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Abstract

Breast cancer is the most common cancer among women worldwide, with an estimated 1.7

million cases and 522,000 deaths in 2012. Breast cancer is diagnosed by histopathological

examination of breast biopsy material but this is subjective and relies on morphological

changes in the tissue. Raman spectroscopy uses incident radiation to induce vibrations in

the molecules of a sample and the scattered radiation can be used to characterise the sam-

ple. This technique is rapid and non-destructive and is sensitive to subtle biochemical

changes occurring at the molecular level. This allows spectral variations corresponding to

disease onset to be detected. The aim of this work was to use Raman spectroscopy to dis-

criminate between benign lesions (fibrocystic, fibroadenoma, intraductal papilloma) and

cancer (invasive ductal carcinoma and lobular carcinoma) using formalin fixed paraffin pre-

served (FFPP) tissue. Haematoxylin and Eosin stained sections from the patient biopsies

were marked by a pathologist. Raman maps were recorded from parallel unstained tissue

sections. Immunohistochemical staining for estrogen receptor (ER) and human epidermal

growth factor receptor 2 (HER2/neu) was performed on a further set of parallel sections.

Both benign and cancer cases were positive for ER while only the cancer cases were posi-

tive for HER2. Significant spectral differences were observed between the benign and can-

cer cases and the benign cases could be differentiated from the cancer cases with good

sensitivity and specificity. This study has shown the potential of Raman spectroscopy as an

aid to histopathological diagnosis of breast cancer, in particular in the discrimination

between benign and malignant tumours.

Introduction

Breast cancer is the second most common cancer worldwide after lung cancer and the most

common cancer among women with approx. 1.7 million new cancer cases diagnosed in 2012

and 522,000 deaths [1].
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For breast cancer, as for most cancers, the gold standard diagnostic technique is biopsy

followed by histopathology, where the excised tissue is processed, cut into sections and

mounted on a glass slide for examination by a pathologist. It is widely acknowledged that

histopathology is subjective as it relies mainly on morphological information resulting in

inter-observer disagreement [2]. Visual assessment of tissue architecture and individual

cells is employed to grade tumours but the grading criteria can be subjective and pre-cancer

changes may not be visually apparent. In addition, because of the structural complexity and

heterogeneous nature of breast tissue, it can be difficult for histopathologists to find and

classify abnormal areas of tissue [3].

In addition to standard histopathology, a limited number of biomarkers can be used to

support the diagnosis. In breast cancer, analysis of oestrogen and progesterone receptors by

immunohistochemistry can help identify those patients that are likely to respond to hor-

mone treatment [4]. In addition, expression of human epidermal growth factor receptor 2

(HER2) identifies patients who will respond to herceptin (trastuzumab), a drug which

reduces the risk of recurrence and mortality in patients with HER2 positive early stage

breast cancer [5].

Vibrational spectroscopy techniques, such as Raman spectroscopy, have recently shown

great potential for disease diagnosis [6–8]. Raman spectroscopy is based on inelastic light scat-

tering. Monochromatic laser light is used to illuminate the sample and scattering of the light

occurs due to interactions between the incident photons and the molecules in the sample. The

energy of this inelastically scattered light is reduced by an amount equal to the vibrational

energy of the molecules in the sample. Thus, in depth information on the molecular composi-

tion of a sample can be obtained from the positions, relative intensities and shapes of the

Raman bands. Thus, Raman spectroscopy can provide a biochemical fingerprint of a tissue

biopsy and, together with advanced data analysis techniques, have been shown to classify nor-

mal, benign, pre-cancer and cancer cases.

Early studies on breast tissues showed that Raman spectra of diseased breast tissue (benign

and malignant) showed reduced lipids and carotenoids compared to normal breast tissue [9–

12]. A number of later studies by Abramczyk and colleagues similarly showed that the main

differences between normal and cancer tissues were in spectral regions associated with vibra-

tions of carotenoids, fatty acids and proteins [13–15]. In particular, unsaturated fatty acids

were found to be important for differentiation of normal and cancerous breast tissues [16].

Significant changes in Raman spectral bands associated with carotenoids and lipids have also

been reported in breast cancer tissue following chemotherapy [17].

Feld and co-workers showed that Raman spectroscopy could discriminate infiltrating carci-

noma from normal and benign tissues ex vivo with a sensitivity of 94% and specificity of 96%

[18]. Generally, a higher fat content was observed for normal tissues compared to a higher col-

lagen content in all abnormal breast tissues. A follow up prospective study on freshly excised

surgical specimens validated the previously developed algorithm [18] and showed that Raman

spectroscopy could discriminate cancer tissue from normal and benign tissues with a sensitiv-

ity of 83% and a specificity of 93% [19]. Similarly, Kong et al showed that normal breast tissue

could be discriminated from ductal carcinoma with 95.6% sensitivity and 96.2% specificity

based on increased concentration of nucleic acids and reduced concentration of collagen and

fat in the cancer tissue [20].

The aim of the present study was to discriminate between benign lesions (fibrocystic,

fibroadenoma, intraductal papilloma) and cancer (invasive ductal carcinoma and lobular car-

cinoma) using formalin fixed paraffin preserved (FFPP) tissue.

Application of FT-Raman
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Materials and methods

Sample collection and processing

Formalin fixed paraffin preserved (FFPP) breast tissue representing benign tumors, fibrocystic

lesions, fibroadenoma and intraductal papilloma, and cancers, invasive ductal carcinoma and

lobular carcinoma, were cut into 10 micron sections and mounted on glass slides. Tissue sam-

ples were collected from twenty individual patients and multiple sections were collected from

each sample to be measured and analyzed. Four parallel sections were prepared, one unstained

section for Raman spectroscopy, one for routine histology (Haematoxylin and Eosin (H & E)

staining) and the other two sections for immunohistochemistry.

Although a previous study has shown biochemical changes due to sample processing [21],

FFPP breast tissue sections were de-paraffinized using xylene and further rehydrated through

graded alcohols to distilled water following standard laboratory procedures. The pathologist

marked the regions of interest on the stained (H & E) sections. These breast tissue samples

were obtained from Al-Ahli Hospital with an ethical approval (dated on 17.01.2018), Doha-

Qatar. The samples were analyzed by Dublin Institute of Technology after obtained bioethical

approval (Ref 13–28), Ireland. All experimental protocols were approved by the collaborative

institutues and adhere with (to) the relevant guidelines and regulations. All the material was

taken anonymously (as appeared in the ethical approval) and a consent form from Al-Ahli

Hospital was signed by all patients undergoing any procedure.

Immunohistochemistry

Two further parallel sections from each tissue block were used for IHC. After blocking endoge-

nous peroxidase activity with 3% hydrogen peroxide in methanol, antigen retrieval was

achieved by heating the slides in 10 mmol/l citrate buffer (pH 6) using a water bath. Primary

antibodies to HER2/neu and ER were applied and the Avidin-Biotin peroxidase (ABC) kit

(Vectastain) was used for application of the secondary antibody. Signals were developed with

Diaminobenzidine (DAB) followed by light nuclear counter staining with Mayer’s Haematox-

ylin. Each set of slides was run with a known positive and negative control.

Raman spectroscopy

Raman spectroscopy was performed using a Horiba Jobin Yvon Labram HR800 UV system,

which was equipped with a 532 nm solid-state diode laser that delivered 100 mW of power to

the sample. Spectral maps were recorded from regions of the sample containing clinically sig-

nificant morphological changes associated with each condition, which were marked by a clini-

cal pathologist on the parallel H & E stained section. The laser excitation was delivered to the

sample through a x100 objective lens and the spectra were dispersed onto the detector using a

diffraction grating ruled with 1200 lines/mm providing a spectral resolution of 3 cm-1 per

pixel. The confocal hole was set to 100 μm such that contributions from the glass were mini-

mised. The system was calibrated daily using the 520.7 cm-1 line of silicon. Each individual tis-

sue spectrum was measured with a 10 second integration time averaged over 3 successive

measurements.

Data pre-processing. All spectral processing procedures were conducted using Matlab

(R2017a; Mathworks Inc., Natick, MA), along with in-house developed algorithms and proce-

dures available within the PLS Toolbox (v 8.0.2, Eigenvector Research Inc., Wenatchee, MA).

Briefly, spectra were imported, baseline was subtracted with a rubberband algorithm, and

those spectra whose SNR deviated by more than 30% from the mean in their sample were
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discarded. Spectra were then vector normalised. Finally all spectra were smoothed using a

Savitzky-Golay smoothing algorithm with a 7-point window and a 5th order polynomial.

Data analysis. Principal component analysis (PCA) was conducted to determine whether

spectra could be differentiated with respect to their overall class Benign and Cancer. Principal

Components (PCs) were generated and subjected to linear discriminant analysis (LDA), qua-

dratic discriminant analysis (QDA) and a series of Support Vector Machine (SVM) classifiers,

Linear c-SVC, Linear nu-SVC, RBF c-SVC and RBF nu-SVC. Each classifier was applied on 50

datasets for PCA-LDA and PCA-QDA and 20 datasets for SVM composed of PC scores with

increasing numbers of PCs. Partial least squares discriminant analysis (PLSDA) was also

applied on 50 datasets composed of increasing numbers of latent variables (LVs). For each

application, the classifier was trained using 60% of the spectra randomly selected from all spec-

tra, and tested using the remaining held out 40%. PLSDA was also applied with leave one

patient out cross validation (LOPOCV).

Results

Fig 1 shows H&E stained tissue sections from each benign lesion and cancer type. A fibrocystic

lesion showing dilated ducts and cyst formation with sclerosing adenosis is depicted in Fig 1A,

while Fig 1B depicts fibroadenoma showing both epithelial and stromal components and Fig

1C depicts intraductal papilloma showing dilated ducts with papillary projections having a

fibrovascular core and epithelial-myoepithelial lining. Infiltrative ductal carcinoma is depicted

in Fig 1D which shows proliferating neoplastic cells, some forming tubules with moderate des-

moplastic reaction and mild lymphocytic infiltration, and infiltrative lobular carcinoma is

depicted in Fig 1E which shows tumour cells infiltrating singly (with no tendency for tubule

formation) in a linear pattern and loosely dispersed in a fibrous matrix.

Immunohistochemical staining of ER and HER2/neu in each benign lesion and cancer type

are shown in Fig 2. Patchy positivity for ER was observed in fibrocystic disease (Fig 2A),

fibroadenoma (Fig 2C) and intraductal papilloma (Fig 2E), while expression of HER2/neu was

negative in fibrocystic disease (Fig 2B), fibroadenoma (Fig 2C) and intraductal papilloma (Fig

2E). ER was observed to be strongly and diffusely positive in both infiltrative ductal carcinoma

(Fig 2G) and infiltrative lobular carcinoma (Fig 2I). HER2/neu was observed to be positive in

infiltrative ductal carcinoma (Fig 2H) and negative in infiltrative lobular carcinoma (Fig 2J).

Fig 3 shows mean Raman spectra by subclass (fibrocystic lesion, fibroadenoma, intraductal

papilloma, infiltrative ductal carcinoma and lobular carcinoma) and by class (benign and can-

cer). In each the dominant features differentiating the classes as shown in the difference spec-

trum (Fig 3 bottom panel) include vibrations in the region from 800–985 cm-1 and from

1120–1690 cm-1. Some important vibrational modes within these and other regions of the

spectrum are labelled in Fig 3.

A series of classifiers were created, including PCA-LDA, PCA-QDA, PLSDA, Linear c-

SVC, Linear nu-SVC, RBF c-SVC and RBF nu-SVC, which were used to determine whether

Raman spectroscopy could discriminate between benign lesions and cancer.

Fig 4A shows the sensitivity and specificity for PCA-LDA, PCA-QDA and PLSDA models.

For PCA-LDA and PCA-QDA, improved sensitivity and specificity could be achieved with PC

scores>22. PCA-LDA and PCA-QDA gave similar results across the number of PC scores

used. The maximum sensitivity and specificity achieved was approx. 83% and 80% respec-

tively. For PLSDA, the optimal result was obtained using 10–17 LVs, resulting in sensitivity

and specificity of 82% and 84% respectively.

Fig 4B shows the sensitivity and specificity for Linear c-svc, Linear nu-svc, RBF c-svc and

RBF nu-svc SVM models. For Linear c-svc and nu-svc SVM models, the optimal result was
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obtained from 12 PC scores, resulting in sensitivity and specificity of<71% and<80% respec-

tively. For RBF c-svc SVM, the optimal result was obtained from 15 PC scores with 90% sensi-

tivity and <92% specificity while for RBF nu-svc SVM, the optimal result was obtained from

15 PC scores with ~90% sensitivity and ~93% specificity.

Fig 1. Digital pathology scan of H & E stained tissue section (left) and magnified image of one of the regions of

interest marked by the pathologist (right) for (a) fibrocystic lesion, (b) fibroadenoma, (c) intraductal papilloma,

(d) infiltrative ductal carcinoma, (e) infiltrative lobular carcinoma. H&E (scale bar 2.5 cm) & Magnified images

(scale bar 0.1mm).

https://doi.org/10.1371/journal.pone.0212376.g001
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Fig 2. Representative images for ER immunostaining for (a) fibrocystic lesion, (c) fibroadenoma, (e) intraductal

papilloma, (g) infiltrative ductal carcinoma, (i) infiltrative lobular carcinoma and HER2/neu immunohistochemistry

staining for (b) fibrocystic lesion, (d) fibroadenoma, (f) intraductal papilloma, (h) infiltrative ductal carcinoma, (j)

infiltrative lobular carcinoma (Scale bar 0.2 mm).

https://doi.org/10.1371/journal.pone.0212376.g002

Fig 3. Top panel, mean spectra by subclass, with benign tissues (fibrocystic adenoma, fibrocystic disease and

intraductal papilloma) in blue and cancerous tissues (infiltrating ductal carcinoma, infiltrative lobular carcinoma

and carcinoma) in red. Spectra are offset for clarity. Middle panel, mean spectra of benign (blue) and cancerous tissue

(red), Bottom panel, difference spectrum (green) and shaded regions in which a 2-tailed t-test has identified

differences that are significant at the level of p<1×10−4.

https://doi.org/10.1371/journal.pone.0212376.g003
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Fig 4C shows the sensitivity and specificity for the PLSDA model using LOPOCV. The opti-

mal result was obtained from 10 LV scores, resulting in ~64% sensitivity and ~68% specificity.

Discussion

Immunohistochemistry

Immunohistochemical staining for ER and HER2/neu has been performed on the five types of

breast tissues shown in Fig 2. H&E images of benign breast conditions and benign and malig-

nant tumors are presented in Fig 1. Benign breast lesions are not cancerous since they do not

spread to other locations in the body. The benign conditions diagnosed in this study are fibro-

cystic, fibroadenoma and intraductal papilloma.

Fibrocystic disease of the breast can have different patterns, proliferative, that might be

associated with an increased risk of breast carcinoma, and non- proliferative. Some of these

alterations like stromal fibrosis and macro-cysts produce palpable “lumps”. Non proliferative

change is the most common type of alteration, characterized by an increase in fibrous stroma

associated with dilation of ducts and formation of cysts of various sizes [22]. The relationship

of fibrocystic changes to breast carcinoma is a medically controversial area. Fig 1 shows the

dilated ducts, cysts formation with sclerosing adenosis. ER staining shows focal positivity in

fibrocystic disease (Fig 2) and HER2/neu shows negativity (Fig 2).

Fibroadenoma is a benign tumour of the breast with overgrowth of both glandular and

fibrous tissue. It has two common histological patterns pericanalicular and intracanalicular.

Pericanalicular has open glandular spaces and intracanalicular has compressed glandular spaces

but there is no clinical significance to this distinction. The fibroadenoma section in Fig 1B is of

pericanalicular type and shows focal ER positivity (Fig 2) and negative HER2/neu (Fig 2).

Another type of benign tumor is intraductal papilloma which is composed of proliferative

epithelium but with myoepithelial cell lining and branching arbor of fibrovascular cores. The

lesion is usually found in the large distal ducts and can become fibrotic or calcifies with age

[22]. The intraductal papilloma case mentioned in the result (Fig 2) shows clear dilated ducts

with papillary projections having fibrovascular core and epithelial myoepithelial lining. The

ER staining shows patchy positivity (Fig 2) and HER2/neu is negative in intraductal papilloma

(Fig 2).

Invasive Ductal Carcinoma (IDC) is the most common type of breast carcinoma. The

tumor arises from the terminal duct lobular unit. The tumor is characterized by the tendency

of cells for tubular formation associated with desmoplastic reaction (fibrosis).

The section through the tumor (Fig 1) shows proliferating neoplastic cells, some forming

tubules with moderate desmoplastic reaction and mild lymphocytic infiltration. ER (Fig 2) is

strongly diffusely positive and HER2/neu is positive in invasive ductal carcinoma (Fig 2).

Infiltrative lobular carcinoma (ILC) consists of cells that invade individually into stroma

and are often aligned in strands or chains. The classical form of ILC is characterized by small

relatively uniform neoplastic cells that invade the stroma singly and in a “single-file” pattern

resulting in linear strands [22]. The cells may encircle the mammary ducts and infiltrate the

stroma and adipose tissue without desmoplastic reaction. ER shows strongly diffusive positiv-

ity (Fig 2) and HER2/neu is positive in infiltrative lobular carcinoma tissues (Fig 2).

Fig 4. a) Sensitivity and specificity with respect to number of PCs/ LVs for various models in classifying benign lesions

versus cancer. b) Sensitivity and specificity with respect to number of PCs for various models in classifying benign

lesions versus cancer. c) Sensitivity and specificity with respect to number of LVs for PLSDA model in classifying

benign lesions versus cancer using LOPOCV.

https://doi.org/10.1371/journal.pone.0212376.g004
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Raman spectral comparison

The fingerprint region contains diagnostic bands from proteins, lipids, nucleic acids and other

biomolecules including carotenoids and calcium hydroxyapatite. Additional bands assigned to

amino acids are observed in this region including: tyrosine, phenylalanine, tryptophan, proline

and valine.

In Fig 3 several modes of vibration were found to be significantly different between the

benign and cancer classes. The band at 1662 cm-1 is assigned to the amide I mode originating

mainly from proteins and nucleic acids. The two weak bands at 1610 and 1585 cm-1 observed

in the breast tissue are due to the ν(C = C) modes of aromatic amino acids (phenylalanine,

tyrosine, and tryptophan). The band at 1448 cm-1 is assigned to the ν(CH2/CH3) modes from a

combination of lipo-proteins from the cell membrane, adipose tissue, and nucleic acids. The

amide III bands are observed in the region of 1295–1200 cm-1, which are attributed to a com-

bination of ν(CN) and ν(NH) modes of the peptide bond ν(-CONH). Other bands assigned to

the amino acids include: the ν(C-C) modes of tryptophan and phenylalanine at 1208 cm-1, the

ν(G-H) mode of tyrosine at 1182 cm-1, the ν(C-N), ν(G-H) and ν(C-C) ring breathing modes

of phenylalanine at 1153, 1026 and 1002 cm-1, respectively. The bands at 936 and 856 cm-1 are

assigned to the ν(C-C) modes of proline and valine, and the ν(C-CH) modes of proline and

tyrosine, respectively. The spectrum exhibits three major characteristic bands in this region

including those due to: the ν(C = C) mode at 1515 cm-1, the ν(C-C) mode at 1156 cm-1, and

the ring breathing mode at 1004 cm-1.

Discrimination of Raman spectra with PCA analysis

Principal component analyses were applied to all of the Raman spectra collected from breast

tissues that had been subjected to the same sampling preparation and presentation techniques

(sectioning and sample mounting). The analysis aimed to model the data with the least num-

ber of principal components. Ideally the most parsimonious model which results in the highest

degree of predictive accuracy is desirable in this instance. S1 Fig (supplementary information)

demonstrates the high degree of overlap between spectral features in the cancer and benign

classes. As such it is difficult to develop models that spectrally discriminate between data in the

two classes using two to three data dimensions, which then would allow visualisation of the

principal component scores here. Therefore the performance of high-dimensional classifica-

tion algorithms has been examined as the dimensionality of the data is increased (Fig 4).

The performance of the different algorithms, PCA-LDA, PCA-QDA, PLSDA, Linear c-

SVC, Linear nu-SVC, RBF c-SVC and RBF nu-SVC, were evaluated using sensitivity and spec-

ificity. Sensitivity and specificity are common statistical measures quantifying the degree to

which a test correctly identifies a positive and negative medical condition, respectively. Sensi-

tivity is a measure of the ability of the test to identify positive cases while specificity is a mea-

sure of the ability of the test to identify negative cases, both within mixed populations of

positive and negative cases. Sensitivity and specificity were calculated based on the results

from the Raman data and from the gold standard histopathology.

The samples were divided into two classes: class 1 having benign lesion samples and class 2

having cancer samples. This data set was created to evaluate the power of the algorithms to dif-

ferentiate cancer samples from benign lesions. Each classifier was trained using 60% of the

spectra randomly selected from all spectra, and tested using the remaining held out 40%.

Applying PCA-LDA and PCA-QDA to the data, classification improved for PC scores > 22, as

shown in Fig 4A. For classification purposes, the PCA-LDA and PCA-QDA models had very

similar performances, with sensitivity and specificity >80%. Applying PLSDA to the data, clas-

sification improved for 10–17 LVs and sensitivity and specificity of 82% and 84% respectively
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was achieved as shown in Fig 4. A number of SVM models were also tested. For Linear c-svc

and nu-svc SVM models, classification improved for PC scores> 12 and sensitivity and speci-

ficity of<71% of and <80% respectively was achieved as shown in Fig 4B. For RBF c-svc and

nu-svc SVM, classification improved for PC scores> 15 and 90% sensitivity and>92% speci-

ficity was achieved as shown in Fig 4B. The RBF SVM models were found to perform best for

classification of benign lesions and cancer but required more processing time than PCA LDA,

PCA QDA and PLSDA.

PLSDA was also carried out with leave one patient out cross validation (LOPOCV) as

shown in Fig 4C. Classification improved for LV scores >10 but relatively poor sensitivity of

64% and specificity of 68% was achieved. This was most likely due to the low number of patient

samples and further work would be required to increase the sample size.

Overall, good classification of benign lesions and cancer cases could be achieved particu-

larly with the RBF SVM models. The combination of Raman analysis and these types of che-

mometric techniques can provide very acceptable findings for developing fast, accurate, less-

invasive, and non-analysis dependent clinical procedures, especially for screening purposes.

Conclusions

In conclusion, this study shows the ability of Raman spectroscopy to discriminate between

benign breast lesions (fibrocystic, fibroadenoma, intraductal papilloma) and breast cancer

(invasive ductal carcinoma and lobular carcinoma). The benign and cancer cases could be clas-

sified with good sensitivity and specificity using a number of different models. PCA-LDA,

PCA-QDA and PLSDA models achieved similar sensitivity and specificity of>80%. RBF SVM

models achieved sensitivity and specificity of>90% but required more processing time than

the PCA-LDA, PCA-QDA and PLSDA models. Further studies are required to increase the

sample size and to validate the findings using an independent cohort of patients.

Supporting information

S1 Fig. Principal component scores plots for tissue classed as either (a) infiltrating ductal

or lobular carcinoma (LC) (black) or (b) fibrocystic lesion, fibroadenoma or intraductal

papilloma (red).

(TIF)
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