination was used to capture high resolution iris
videos. Most frames in the videos exhibit out-of-focus motion
blur, large variations in illumination, sensor noise, and spec-
ular reflections. We automatically extracted the periocular
region consisting of two eyes and the nose bridge using [49].
The detected regions are scale and rotation normalized based
on the automatically detected pupil centers. Separate left and
right regions are extracted from the normalized periocular
images. This experimental setting simulates the real-world
situations when only one or both eyes may be visible while
the rest of the face is occluded. The right periocular region is
mirrored to the left and the resulting images are normalized to
unit magnitude to reduce the effect of illumination variations.
Figure 3 shows some example sample images of two different
subjects from MBGC NIR dataset.

The ETH-80 dataset [47] consists of image sequences
of 8 different object categories (Fig. 4). Each category con-
sists of 10 different object types belonging to the same general
class. Each object is imaged from 41 different views and thus
creating an 41 sample image-set. We use re-sized images
of size 20 x 20 in our experiments. This is a challenging
dataset for image set classification due to few images in each
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TABLE 1. Benchmark datasets used in our experiments. Min, Max and
Avg represent the minimum, maximum and average image samples
available in each set, respectively.

Dataset Classes | Sets/class | Min | Max | Avg
Honda/UCSD 20 1-5 13 782 | 267
CMU-Mobo 24 4 68 370 | 307
MGBC 114 1-12 6 48 18
Youtube Celeb 47 17-108 7 350 155
ETH-80 8 10 41 41 41
Cambridge 9 100 37 119 71

set, significant within-class appearance differences and large
view angle variations in individual image samples.

The Cambridge Hand Gesture dataset [48] (Fig. 4) con-
sists of nine hand gesture classes distributed over 900 video
sequences. These nine classes are created from a combination
of 3 basic hand shapes and motions patterns. Each class has
100 video sequences captured in five different illumination
settings, 10 arbitrary motion patterns and were executed by
2 persons. A fixed camera was used to capture each hand
gesture. Significant sample and sequence wise within-class
variations are present in the dataset. By following the stan-
dard experimental protocol defined by [54], the 100 video
sequences available for each gesture class are divided based
on the 5 illumination settings (Set-1, Set-2, Set-3, Set-4 and
Set-5). Set-5 is selected for training while the rest are used
for testing. We used gray scale frames of size 20 x 20 without
any pre-processing for our experiments. Table (1) shows the
dataset details used in our experiments.

B. EXPERIMENTAL SETUP

We compare the proposed algorithms with 11 object classifi-
cation techniques including Canonical Correlation Analysis
(DCC) [29], Covariance Discriminant Learning (CDL) [11],
Manifold to Manifold Distance (MMD) [31], Regular-
ized Nearest Points (RNP) [27], Manifold Discriminant
Analysis (MDA) [8], Mean Sequence Sparse Representa-
tion Classification (MSSRC) [55], the Linear Affine Hull-
based Image Set Distance (AHISD) [9], Sparse Approxi-
mated Nearest Points (SANP) [10], the Convex Hull-based
Image Set Distance (CHISD) [9], and Set to Set Distance
Metric Learning (SSDML) [56]. Standard implementations
provided by the original authors are used in our experiments.
However, Hu’s [10] implementation of MDA is used, while
CDL is self-implemented. We use the standard experimental
protocol defined previously by [8]-[11], and [31] to conduct
our experiments.

We carefully choose the hyper parameters of each tech-
nique involved in our study. For DCC, a 10-dimensional
subspace is used to represent image sets. Similarly, 10 maxi-
mum canonical correlations are used for discriminative learn-
ing. For MMD and MDA, we follow the recommendations
of [31] and [8] to configure the hyper parameters. The ratio
of Euclidean and geodesic distances is optimized for each
dataset. We search different values in the range {1.0-5.0} and

12999



A. Mahmood et al.: Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification

TABLE 2. Comparison of the average and standard deviation (%) of image set classification accuracy achieved by different algorithms in 10-fold

experiments on the five datasets and 5 fold experiments on Youtube dataset.

Honda MoBo ETH-80 MBGC Youtube Cambridge

DCC [29] 94.67+1.32 93.61£1.76 73.33£4.03 | 76.85+0.51 | 66.75+£3.47 | 69.25+2.67
MMD [31] 94.87+£1.16 93.19+1.66 69.72+4.01 | 64.35£2.61 | 65.12+4.36 | 32.17+2.71
MDA [8] 97.44£0.91 97.06£1.02 | 45.53£4.56 | 91.01+1.59 | 68.12+4.85 | 26.85+4.36
CDL [11] 100.0£0.00 95.83£2.07 75.00£4.26 | 75.65+1.49 | 68.96+5.29 | 78.47+3.14
AHISD [9] 89.74+1.85 97.36£0.79 51.52£5.92 | 87.384+2.05 | 71.92£3.55 | 23.11+3.91
CHISD [9] 92.31£2.12 96.41£0.97 51.67£4.11 | 88.04+1.52 | 73.17£3.29 | 25.3142.51
SANP [10] 93.08+3.43 96.94+0.63 49.174+3.83 | 88.33+1.39 | 74.04+3.48 | 25.45+2.23
MSSRC [55] | 96.75£2.65 | 97.05+0.88 | 67.50+£3.07 | 89.490+2.88 | 74.24+3.21 | 28.85+2.11
SSDML [56] | 89.41+3.64 | 85.75+ 1.82 | 73.20+2.12 | 70.52+1.87 | 70.81£3.42 | 32.24+2.85
RNP [27] 95.95£2.16 | 96.11 £1.43 | 50.21£3.24 | 88.50+2.17 | 74.02£3.68 | 22.03+2.91
F;+MLDA 100.0+0.0 97.36£0.79 72.91£2.38 | 92.324+1.35 | 76.17+£3.34 | 84.38+3.17
V;+MLDA 100.0+0.0 97.50£0.80 79.58£3.70 | 81.90+0.74 | 77.14£3.23 | 88.51+1.98
F;+KLDA 100.0+0.0 97.50£0.80 73.19£3.98 | 93.331+0.62 | 76.88+3.74 | 87.72+1.09
V;+KLDA 100.0+0.0 97.64£0.67 80.00£4.15 | 83.33+0.60 | 77.19+£2.98 | 89.64+1.73
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FIGURE 5. Accuracy of KLDA versus the order of polynomial 8 in (23). For
the Honda dataset accuracy remained 100% for all values of 8. For the
Mobo, Youtube, MBGC, ETH and Cambridge datasets, the highest
accuracy was achieved for g = {2, 3, 3, 4, 2} respectively.

report the best results. The top most canonical correlation is
used to calculate the MMD. A search space of {10, 12, 15, 18}
is used to find the best number of connected nearest neigh-
bours for geodesic distance in MDA and MMD. Similarly,
a search space of {80%, 85%, 90%, 95%, 99%} is used
to select the best value for the number of PCA basis used
to represent each image set in AHISD, CHISD and SANP.
Parameter C is set to 100 in the SVM optimization framework
of CHISD. For RNP [27], 90% PCA energy is preserved and
same weight parameters are used as in [27]. MSSRC [55] and
SSDML [56] are parameters free.

For Honda, MoBo, MBGC and ETH-80 data sets, we used
one image set from each class to construct the gallery while
the remaining are used for testing. We performed 10-fold
experiments, each time randomly selecting gallery and test set
combinations. For Youtube dataset, we perform experiments
based on the standard experimental protocol of [10]. Specif-
ically, five-fold cross validation experiments are designed
in which the complete dataset is divided equally into five
disjoint parts. Each fold consists of nine image sets for
each class. In each fold, gallery is constructed by randomly
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selecting three image sets per class while the remaining six
image sets are used as test sets. For Cambridge hand gesture
dataset, experiments are performed based on the protocol
defined by [54]. Specifically, five sets (Set-1, Set-2, Set-3,
Set-4 and Set-5) are created based on the five illumination
settings. Set-5 of each class is used for training. The training
image sets are further partitioned randomly into gallery sets
and validation sets. Specifically, 10 image sets are chosen for
the gallery while the other 10 image sets are set aside for
validation. Experiments are repeated 10-folds with different
combinations of gallery and validation sets in each fold.

The learning process of MLDA and KLDA require at least
two samples from every class. Therefore, for the classes
having only a single image set available in the gallery,
we construct two disjoint image sets from the single one
by randomly partitioning it. In our experiments, we preserve
100% energy of the basis, because all discarded basis had
zero singular values. In KLDA based classification, we use
the polynomial kernel (23) to report the results. We perform
analysis of KLDA accuracy for the appropriate choice of
the polynomial order 8. Fig. 5 shows accuracy variations as
the order is changed from 1 to 20. For the Mobo, Youtube,
MBGC, ETH and Cambridge datasets, the highest accuracy
was achieved by setting 8 = {2, 3, 3, 4, 2} respectively. The
code to compute the proposed descriptors will soon be made
publicly available.

C. IMAGE SET CLASSIFICATION RESULTS

Table 2 summarizes the results of our image set classification
experiments using the six benchmark datasets. In the case of
Honda/UCSD dataset, all four combinations of our proposed
descriptors achieved 100% accuracy and outperformed the
comparative methods. Please note that the accuracy of SANP,
AHISD, and CHISD is lower compared to that reported
in [9] and [10]. This is because we evaluate these algorithms
in 10-fold experiments whereas these were evaluated in a
single fold in [9] and [10] where the first image set of each
subject was chosen for gallery and the rest were used as
probes. Also, we use 20 x 20 images in our experiments
whereas the image size was 40 x 40 in [9] and [10].
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The CMU-Mobo dataset has relatively smaller with-in
class facial pose changes and the effect of illumination has
been normalized using LBP filtering. Thus, the mean of
each image set is more discriminative compared to the other
datasets. The proposed descriptors F; and V; performed better
than CDL which is based on 2-nd order statistic (Table 2).
AHISD, MDA and MSSRC also perform good on this dataset.
These experiments show that the multi-order descriptor per-
forms better than single order descriptors used in CDL,
AHISD, MDA and MSSRC. Within the four combinations
of proposed descriptors, the performance of V; + KLDA is
best than the others.

On the Youtube celebrities dataset, all four combinations of
the proposed descriptors outperformed the existing methods
(Table 2). The image sets in this dataset are relatively more
noisy and their structure cannot be perfectly estimated. There-
fore, the structure based algorithms (DCC, CDL) perform
poor compared to sample based algorithms (AHISD, CHISD,
SANP, MSSRC, RNP). In contrast, the proposed descriptors
combine both the sample as well as the structural properties
of the image sets and are therefore more accurate than the
existing methods. Our use of the LBP histogram features
increases the discrimination. Therefore, most of the existing
algorithms achieve relatively higher accuracy than previously
reported on this dataset [10], [11].

In the MBGC NIR database, there are fewer frames
(4-48 images) per image set therefore, the structure based
algorithms perform poor on this dataset (Table 2). CDL shows
less accuracy because the covariance matrix estimate from a
small number of frames is poor and due to ignoring the mean
descriptor. Similarly, DCC and MMD also fail to accurately
model the image set in this dataset. The mean of each image
set is informative in MBGC NIR dataset due to the better
alignment of periocular regions. For MBGC NIR database,
the fusion of the mean with the second order statistics
using summation (f;) outperforms all the other algorithms.
This shows that when the covariance estimate is poor the
addition of mean (;) is better than the concatenation (1)).

We use only one image set per class in the gallery for
training over ETH-80 dataset. This render the classification
problem more difficult than using five image sets per gallery
as was the case in DCC [29], MDA [8] and CDL [11].
On this dataset, the sample based algorithms perform poor
due to the large intra class pose variations and significant
intra-class object appearance differences. The proposed
multi-order statistical descriptor V; outperforms the existing
algorithms when used with both MLDA and KLDA (Table 2).

The results on the Cambridge Hand Gestures dataset show
that the proposed descriptors are generic. We apply exactly
the same algorithm as are applied for the image set classifi-
cation. Table 2 shows that the proposed multi-order statistical
descriptors (F; , V;) outperformed the other image set repre-
sentation methods for the task of hand gesture recognition
on this dataset. While other methods for gesture recognition
such as [57] and [58] have shown greater accuracy on the
Cambridge Hand Gesture dataset, these algorithms are not
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tested for the generic task of image set based classifica-
tion. The sample based algorithms (AHISD, SANP, CHISD,
MSSRC, RNP) perform poor on this dataset. This is because
the sample based algorithms use the location of individual
sample to define their models which cannot express the
hand gesture dynamics robustly in their representations. The
proposed descriptors fuse both the structure and the sample
measures of the image set, can better model the hand gesture
variations. DCC and CDL also achieved more accuracy than
the sample based algorithms on this dataset which shows
that structure based algorithms have an edge over the sample
based algorithms for the task of gesture recognition.

D. ROBUSTNESS EXPERIMENTS

We used the Honda/UCSD dataset for robustness experi-
ments. We first evaluated the proposed algorithm for its
robustness to the number of samples available in each image
set for modeling. We randomly selected {10, 20, 30, 40, 50,
60, 70, 80, 90, 100} samples to form a set. The average
recognition rates obtained in these experiments are shown
in Fig. 6-a. The accuracy of the proposed algorithms is rel-
atively lower when 10 images per set were used. However,
as the number of images used to construct a set increases,
the accuracy of the proposed algorithms increases dramat-
ically and F; + MLDA achieves 99.79% recognition rates
at 40 images per set. All other algorithms exhibited very
different behaviors with the increase in the number of images
per set. SANP and CHISD obtained their maximum recogni-
tion rates of 96.92 % and 97.69% respectively at 20 images
per set and further increase in the number of images per set
was mostly unfavorable for these two algorithms. The accu-
racy of MDA linearly increased until 60 images per set
however, the accuracy dropped at 70 images followed by a
liner increase. The accuracy of DCC increased in a piece-
wise liner fashion. The accuracy of MMD increased with a
big jump from 10 to 20 images per set however, it quickly
reached a saturation value at 50 followed by a decreasing
trend for 60 and 70 images per set. A second increasing
trend followed for 80 and 90 images per set reaching a
saturation level of 92.56 % at 100 images per set. The max-
imum gain in accuracy for the proposed descriptors was
till 50 images per set and a saturation level of 100% accu-
racy was reached at 60 images for all the variants of the
proposed descriptors. This shows that 60 random frames
per set are optimal for capturing the first and the sec-
ond order statistics in this dataset. Moreover, the accu-
racy of the proposed algorithms monotonically increases
with the increase in the number of images used to form a
set and also have no negative effects of addition of more
samples.

In the next experiment, we evaluated the robustness of the
proposed descriptors to the presence of noise and compared it
to other algorithms in a setup similar to [9]. Using the Honda
dataset, we constructed a clean gallery and test image sets
each containing 100 randomly selected images. This is to
ensure that the percentage of noise added to each set should be

13001



A. Mahmood et al.: Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification

100
95
90
(0]
§ 851
c —+—MMD
2 g0 —+—MDA
5 —<—CDL
8 —»— AHISD
e 757 CHISD
J ——SANP
707 —8— F;+MLDA ||
Y —o—V,; +MLDA
65 —~—F;+KLDA |
¥ ——V,+KLDA
60 L L L L I I
10 20 30 40 50 60 70 80 90 100

images per set

(a)

Recognition Rate

-3
S

I Ciean [N, [N, I NG,
T T T T

|

SANP  F,+MLDA V,+MLDA F,+KLDA V,+]

©
S

=)
o

75

70

DCC MMD MDA CDL  AHISD  CHISD

Algorithm

(b)

FIGURE 6. (a) Robustness to the number of image samples in the sets. (b) Robustness to noise in the image sets of gallery, probe and
both. (Recognition rates (classification accuracy) are average of 10 fold experiments on Honda/UCSD dataset.)

the same. Then, we construct noisy image sets by randomly
choosing one image from each image set and adding it to the
image sets of the other classes. This is done for both gallery
and test image sets to generate three scenarios. The origi-
nal clean image set data and the three noise levels induced
cases were denoted by N, (clean), Ng (noisy gallery only),
Np (Noisy probes only) and Ngp (noisy gallery and probe).
The results in Fig. 6 shows that the proposed descriptors
exhibited robustness to noise better than the other algorithms.
As expected, the structure based techniques are more robust
to noise compared to the sample based techniques (AHISD,
SANP, CHISD). This is because the holistic model of set
structure has a smoothing effect which reduces the influence
of individual noisy samples. In contrast, sample based algo-
rithms usually generate interpolated samples from the orig-
inal samples. This can lead to in-accurate representation of
the set when noisy samples are included in the approximation
process.

We performed two more experiments in which we added
outliers only in the test sets. The presence of outliers in only
test sets is more challenging but realistic scenario because
usually the training sets are chosen such that they do not
contain outliers. We setup the first experiment such that
(g — Dn, samples are added to each test set, where g is
the gallery size and n, is the number of randomly selected
samples from the other gallery sets. By varying n, from 1 to 3
we added 19, 38 and 57 outliers to each probe set. Table 3
shows a comparison of accuracy of different algorithms for
these three challenging cases. The drop in the recognition rate
of our proposed descriptors is significantly lower compared to
the others. For example, in the case of the proposed V;+KLDA
algorithm, the drop in the recognition rate when n, = 3 is
0.5% which is significantly less than the 5.38% drop of CDL
and 1.92% drop of SANP. This experiment demonstrated the
robustness of the proposed descriptor V; + KLDA to noise in
the image sets.
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TABLE 3. Comparison of the average accuracy of different algorithms in
the presence of outliers.

Algorithm ny =1 Ny =2 ny =3
CDL [11] 98.72 +£1.28 96.92 £+ 2.65 94.62 + 1.89
MDA [§] 97.44 +0.91 96.73 £ 1.14 95.73 £2.87
DCC [29] 93.59 £2.78 92.93 £2.25 92.31 £2.09
AHISD [9] 88.21 £+ 1.09 87.31 £2.42 87.03 £+ 1.35
MMD [31] 93.83 £ 1.16 93.04 +£2.44 89.74 + 4.05
CHISD [9] 92.11 £ 1.89 91.81 £2.42 91.03 £ 1.35
SANP [10] 92.82 +1.32 91.54 + 3.83 91.16 +£ 2.84
F;+MLDA | 100.00 £0.00 | 100.00 +0.00 | 94.87 - 1.73
V;+MLDA | 100.00 £ 0.00 | 100.00 +0.00 | 98.12 4= 1.79
F;+KLDA | 100.00 &£ 0.00 98.97 £ 1.03 96.92 + 2.02
V;+KLDA 100.00 4+ 0.00 | 100.00 £+ 0.00 | 99.49 + 0.51

In our second experimental setup, we evaluate the robust-
ness of the proposed descriptors to the presence of strong out-
liers belonging to one specific class. This is done by adding
randomly selected n, images from a randomly selected
gallery set to each probe set. This is a more challenging
case because many outliers from the same class can alter the
structure of the image set. The value of n, is varied from
1 to 12. The accuracy of F; + KLDA and V; + KLDA
remained 100% for n, < 11 and 99.74% for n, = 12.

E. COMPARISON OF COMPUTATIONAL TIME

Table 4 summarizes the average execution times of all algo-
rithms in our study. The execution time is calculated for clas-
sifying one probe image set by matching with the 141 gallery
image-sets in the Youtube dataset. The average time of 5-fold
experiments is reported for each algorithm. A 3.4GHz Pen-
tium CPU with 8GB RAM and MATLAB implementations
are used to conduct these experiments. These comparisons
verify that all variants of the proposed descriptors are signif-
icantly faster than existing techniques.

For example, the proposed F; + KLDA is about
327 and 449 times faster than CDL [11] and SANP [10]
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TABLE 4. Comparison of the execution times (in seconds) of different
algorithms for classifying one probe image set by matching with the
141 gallery image sets in the Youtube dataset.

Algorithm Training time (sec) | Testing time (sec)
DCC [29] 167.49 8.08
MMD [31] 313.57 78.32
MDA [§] 580.70 201.48
AHISD [9] N/A 18.10
CHISD [9] N/A 190.61
SANP [10] N/A 17.94
CDL [11] 345.88 13.08
MSSRC [55] N/A 30.82
SSDML [56] 400.01 21.87
RNP [27] N/A 6.42
F;+MLDA 11.52 0.05
V;+MLDA 10.63 0.07
F;+KLDA 5.28 0.04
V;+KLDA 8.21 0.06

respectively. Our use of LBP histogram features increases the
discrimination but makes the feature dimension d very high
(d = 928). Therefore, the existing algorithms suffer from
computational complexity as well as space complexity. How-
ever, even for such high dimensional features, all the vari-
ants of the proposed descriptors are significantly faster. This
shows that the proposed descriptors have better scalability for
high dimensional and large datasets. Note that SANP is faster
than our previous results [12]. This is due to unit normalizing
the feature vectors before input to the SANP optimization
algorithm. This helped the accelerated proximal gradient
method to converge quickly. We have also significantly opti-
mized the implementation of CDL to achieve faster execution
times.

Note that for an n x n matrix, the computational
complexity of a sequential implementation of Cholesky
decomposition is 0(n3). Fast algorithms are available
(e.g. Matlab chol) for computing the Cholesky decomposi-
tion. Therefore, it does not present a computational bottle-
neck in the proposed algorithm while making it theoretically
compliant.

IV. CONCLUSION

In this paper multi-order statistical descriptors are proposed
to represent image sets. Dimensionality of the descriptors is
reduced using MLDA and KLDA using the polynomial ker-
nels. The proposed descriptors are compared with 11 existing
algorithms on six datasets. Experimental results demonstrate
that the proposed descriptors are computationally efficient,
robust and highly accurate for object classification and face
recognition tasks. Experiments also demonstrate that the
multi-order descriptors are robust to small number of samples
per set and the presence of a large number of outliers in the
probe sets as well in the gallery sets. In terms of execution
time speedup, the proposed descriptors are 107 times faster
than the nearest competitor. Therefore, the proposed descrip-
tors can potentially be used for real time face recognition and
object classification in videos.
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