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Abstract: In this study, Al-Y,0O3; nanocomposites were synthesized via mechanical alloying and
microwave-assisted sintering. The effect of different levels of yttrium oxide on the microstructural
and mechanical properties of the Al-Y;O3; nanocomposites were investigated. The density of the
Al-Y,03; nanocomposites increased with increasing Y,O3 volume fraction in the aluminum matrix,
while the porosity decreased. Scanning electron microscopy analysis of the nanocomposites showed
the homogeneous distribution of the Y,0O3 nanoparticles in the aluminum matrix. X-ray diffraction
analysis revealed the presence of yttria particles in the Al matrix. The mechanical properties of the
Al-Y,03 nanocomposites increased as the addition of yttria reached to 1.5 vol. % and thereafter
decreased. The microhardness first increased from 38 Hv to 81 Hv, and then decreased to 74 + 4 Hv
for 1.5 vol. % yttria. The Al-1.5 vol. % Y,0O3 nanocomposite exhibited the best ultimate compressive
strength and yielded a strength of 359 + 7 and 111 + 5 MPa, respectively. The Al-Y,O3 nanocomposites
showed higher hardness, yield strength, and compressive strength than the microwave-assisted
mechanically alloyed pure AL

Keywords: aluminum; yttrium oxide (yttria); mechanical alloying; microwave sintering;
microstructure and mechanical properties

1. Introduction

Metal matrix composites (MMCs) find noteworthy applications in many engineering sectors due
to their superior properties such as high strength, high-temperature capability, specific modulus, and
good wear resistance compared to monolithic base materials. The mechanical performances of MMCs
often show greater improvement than can be achieved by conventional strengthening methods in
monolithic alloys [1-4].

Aluminum (Al)-based metal matrix composites (AMMCs) are an excellent choice for automotive,
aerospace, defense, and nuclear power sectors because of their lightweight and favorable mechanical,
thermal, and physical properties. Aluminum (Al)-based metal matrix composites are capable of
achieving high strength, high-fatigue resistance, high-wear and corrosion resistance, and good
compatibility with various manufacturing processes [5-8].

At present, ceramic particle-reinforced Al-matrix nanocomposites have been prepared primarily
by mechanical alloying, forging, and casting routes [9-11]. Among these methods, mechanical alloying
(MA) has been widely used to fabricate Al-matrix nanocomposites due its cost-effectiveness, simplicity,
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and its ability to improve the properties vis-a-vis those of the unreinforced matrix [12,13]. There are
many sintering techniques such as conventional, spark plasma, vacuum, and microwave sintering
processes [14-17]. Among these techniques, the microwave sintering process is a heating method
that offers the ability to balance the radiant and microwave heating effects. In this process, heat is
generated within the sample by rapid oscillation of dipoles at microwave frequencies. Microwave
sintering provides efficient internal heating, and energy is supplied directly to the material. Therefore,
this process avoids the significant temperature gradient between the surface and interior. Microwave
sintering is a high-technology heating process that can save both energy and time [18].

In AMMCs, the most common types of reinforcement that can be used are SiC, SizsNy4, Y03, TiC,
and Al,O3 [19-23]. Among these ceramics, Y,O3 was selected as the reinforcement to be used in this
study due to its high strength, hardness, melting point, and thermal conductivity [24-26]. Yttria is
an air-stable particle, white in color and solid in substance. By adding the yttria to the aluminum,
the strength, corrosion resistance, and wear properties are improved [27]. Yttria is well sintered to a
high density and low coefficient of thermal expansion, and has excellent strength properties [28,29].
According to the authors’ knowledge, there are no reports in the literature on Al-Y,;O3 nanocomposites
processed by mechanical alloying and microwave sintering.

Therefore, in this current research, Al-Y,0O3; nanocomposites were prepared by mechanical
alloying and microwave heating, and the effect of Y,03 addition on the microstructure and mechanical
performance of Al-Y,03; nanocomposites were investigated.

2. Materials and Methods

Pure Al (99.5% purity, with an average particle size of 10 pm) and Y,O3 nanoparticles (99.99%
purity, with an average particle size of 50-70 nm) were purchased from Alfa Aesar (Tewksbury,
MA, USA) and selected as raw materials for the synthesis of Al-Y,03 nanocomposites.

Aluminum-yttria composites were prepared with 0, 0.5, 1.0, 1.5, and 2.0 vol. % yttria nanoparticle
contents. The mixture of powders was blended at room temperature using a Planetary Ball Mill
(PM 200) for 2 h, with a rotation speed of 200 rpm. No balls were used during the blending of powders.
The mixed powder (~1.0 gm) was compacted into cylindrical pellets by applying a pressure of 50 MPa
with a holding time of 1 min. The compacted cylindrical pellets were sintered in a microwave sintering
furnace at a temperature of 550 °C with a heating rate of 10 °C/min and providing a dwell time of 30 min.
The microwave furnace had an alumina insulation and silicon carbide susceptor. The silicon carbide
susceptor was used to increase the heating rate and hybrid heating. Alumina insulation prevents heat
loss and is used as well to protect the interior walls of the microwave oven. The compacted pellets were
placed at the center of the cavity and sintering was conducted at the multimode cavity [30]. Figure 1
shows the schematic representation of the microwave sintering furnace.

The density of the sintered samples was calculated using Archimedes’ principle. The porosity
of the samples was calculated by the theoretical and experimental density of the composite samples.
The X-ray diffraction (XRD, PANalytical X’pert Pro, PANalytical B.V., Almelo, The Netherlands)
analysis was performed to identify the phases present in Al-Y,O3 nanocomposites. The XRD patterns
were recorded in the 20 range of 20-90° with a step size of 0.02° and a scanning rate of 1.5°/min.
The microstructural characterization and determination of the distribution of the yttria nanoparticles
in the aluminum matrix were carried out using scanning electron microscopy (SEM, JeolNeoscope
JSM6000, Tokyo, Japan) and energy dispersive X-ray spectroscopy (EDS, Tokyo, Japan).

The microhardness of the Al-Y,03 nanocomposites was determined using Vickers microhardness
tester (MKV-h21, USA). Microhardness analysis was carried out to investigate the effect of yttria on the
hardness of the Al-Y,03 nanocomposite, carrying the load of 25 gf and a dwell time of 10 s, for each
sample with an average of five successive indentations. Compressive strength analysis was performed
at room temperature using a universal testing machine (Lloyd), under an engineering strain rate
of 107%/s.
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The respective data of each sample were obtained by an average of three successive values of test
results. From the load—displacement curves, 0.2% offset compressive yield strength (CYS), ultimate
compressive strength (UCS), and compressive strain were determined.

[ Magnetrons
(2.45GHz)

Figure 1. Schematic diagram of a microwave sintering furnace.

3. Results and Discussion

3.1. Density and Porosity of AI-Y,03 Nanocomposites

Density and porosity values of the microwave sintered Al-Y,0O3; nanocomposites with different
contents of yttria in the Al matrix are shown in Table 1.

Table 1. Density and porosity of Al-Y,03; nanocomposites.

Composition Theoretical Density (g/cc)  Experimental Density (g/cc) Porosity (%)
Pure Al 2.700 2.679 + 0.005 0.78
Al-0.5vol. % Y,03 2.712 2.701 + 0.004 0.41
Al-1.0 vol. % Y,03 2.723 2.741 + 0.007 0.33
Al-1.5vol. % Y,03 2.735 2.728 + 0.006 0.26
Al-2.0 vol. % Y,03 2.746 2.741 + 0.008 0.18

It can be observed that the density of the composite gradually increased with the increase of the
yttria content since the density of yttria (5.01 g\cc) is higher than that of Al (2.70 g\cc). Generally, the
higher relative density of sintered samples influences the mechanical properties of the composites.
The porosity of the composites decreased by increasing the amount of yttria content. The decrease
in porosity with increasing yttria content shows that the presence of the hard yttria particles did not
impair the densification of the Al powder [31]. Microwave heating was one of the main reasons for the
low porosity of the synthesized composites.

3.2. XRD Analysis of Al-Y,03 Nanocomposites

The X-ray diffraction (XRD) patterns of the microwave sintered pure Al and Al-Y,0;
nanocomposites with different amounts of Y,O3; are shown in Figure 2a. Figure 2b shows the
enlarged patterns of the Al-1.5 vol. % Y,O3; nanocomposite. The XRD patterns clearly indicate
the presence of Y,O3 nanoparticles in the Al composite matrix. Due to the small volume of yttria
reinforcement present in these composites, the yttria peaks were very small compared to the aluminum
matrix peaks. Also, it can be seen that the intensity of the yttria diffraction peaks increased with the
increasing of yttria percentage. The XRD results show that the main elements of Al (higher peak) and
Y,03 (lower peak) are present in Al-Y,03; nanocomposites.
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Figure 2. (a) X-ray diffraction (XRD) pattern of Al-Y,03; nanocomposites, (b) enlarged pattern of
Al-1.5vol. %Y;03 nanocomposites [32,33].

3.3. SEM Analysis of AlI-Y,03 Nanocomposites

The SEM and EDS images of the microwave sintered Al-Y,03; nanocomposites with different
contents of yttria are shown in Figure 3. The results of microstructural characterization revealed
that yttria particulates were present individually and in relatively smaller clusters indicating an
improvement in their distribution. The EDS analysis confirms the aluminum and yttria particles
present in the Al matrix. The EDS mapping spectrum of all nanocomposites were mainly composed
of Al Y, and O elements, as shown in Figure 3b,d,f. The microcracks were restricted by the presence
of hard and homogeneous yttria particles in the Al-matrix and influenced the microstructure and
mechanical properties of Al-Y,0O3 nanocomposites. The specimen with 2 vol. % of yttria particles
shows the decreasing of the interparticle distances as the concentration of the nanoparticles increased.

3.4. Microhardness of Al-Y,03 Nanocomposites

Vickers microhardness was measured on all specimens to study the effect of Y,O3 content on
the microhardness. Figure 4 shows the results of the microhardness of the Al-Y,03; nanocomposites
with different content of yttria. From the Table 2, the microhardness of the composite increased as
the yttria increased of up to 1.5 vol. % and then decreased at 2.0 vol. % Y,Os3. The considerable
increase in hardness could be attributed to the presence of homogeneously distributed hard ceramic
nanoparticles and dispersion hardening effect [34]. Al-2.0 vol. % Y,O3; nanocomposites show
a decreased microhardness value, which was mainly due to the agglomeration of the yttria and
increasing presence of clustering of yttria in the case of the Al matrix [35]. The microhardness of the
microwave sintered samples in this study was found to be higher than the vacuum sintering and
arc-melting samples [36].

The increment of microhardness in the composite materials was due to the presence of hard
ceramic particles.

Table 2. Microhardness, yield strength, and ultimate compressive strength of Al-Y,O3 nanocomposites.

Composition Microhardness YS ucs Compression
(Hv) (MPa) (MPa) Strain (%)
Pure Al 38+3 69 +2 318 +5 >60
Al-0.5vol. % Y,03 46 + 4 71+4 329 +6 >60
Al-1.0 vol. % Y,03 63+2 87+3 337 +3 >60
Al-1.5vol. % Y,03 81+3 126 +5 374+ 6 >60

Al-2.0 vol. % Y,03 74+ 5 111+5 359 +7 >60
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Figure 3. Typical micrographs and corresponding energy dispersion elemental mapping analysis of
(a-f) Al-Y,05 (1, 1.5, and 2 vol. %) nanocomposites.
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Figure 4. Microhardness of Al-Y,0O3 nanocomposites.
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3.5. Compressive Analysis of Al-Y,0O3 Nanocomposites

The compressive test was conducted on the microwave sintered pure Al and Al-Y,03
nanocomposites and strengths were compared. Figure 5a shows the engineering stress—strain curves
of the Al-Y,0O3; nanocomposites with different content of yttria. Figure 5b shows the corresponding
mechanical data of Al-Y,0O3 nanocomposites.
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Figure 5. (a) The compressive stress—strain curves and (b) strength (yield and ultimate) of the
Al-Y,0O3 nanocomposites.

The yield strength and ultimate compressive strength of Al-Y,0O3 nanocomposites show increased
values up to 1.5 vol. % of yttria then decreased as shown in Table 2. Al-1.5 vol. %Y,0O3 nanocomposites
show the maximum yield strength (YS) of 126 + 5 MPa and ultimate compressive strength (UCS)
of 374 + 6 MPa at a uniform strain of ~60%. These results show the improvement of mechanical
properties of Al-Y,0O3 nanocomposites compared to the pure Al. The increased mechanical properties
of the Al-Y,03 nanocomposites are attributed to the dispersion hardening effect and homogeneous
distribution of hard reinforcements in the Al-matrix [37]. Al-2.0 vol. % Y,O3 nanocomposites
show a decreased microhardness value, mainly due to the agglomeration of nanoparticles and grain
growth [38]. Reinforcement amounts, density, heating mechanisms factors also govern the variation of
the mechanical properties. However, compression properties of the microwave sintered Al-1.5 vol. %
Y,0O3 nanocomposites are interestingly superior to those of other reinforced AMMCs [39-43].

There are several strengthening mechanisms to enhance materials” mechanical properties
like hardness and compressive strength of the composite materials. The strengthening of the
composites is not only dependent on unique strengthening mechanisms, but it also depends on
several strengthening mechanisms.

In the present study, the strengthening mechanism of the Al-Y,0O3 nanocomposites mainly
depended on dispersion hardening due to the hard yttria particles present in the aluminum matrix.
The increase in strength and hardness may be attributable to Orowan strengthening [44,45].

3.6. Fractography of Al-Y,03 Nanocomposites

Figure 6 shows the fracture surface images of microwave sintered pure Al and Al-Y,03
nanocomposites under compressive loading. The SEM observations in nanocomposites show typical
shear mode fractures and cracks obtained at a 45° to the fracture surfaces with respect to the compressive
loading axis. It can be observed that the compressive deformations obtained in pure aluminum and
aluminum composites with yttria are different, due to the work hardening behavior. The plastic
deformations are restricted by the presence of the second phase in Al-Y,03 nanocomposites [46].
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Figure 6. Compression fracture surfaces of (a) pure Al and (b) Al-1.5 vol. % Y,0O3 nanocomposites.
4. Conclusions

The Al-Y;03 nanocomposites were successfully synthesized by mechanical alloying and
microwave sintering method. The influence of yttria nanoparticles on the microstructure and mechanical
properties of the Al-Y,0O3 nanocomposites were investigated in detail. The density of the composites
increased with the increasing of yttria content while porosity decreased. The SEM analysis showed the
homogeneous distribution of yttria particles in aluminum composites. The Al-Y,03 nanocomposites
exhibited better mechanical properties compared to pure Al. The optimum hardness (81 + 3 Hv), yield
strength (126 + 5 MPa), and ultimate compression strength (374 + 6 MPa) and compressive strain
(~60%) values were obtained for the Al-1.5 vol. % Y,03 nanocomposite. This significant enhancement
in mechanical properties in Al-1.5 vol. % Y,O3 nanocomposites make them potential candidates for
automotive applications.
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