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Abstract. This paper presents a fast boundary integral equation method for numerical
conformal mapping of unbounded multiply connected regions onto a disk with an infinite
straight slit and finite logarithmic spiral slits. Some numerical examples are given to show
the effectiveness of the proposed method.

1. Introduction
Conformal mapping is an important tool to solve several problems in the fields of science and
engineering [1]. Since exact conformal maps are known only for some regions, numerical methods
for computing conformal mappings are highly demanded.

For the conformal mappings of multiply connected regions, several canonical slit regions are
available. Thirty nine of these canonical regions have been catalogued by Koebe in his classical
paper [2]. These canonical regions have been divided into five categories. For the first four
categories, the special points (points to be mapped to 0 or ∞) are chosen in the interior of the
region. For the fifth category, the special points are chosen on the boundary.

Several numerical methods have been proposed for computing the conformal mapping of
multiply connected regions onto the canonical slit regions [3]. In comparison, the approach
based on the boundary integral equation with the generalized Neumann kernel can be used for
a wide range of canonical slit regions [4, 5, 6, 7, 8, 9]. The numerical computing of conformal
mappings from bounded multiply connected regions onto Koebe’s fifth category canonical slit
regions using the boundary integral equation with the generalized Neumann kernel has been
presented in [6]. The method presented in [6] will be extended in this paper to unbounded
multiply connected regions. Further, the canonical region consider in this paper is slightly
different from the canonical regions considered in [6].

Let G be an unbounded multiply connected region of connectivity m > 1 in the extended
complex plane C. The boundary Γ := ∂G consists of m smooth Jordan curves Γj , j = 1, 2, . . . , m.
We assume that the boundary Γ1 is the unit circle |z| = 1. The orientation of Γ is such that G
is always on the left of Γ.
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In this paper, we present a numerical method for computing the conformal mapping w = ω(z)
onto the following two types of canonical regions:

(i) The region Ω1 which is the unbounded region in the exterior of the unit circle |w| = 1 with
an infinite straight slit on the line Im w = 0 and m− 2 finite spiral slits (see Figure 1 (left)
for m = 5).

(ii) The region Ω2 which is the unbounded region in the exterior of the unit circle |w| = 1 with
a semi-infinite straight slit on the line Im w = 0 and m − 2 finite spiral slits (see Figure 1
(right) for m = 5).

Figure 1. The canonical regions Ω1 (left) and Ω2 (right).

We assume that the mapping function w = ω(z) maps the unit circle Γ1 onto the infinite
straight slit for the case of Ω1 and onto the semi-infinite straight slit for the case of Ω2. For both
cases, we assume that w = ω(z) maps the curve Γ2 onto the unit circle |w| = 1 and maps the
curves Γj for j = 3, 4, . . . , m onto the logarithmic spiral slits Im

[

e−iθj log w
]

= Rj, where each
θj is the angle of intersection between the spiral and any arbitrary ray issuing from the origin.
The angle θj is called the “oblique angle” of the slit. The logarithmic spiral degenerates into a
ray issuing from the origin for θj = 0 and degenerates to a circle with center at the origin for
θj = π/2. The real constants Rj for j = 3, 4, . . . , m are unknown and should be determined in
the process of computing the conformal mapping. Thus, the mapping function ω satisfies the
boundary conditions

Im ω(ζ) = 0, ζ ∈ Γ1, (1)

|ω(ζ)| = 1, ζ ∈ Γ2, (2)

Im
[

e−iθj logω(ζ)
]

= Rj, ζ ∈ Γj , j = 3, . . . , m. (3)

2. The generalized Neumann kernel
Suppose that each curve Γj is parametrized by a 2π-periodic twice continuously differentiable
complex function ηj(t) with non-vanishing first derivative. Let the total parameter domain J
be the disjoint union of the m intervals J1, . . . , Jm. We define a parametrization η of the whole
boundary Γ on J by

η(t) =











η1(t), t ∈ J1 = [0, 2π] ,
...

ηm(t), t ∈ Jm = [0, 2π] .

(4)

Let θ(t) be a piecewise constant function defined on J by

θ(t) =



























0, t ∈ J1 = [0, 2π] ,
π/2, t ∈ J2 = [0, 2π] ,
θ3, t ∈ J3 = [0, 2π] ,
...

θm, t ∈ Jm = [0, 2π] ,

(5)
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where θj for j = 3, . . . , m are given real numbers representing the oblique angles of the spiral
slits. For simplicity, such piecewise constant function will be denoted by

θ(t) = (0, π/2, θ3, . . . , θm). (6)

We define a complex function A(t) for all t ∈ J by

A(t) = ei(π/2−θ(t)). (7)

Then the generalized Neumann kernel N (s, t) formed with A and η is defined by [10, 11]

N (s, t) =
1

π
Im

(

A(s)

A(t)

η′(t)

η(t)− η(s)

)

. (8)

The kernel N (s, t) is continuous. Closely related to the generalized Neumann kernel is the
singular kernel M(s, t) defined by

M(s, t) =
1

π
Re

(

A(s)

A(t)

η′(t)

η(t)− η(s)

)

. (9)

Hence the integral operator Nµ(s) :=
∫

J N (s, t)µ(t)dt, s ∈ J, is a Fredholm integral operator and
the operator Mµ(s) :=

∫

J M(s, t)µ(t)dt, s ∈ J, is a singular integral operator. Both operators
are bounded on the space H of real Hölder continuous function on the boundary Γ and map H
onto itself. For more details, we refer the reader to [11].

Theorem 1 ([5]) For a given function γ ∈ H , the boundary integral equation

(I− N)µ = −Mγ (10)

has a unique solution µ and the function h given by

h = [Mµ − (I −N)γ]/2 (11)

is piecewise constant on the boundary Γ. Further, the function f(z) with the boundary values

Af = γ + h + iµ (12)

is analytic in G with f(∞) = 0.

3. The conformal mappings
In this section, we present a numerical method for computing the conformal mapping onto the
two canonical regions Ω1 and Ω2. However, we need to introduce first the following auxiliary
function Φ,

w = Φ(z) =
1

2

(

z +
1

z

)

=
z2 + 1

2z
, (13)

which maps the unit circle |z| = 1 onto the finite straight slit {w : |Re w| ≤ 1, Im w = 0}. The
function Φ also conformally maps the exterior of the unit circle onto the exterior of this finite
straight slit with Φ(∞) = ∞.
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3.1. The region Ω1

For the function Φ defined by (13), the function Ψ defined by

w = Ψ(z) =
1

Φ(z)
=

2z

z2 + 1

maps the unit circle |z| = 1 onto the infinite straight slit {w : |Re w| ≥ 1, Imw = 0}; and also
conformally maps the exterior of the unit circle onto the exterior of this infinite straight slit
with Ψ(∞) = 0 and Ψ(±i) = ∞. Let the function γ be defined by

γ(t) =







0, t ∈ J1,
− log |(η2(t) − α)Ψ(η2(t))|, t ∈ J2,
Im

[

e−iθj log ((ηj(t) − α)Ψ(ηj(t)))
]

, t ∈ Jj, j = 3, 4, . . . , m,
(14)

where α is a given point in the interior of Γ2. Let also the function µ be the unique solution of
the integral equation (10), the function h = (h1, h2, . . . , hm) be given by (11), and the function
f be the analytic function in G with the boundary values (12). Then the function ω defined in
G by

ω(z) = (z − α)Ψ(z)ef(z)+ih1−h2 (15)

is the conformal mapping from the region G onto the canonical region Ω1. The function ω satisfies
the boundary conditions (1)–(3) with Rj = −hj + Im

[

(ih1 − h2)e
−iθj

]

for j = 3, 4, . . . , m.

3.2. The region Ω2

For the function Φ defined by (13), the function

1 − Φ(z) = 1 −
z2 + 1

2z
= −

(z − 1)2

2z

maps the unit circle |z| = 1 onto the finite straight slit {w : 0 ≤ Re w ≤ 2, Im w = 0}. Hence,
the function Υ defined by

w = Υ(z) =
1

1− Φ(z)
= −

2z

(z − 1)2

maps the unit circle |z| = 1 onto the semi-infinite straight slit {w : 1
2 ≤ Re w, Im w = 0};

and also conformally maps the exterior of the unit circle onto the exterior of this semi-infinite
straight slit with Υ(∞) = 0 and Υ(1) = +∞ + 0i. Then, we define a real function γ by

γ(t) =







0, t ∈ J1,
− log |(η2(t) − α)Υ(η2(t))|, t ∈ J2,
Im

[

e−iθj log ((ηj(t) − α)Υ(ηj(t)))
]

, t ∈ Jj, j = 3, 4, . . . , m,
(16)

where α is a given point in the interior of Γ2. Let the function µ be the unique solution of the
integral equation (10), the function h = (h1, h2, . . . , hm) be given by (11), and the function f be
the analytic function in G with the boundary values (12). Then the function ω defined in G by

ω(z) = (z − α)Υ(z)ef(z)+ih1−h2 (17)

is the conformal mapping from the region G onto the canonical region Ω1. The function ω satisfies
the boundary conditions (1)–(3) with Rj = −hj + Im

[

(ih1 − h2)e
−iθj

]

for j = 3, 4, . . . , m.
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3.3. Computing the conformal mappings
In this paper, the integral equation (10) is solved using the MATLAB function fbie from [12].
In the function fbie, the integrals in the integral equation are discretized by the trapezoidal
rule [13, 14] with n (an even positive integer) equidistant nodes in each interval Jk for
k = 1, 2, . . . , m. Then, by using the the Nyström method, the integral equation (10) is reduced
to an mn ×mn linear algebraic system which is solved iteratively using the MATLAB function
gmres. The matrix-vector multiplication in the function gmres is computed efficiently using the
function zfmm2dpart from the MATLAB toolbox FMMLIB2D [15]. The function fbie computes
also the function h in (11). The complexity of the method is O(mn logn) operations.

Once the the functions µ(t) and h(t) are computed at the nodes, the boundary values of
function f(z) can be computed at the nodes through (12). Then approximations to the values
of the function f(z) for z ∈ G can be obtained using the Cauchy integral formula which can
be computed numerically using the MATLAB function fcau from [12]. Finally the conformal
mappings onto Ω1 and Ω2 are computed using (15) and (17) respectively.

4. Numerical Examples
In this section we consider three numerical examples. In the three examples, the presented
method is used with n = 210 to compute the mapping function onto both canonical regions Ω1

and Ω2. Orthogonal grids in the unbounded region G and their images under the conformal
mappings for both canonical regions Ω1 and Ω2 are shown in Figures 2–4. The white space in
the center of the computed images corresponds to the unbounded domain in the exterior of the
grids in the original region. The “dot” in the white space is ω(∞).

Example 1 The region G is the unbounded doubly connected region (m = 2) with the boundary
(see Figure 2)

Γ1 : η1(t) = e−it,

Γ2 : η2(t) = 2i + cos t − i0.25 sint,

where 0 ≤ t ≤ 2π and θ = (0, π/2).

Figure 2. The original region G of Example 1 and its images to Ω1 (center) and Ω2 (right).

Example 2 In the second example, the region G is the unbounded multiply connected region of
connectivity m = 7 with θ = (0, π/2, π/2, π/4, 0, 0, 3π/4) (see Figure 3 (left)).

Example 3 In the third example, the region G is the unbounded multiply connected region of
connectivity m = 30 (see Figure 4 (left)).
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Figure 3. The original region G of Example 2 and its images to Ω1 (center) and Ω2 (right).

Figure 4. The original region G of Example 3 and its images to Ω1 (center) and Ω2 (right).
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